
Redundancy-free Island Parsing of Word Graphs

Bernd Kiefer
Deutsches Forschungszentrum für Künstliche Intelligenz

Stuhlsatzenhausweg 3, 66119 Saarbrücken,
kiefer@dfki.de

Abstract

Island parsing is a bidirectional parsing strategy
mostly used in speech analysis, as well as in appli-
cations where robustness is highly relevant and/or
processing resources are limited. Although there
exists an efficient redundancy-free island parsing
algorithm for string input, it has not yet been ap-
plied to word graph input, an application which is
central for speech analysis systems. This paper de-
scribes how the established algorithm can be gener-
alized from string input to word graphs, increasing
its flexibility by integrating the selection of island
seeds into the search process inherent to parsing.

1 Introduction
Island parsing is a parsing strategy for context free grammars,
mostly used in speech applications ([Ageno, 2003], [Gallwitz
et al., 1998], [Thanopoulos et al., 1997], [Mecklenburg et
al., 1995], [Brietzmann, 1992]). It is a bidirectional strategy,
in that incomplete parse items, which encode partially filled
right hand sides of a context free rule, may extend in both
directions. Furthermore, parsing starts at some highly ranked
input items called seeds and tries to explore the “islands of
certainty” first.

Since island parsing starts building all possible deriva-
tions from every seed in both directions, provisions must be
taken so as to avoid multiple computation of identical sub-
derivations, which would lead to spurious ambiguities and re-
duced efficiency. To my knowledge, there is only one descrip-
tion of an efficient fully redundancy free algorithm for island
parsing, contained in an article comparing different bidirec-
tional parsing approaches for context-free grammars, namely
[Satta and Stock, 1994].

This algorithm splits up the chart into consecutive regions
such that the region borders correspond to chart nodes and
every region contains exactly one seed item. Derived chart
items lying entirely within a region have been constructed
starting at the seed in a manner similar to Earley parsing,
which guarantees that they are build in a unique way. Items
crossing region borders are a possible source of redundancy,
because the same derivation could be build starting either at
the right or the left seed (see figure 2 for an illustration). By

fixing the expansion direction of those items when they com-
bine for the first time, duplicate derivations are avoided.

This paper extends the original algorithm in two aspects
that make it more feasible for speech applications.

Firstly, the original algorithm deals only with string input.
Because many speech applications require the direct analysis
of word graphs, it is desirable to extend the method to word
graph input. Word graphs are acyclic directed graphs of input
items with exactly one source node and one sink node (a node
with in-degree resp. out-degree zero). They encode ambigu-
ous input using possibly overlapping sub-paths, which lead
to more complicated input configurations and require a mod-
ification of the original algorithm. The word graph in figure
1, for example, can not be split into more than one region
because every border at an inner node would cross an input
item, thus inhibiting the use of more than one seed.

A modified algorithm must be able to deal with these con-
figurations without losing efficiency, since speech applica-
tions are typically time critical and often have limited space
resources. Therefore, care has been taken to preserve the ef-
ficiency and the redundancy avoidance of the original.

Secondly, instead of picking all seeds in advance, the mod-
ified version integrates their selection into the search inherent
to the parsing process. Since a lower number of seeds may re-
sult in faster parsing, it is advantageous to be able to base seed
selection also on information created during parsing, namely,
on already constructed items and their quality.

at

hat

four

forty

tatoo

twotea

Figure 1: Example word graph

Selecting a seed becomes one of the actions the parser can
take, like the combination or creation of other parse items.
This provides full flexibility in the design of the search strat-
egy, which in resource-limited applications can have a big
impact on the quality of the, possibly partial, results. Picking
all seeds in advance is then just one of the possible options.

Furthermore, dynamic selection of seeds is performed such
that all sub-paths of the word graph will be be properly ex-
plored to arrive at a complete solution, which might not be

the case if seeds were picked disadvantageously. If, for ex-
ample, the seeds in figure 1 were the items labeled hat and
tea, it might happen that the sub-path containing forty would
not be considered.

The modified algorithm does not fix regions for the whole
word graph in advance. The resulting chart configurations are
rather such that every path through the word graph has its own
regions, and the borders of the different paths can, but need
not, coincide. Since similar properties hold for the chart items
with respect to the per-path regions as they do for the string
version, the modified algorithm is still correct, complete and
free of redundancy.

2 The Original Algorithm
Because [Satta and Stock, 1994] aim at describing bidirec-
tional context-free parsing in more generality, the formula-
tion of the island parsing algorithm itself is somewhat com-
plicated and its implementation is not obvious at first glance.
To facilitate the description of the modifications, the origi-
nal algorithm is presented first, albeit in an alternative, but
equivalent form. Similar notation is used as far as possible
to stress the connection between the two formulations. In
many respects, it is an ordinary chart parsing algorithm, that
is only complicated by the bookkeeping necessary to avoid
redundant computations. After introducing the notation, the
algorithm is presented as a set of pseudo-code procedures.

The algorithm uses a context free grammar
� ��������	��
�����

, where
�

and
�

are finite sets of terminal and
nonterminal symbols, respectively,

is the set of rules ��� ������������ ��� �!������� "$#

, where
���&% �

and each
���'� ()% �+*,�

.- � is the number of symbols on the right hand side of rule� .
 % �

is the start symbol of the grammar. The grammar
must not contain empty rules, i.e, rules of the form . �0/

.
The input is a string of 1 terminal symbols 2 � � 3!3!3!� 254 . The
algorithm uses a chart of size 17698 : a two-dimensional array: (;� <

, = ��> %@?BA �!3 3!3C� 1ED , where each
: (F� <

contains a set of two
kinds of items: complete and incomplete items.

A complete chart item is a triple
�;�	GH� = ��>5� with

�	G %�+*I�
being the terminal or nonterminal category, = and

>
the

index of the start and end node of the item, respectively.
For incomplