
JTaCo & SProUTomat: Automatic Evaluation and Testing of Multilingual
Language Technology Resources and Components

Christian Bering†, Ulrich Schäfer∗

†Computational Linguistics Department, Saarland University
P.O.Box 151150, D-66041 Saarbrücken, Germany

christian.bering@acrolinx.com
∗Language Technology Lab, German Research Center for Artificial Intelligence (DFKI) GmbH

Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany
ulrich.schaefer@dfki.de

Abstract
We describe JTaCo, a tool for automatic evaluation of language technology components against annotated corpora, and SProUTomat, a
tool for building, testing and evaluating a complex general-purpose multilingual natural language text processor including its linguistic
resources (lingware). The JTaCo tool can be used to define mappings between the markup of an annotated corpus and the markup
produced by the natural language processor to be evaluated. JTaCo also generates detailed statistics and reports that help the user to
inspect errors in the NLP output. SProUTomat embeds a batch version of JTaCo and runs it after compiling the complex NLP system
and its multilingual resources. The resources are developed, maintained and extended in a distributed manner by multiple authors and
projects, i.e., the source code stored in a version control system is modified frequently. The aim of JTaCo & SProUTomat is to warrant a
high level of quality and overall stability of the system and its lingware.

1. Introduction

The development of multilingual resources for language
technology components is a tedious and error-prone task.
Resources (lingware) like morphologies, lexica, grammars,
gazetteers, etc. for multiple languages can only be devel-
oped in a distributed manner, i.e., many people work on
different resources.
However, the resulting systems are supposed to deliver the
same good recognition quality for each language. Depen-
dencies of resources and subsystems may lead to subop-
timal performance, e.g., reduced recognition rates, of the
overall systems in case of errors creeping in during the de-
velopment process. Hence, in analogy to software engi-
neering, testing and evaluation of the developed lingware
has to be carried out on a regular basis, both for quality as-
surance and comparability of results in different languages.
Annotated natural language corpora can be thought of as
providing a rich and potentially very useful body of test
material in this context. However, it is often not possible to
flexibly incorporate the material at hand into the develop-
ment process. The reasons are manifold: Not only may an-
notations in different sources be of very diverse nature, but
the NLP component under development usually generates
a markup in yet another format defined by the development
environment.
In this paper, we describe a framework consisting of two
major components, JTaCo and SProUTomat, that facilitates
frequent (e.g., daily) building, testing and evaluation of
multilingual language components and resources in a qual-
ity assurance and development cycle as depicted in Fig-
ure 1. We have implemented and will demonstrate the
framework for the multilingual SProUT processor. How-
ever, the concepts and mechanisms described could be ap-
plied to any other resource-intensive natural language pro-
cessing system.

Figure 1: Quality assurance and development cycle for
multilingual linguistic resources.

2. SProUT
SProUT is a shallow, multilingual, general-purpose natu-
ral language processor (Drozdzynski et al., 2004). SProUT
comes with a powerful, declarative grammar formalism
XTDL that combines finite-state techniques and typed fea-
ture structures with structure sharing and a fully-fledged,
efficiently encoded type hierarchy—in contrast to systems
like GATE (Cunningham et al., 2002) that support only
simple attribute-value pairs.
SProUT rules consist of regular expressions over typed fea-
ture structures1. A rule is matched against a sequence of
input feature structures which are filled by basic compo-
nents like tokenisers, morphology or gazetteer lookup run-

1The acronym SProUT stands for Shallow Processing with
Unification and Typed feature structures. SProUT’s homepage is
http://sprout.dfki.de.



ning on input text or, in more complex cases, XML output
from external NLP components or even output from previ-
ous SProUT grammar stages.
The matching condition is unifiability of the input sequence
with the expanded regular expression of the left hand side
of a rule. In case of a match, feature structure unification is
used to transport information from the matching left hand
side to the output feature structure on the right hand side
of the rule. The output feature structure can then, e.g., be
transformed to any XML format.
The SProUT system provides basic components like to-
kenisers, morphologies and domain-specific gazetteers for
languages such as English, German, French, Spanish,
Greek, Japanese, Italian, Chinese, Polish and Czech, and
comes with a user-friendly integrated development envi-
ronment (IDE). The current main applications of SProUT
are information extraction and named entity recognition
(NER).
To illustrate the SProUT formalism, we give a short ex-
ample in Figure 2 of a grammar rule that recognises river
names. The rule matches either expressions consisting of
an (unknown) capitalised word (via token type match), fol-
lowed by a noun with stem river or brook (via the English
morphology component; disjunction has a higher prece-
dence than concatenation), or Gazetteer entries of type
gaz river containing English river names represented by
the Gazetteer type gaz river. The generated output struc-
ture of type ne-location contains a location type river and
the location name transported via the coreference symbol
loc name . To sum up, this rule recognises both unknown
river names (via a pattern involving morphology lookup
that tolerates morphologic variants) and known river names
(via a gazetteer match), using a concise, declarative pattern
and returning a structured description.
SProUT has been and is currently used in many research
and industrial projects for opinion and text mining, in-
formation extraction, automatic hyperlinking, question an-
swering and semantic web applications (Drozdzynski et al.,
2004).

3. JTaCo
The aim of JTaCo (Bering, 2004; Bering et al., 2003) is
to allow the developer of an NLP component or resource,
e.g., of a grammar, to make unified use of variably anno-
tated source material for testing. The component developer
provides suitably, i.e., usually semi-manually or manually
marked-up reference sources on the one hand, and a parser
or similar NLP component on the other hand. JTaCo ex-
tracts the original annotation from the corpus, compares
this annotation with the markup the component in question
generates for the same input, and generates statistics and
reports from the comparison results2.
Since a focus of JTaCo lies on the integration of diverse
manual annotation schemes one the one hand and differing
NLP components on the other, JTaCo employs a very mod-
ular architecture in which its different processing stages al-
low independent adaptations to varying input and differ-
ent environments. JTaCo is realised as a pluggable light-

2JTaCo stands for Java Tagging Comparator.

weight, mostly architecture-independent framework. Cur-
rently, there are two JTaCo plug-in realisations for usage
with grammars developed in SProUT: A GUI plug-in inte-
grated into the SProUT IDE, and a batch version integrated
into SProUTomat.

3.1. JTaCo’s Processing Stages
JTaCo works in four separate transformational processing
stages. Figure 3 gives an overview of these stages, of their
input and the results they generate. The process starts from
an annotated written corpus against which the NLP compo-
nent or resource is to be tested. In the first step, JTaCo uses
an AnnotationParser to separate the corpus into

• the ‘raw’ text contained in the corpus (i.e., the text
without any annotation) and

• its true annotation (interchangeably also called the ref-
erence or manual annotation).

The extracted text is fed into the Parser (or a similar com-
ponent) which the developer wants to test, yielding the an-
notation to compare with the manual annotation. The com-
parison is executed by a TaggingComparator. The com-
parator’s result in turn is used by an OutputGenerator to
select, format and output the needed information.

jTaCo

AnnotationParser

Parser

TaggingComparator

OutputGenerator

Annotated Corpus

True Annotation

Raw Text

Parsed Annotation

Comparison Result

Result Tables

Grammar
Developer

provides

Figure 3: An overview of JTaCo’s processing stages and
the (intermediate) results they yield.

There are two main advantages gained from such a modular
architecture: On the one hand, the abstract representations
in the intermediate results hide details specific to the corpus
or component used. For instance, differing types of anno-
tations are mapped to an abstract annotation representation,
for which a comparison operation – i.e., especially the no-
tion of equality between entities in the two annotations –
can be defined in an adequately flexible manner, and the
underlying annotated sources as well as NLP components
can be exchanged transparently. Thus, whenever a new an-
notation format or component makes it necessary to inte-
grate a tailored module into JTaCo, the capabilities of the
new module can readily interact with existing functionality
of other modules.
The second, more practically relevant advantage is that the
settings of any one stage can be changed, and the process
at that stage rerun with the new settings without having to



river :>


 token

TYPE first capital word
SURFACE loc name

 •




morph
STEM "river"
POS noun
SURFACE key

 |


morph
STEM "brook"
POS noun
SURFACE key






|


gazetteer
GTYPE gaz river
CONCEPT loc name
DESIGNATOR key

 →


ne-location
LOCTYPE river
LOCNAME loc name
DESCRIPTOR key

 .

Figure 2: A SProUT grammar rule recognizing river names. Boxed feature values denote structure sharing, type names are
typeset in italics. The dot after the first token indicates concatenation, the vertical bars separate alternatives.

re-iterate the previous process stages, as long as their re-
sults are still available. This can be especially useful for the
last two stages in an interactive environment (i.e., compari-
son and report generation), where the developer might want
to experiment with different settings without repeatedly
having to rerun the probably time-consuming processes of
reading the corpus and parsing it.
For each of the stages, a JTaCo plug-in uses one or more
processing realisations adapted to the desired representa-
tions. In what follows, we will draw upon the implementa-
tions integrated into SProUT and SProUTomat to illustrate
the information flow in JTaCo.

3.2. Reading the Annotated Corpus
For use in the following processing stages, JTaCo extracts
from the annotated corpus the ‘raw’ content, i.e., the writ-
ten text without any markup, on the one hand, and the
reference annotation on the other. Both the extraction
of the text and of the annotation can be configured ac-
cording to the specific annotation scheme. E.g., a corpus
usually not only contains the annotated textual material,
but also meta-information intended for, e.g., administra-
tive purposes. Such information has to be exluded from
the text extracted to be used for testing. Currently, JTaCo
includes support for annotations which satisfy certain reg-
ular constraints and for XML annotations such as found in
MUC corpora (Grishman and Sundheim, 1996). For use
with SProUT, JTaCo transforms the XML-encoded entities
into typed feature structures.
As an illustration, consider the following MUC time ex-
pression:

<TIMEX TYPE="DATE">07-21-96</TIMEX>

The textual content consists just of the date expression 07-
21-96. JTaCo transforms the tag information as well as the
surface and character offsets into feature-value pairs in a
feature structure:

timex
TYPE "DATE"
CSTART "27"
CEND "34"
SURFACE "07-21-96"


Here, CSTART and CEND indicate the inclusive start and
end character positions of the annotated element in the

‘raw’ text, i.e., without counting the markup. The resulting
reference annotation is the collection of all feature struc-
tures generated from the corpus. More complex, embedded
annotations would be translated in a similar manner.

3.3. Parsing the Extracted Text
In this second processing stage, JTaCo feeds the NLP com-
ponent which the developer wants to test with the text re-
trieved from the previous stage, and the NLP component
in turn produces some specific markup of the text. As in
the previous stage, JTaCo transforms this annotation into a
format which it can compare with the reference annotation.
For the previously employed example expression, 07-21-
96, SProUT’s named entity recognition markup delivers
structured output in an XML-encoded typed feature struc-
ture3, where CSTART and CEND indicate start and end
character positions of the matched named entity in the input
text: 

point
SPEC temp-point
MUC-TYPE date
CSTART "27"
CEND "34"
SURFACE "07-21-96"
YEAR "1996"
MONTH "07"
DOFM "21"



3.4. Comparing the Annotations
In this stage, the annotations obtained from the two previ-
ous tranformation processes are compared, i.e., the ‘man-
ual’ annotation read directly from the corpus, and the
‘parsed’ annotation obtained through the NLP component.
For JTaCo, an annotation is a collection of tags, where a
tag consists of some linguistic information about a piece of
text. Minimally, a tag contains

• some name, e.g., a linguistic label,

3Transformation of typed feature structures and general XML
markup is discussed in the context of the upcoming ISO standard
in (Lee et al., 2004). Actually, SProUT’s default XML output
format is very close to the proposed ISO format for typed feature
structures.



• the surface string to which the label applies,

• token count information about where this string is
found in the corpus.

Usually, the setup uses tags which incorporate more infor-
mation, and the relation used to determine entity equality
between the two annotations typically depends on this in-
formation. For instance, for use with, SProUT JTaCo gen-
erates an annotation consisting of tags which are augmented
with feature structure information. The equality notion of
these tags is defined though unification.
An important feature of JTaCo is that the comparison can
be configured to accomodate for a variety of systematic dif-
ferences in annotations:

• The annotations may use different labels, differing
perhaps even in granularity. E.g., one annotation
might globally use the label organisation, while the
other uses subclasses such as university, government,
etc.

• The annotated entities may differ in their surface
spans. E.g., one annotation might consider the ex-
pression President Hugo Chavez to be a named entity,
while the other might exlude the title.

• One annotation may contain sequences of entities
which in the other annotation correspond to one sin-
gle entity. For instance, MUC will usually separate
a date followed by a time into two named entities
(TIMEX-DATE and TIMEX-TIME), while SProUT
considers this to be one entity.

The screenshot in Figure 4 shows a part of the defined
tag mappings used when comparing SProUT’s annota-
tion to the original MUC markup. Most of the map-
pings constitute simple entity label correspondences, e.g.,
a MUC TIMEX-DATE can correspond to a point, a
span, a duration, or an interval in the annotation
generated by SProUT. An entity named a duration by
SProUT can in turn be a MUC TIMEX-DATE as well as
a TIMEX-TIME. In the example settings, all of these cor-
respondences are further ‘softened’ to ignore surface span
discrepancies: The open left and open right switches allow
for a mismatch in the CSTART and CEND features, respec-
tively. The example settings also contain a mapping of the
sequence TIMEX-DATE and TIMEX-TIME in MUC to the
SProUT entity point. The strictness is a measure of how
far apart these two elements are allowed to occur and still
be valid elements for a sequence matched against a single
point.

3.5. Generating a Report
Finally, JTaCo generates a report of the comparison. JTaCo
can output statistical information (precision, recall, etc.)
as well as detailed occurrence lists of entities that were
or were not correctly identified in the parse. The settings
for this processing stage determine which results are shown
(e.g., for which tags) and how the information is format-
ted. JTaCo can export the generated reports as ASCII and
as HTML tables.

Figure 4: Definition of comparison settings in JTaCo’s
SProUT IDE plug-in. See Section 3.4. for a detailed ex-
planation.

4. SProUTomat
SProUTomat, described in more detail in (Schäfer and
Beck, 2006), is an automatic build, testing and evaluation
tool for linguistic resources and components that has been
implemented for SProUT. SProUTomat is used for daily
building and testing the development and runtime system
from the program and lingware source code checked out
from a version control system.

4.1. Build Procedure
SProUTomat is an extension of the build mechanism for
language technology components and resources we have
developed for the SProUT system using Apache Ant
(http://ant.apache.org). Ant is a standard open
source tool for automatic building and packaging complex
software systems. On the basis of target descriptions in an
XML configuration file, Ant automatically resolves a target
dependency graph and executes only the necessary targets.
Before testing and evaluating, a system has to be built, i.e.,
compiled from the sources checked out from the source
control system. The Java program code compilation of
SProUT is a straightforward task best supported by Ant.
The case is, however, different for lingware sources (type
hierarchy4, tokeniser, morphology, gazetteer, XTDL gram-
mars).
While the appropriate Java code compilation tasks know

4The SProUT formalism uses a subset of TDL (Krieger and
Schäfer, 1994) that is compiled using the flop compiler of the PET
system (Callmeier, 2000).



what a compiled class file is and when it has to be re-
compiled (source code changes, dependencies), this has to
be defined explicitly for lingware resources which Ant na-
tively is not aware of. The uptodate task can be used to
compare source files (.tdl in the following example) against
their compiled version (.grm).

<uptodate property="tdl_input_is_uptodate"
srcfile="${typehierarchy}.tdl"

targetfile="${typehierarchy}.grm"/>

For each of the different lingware types, these source file
dependencies are defined as are the calls to the dedicated
SProUT compilers and parameters for their compilation.
Lingware-specific targets have common parameters and
properties like "lang", "project" or the lingware type
that are used to locate, e.g., the source and compiled files in
the hierarchically defined directory trees or "charset"
to specify encodings for source files to read.

<!--usage : ant compile_ne -Dlang=en -->
<target name="compile_ne" depends="jar"
description="Compile NER grammar.">
<property name="lang" value="en"/>
<property name="project" value=""/>
<property name="charset" value="utf-8"/>
<!-- compile type hierarchy -->
<antcall target="compile_tdl"/>
<!-- compile tokeniser -->
<antcall target="compile_tokenclass"/>
<!-- compile gazetteer -->
<antcall target="compile_gazetteer"/>
<!-- compile XTDL grammar for NER -->
<antcall target="compile_grammar"/>

</target>

Figure 5: A sample target definition: named entity grammar
compilation.

Dependencies between different lingware types are handled
by calls to defined sub-targets. Figure 5 shows the defini-
tion of the compile_ne target that calls four other compi-
lation sub-targets. Each subtarget compiles only when nec-
essary, and the compile_ne target itself depends on the
jar target that provides working and up-to-date SProUT
lingware compilers.
Besides the program and lingware compilation, many other
targets exist, e.g., to generate documentation, package run-
time systems, start the integrated development environ-
ment, etc.
Thus, using a single command, it is possible to compile
the whole system including code and all dependent avail-
able linguistic resources, or to update it after changes in the
sources.

4.2. Test and Evaluation
When SProUTomat is started, it first updates all program
and lingware sources from the version control system, and
compiles them. For each language resource to test, a ref-
erence text is then analysed by the SProUT runtime sys-
tem. This checks for consistent (re)sources. The next step is
comparison of the generated named entity and information

extraction annotation against a gold standard. SProUTomat
uses the batch version of JTaCo for the automatic evalu-
ation and computation of precision, recall and f-measure.
For English, the annotated corpus is taken from the MUC
evaluation data. For other languages for which no MUC
annotations exist (e.g., German), a manually developed cor-
pus is employed.

4.2.1. Report
Finally, a report is generated and emailed to the developers
with an overall status (OK or ERROR) for quick informa-
tion. The report also contains diagrams consisting of pre-
cision, recall and f-measure curves since beginning of reg-
ular measurements per language that visually give a quick
overview of the resource development progress over time
(cf. Figure 6). To this end, the evaluation numbers are also
added to a global evaluation database.

 0

 0.2

 0.4

 0.6

 0.8

 1

08/05 09/05 10/05 11/05 12/05 01/06 02/06 03/06

FM
ea

su
re

Date

 

NUMEX-PERCENT
NUMEX-MONEY

ENAMEX-LOCATION

ENAMEX-ORGANIZATION
ENAMEX-PERSON

TIMEX-DATE

TIMEX-TIME

Figure 6: F-measure curves of the English MUC-
compatible NER grammar collected by SProUTomat from
08/05 to 03/06. The drop in August/September was caused
by a code change not followed by an immediate adaptation
of the lingware.

5. Summary
We have presented a comprehensive framework for auto-
matically testing and evaluating multilingual linguistic re-
sources and language technology components. The sys-
tem is in daily use since March 2005 and successfully
helps to maintain the quality and reliability of the multilin-
gual language processor with its various resources that are
developed by many authors and used in several projects.
The framework greatly helps to improve and accelerate the
development - evaluation/comparison - refinement cycle,
gives motivating feedback (such as raising recall and preci-
sion curves over time) and thus provides continuous quality
assurance for a complex natural language processing sys-
tem.

6. Acknowledgements
We would like to thank Daniel Beck for helping to im-
plement SProUTomat, the SProUT grammar developers
for their feedback, Witold Drożdżyński for extending the
SProUT API to our needs and the reviewers for helpful
comments.



This work has been supported by research grants from the
German Federal Ministry of Education and Research in the
context of the projects QUETAL (FKZ 01 IW C02) and
COLLATE (FKZ 01 IN A01).

7. References
Christian Bering, Witold Drozdzyski, Gregor Erbach, Clara

Guasch, Petr Homola, Sabine Lehmann, Hong Li, Hans-
Ulrich Krieger, Jakub Piskorski, Ulrich Schäfer, At-
suko Shimada, Melanie Siegel, Feiyu Xu, and Dorothee
Ziegler-Eisele. 2003. Corpora and evaluation tools for
multilingual named entity grammar development. In
Proceedings of Multilingual Corpora Workshop at Cor-
pus Linguistics, pages 42–52, Lancaster, UK.

Christian Bering, 2004. JTaCo User Guide. Saarbrücken,
Germany. Saarland University, Computational Linguis-
tics Department.

Ulrich Callmeier. 2000. PET – A platform for experimen-
tation with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6(1):99–108.

Hamish Cunningham, Diana Maynard, Kalina Bontcheva,
and Valentin Tablan. 2002. GATE: A framework and
graphical development environment for robust NLP tools
and applications. In Proceedings of the 40th Anniversary
Meeting of the Association for Computational Linguis-
tics, Philadelphia, PA.

Witold Drozdzynski, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature structures
– foundations and applications. Künstliche Intelligenz,
2004(1):17–23. Available online.

Ralph Grishman and Beth Sundheim. 1996. Message un-
derstanding conference - 6: A brief history. In Proceed-
ings of COLING-96, pages 466–471, Copenhagen, Den-
mark.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL –
a type description language for constraint-based gram-
mars. In Proceedings of COLING-94, pages 893–899.

Kiyong Lee, Lou Burnard, Laurent Romary, Eric de la
Clergerie, Ulrich Schäfer, Thierry Declerck, Syd Bau-
man, Harry Bunt, Lionel Clément, Tomaz Erjavec, Azim
Roussanaly, and Claude Roux. 2004. Towards an inter-
national standard on feature structure representation (2).
In Proceedings of the LREC-2004 workshop on A Reg-
istry of Linguistic Data Categories within an Integrated
Language Resources Repository Area, pages 63–70, Lis-
bon, Portugal.

Ulrich Schäfer and Daniel Beck. 2006. Automatic testing
and evaluation of multilingual language technology re-
sources and components. In Proceedings of the 5th Inter-
national Conference on Language Resources and Evalu-
ation LREC-2006, Genoa, Italy.


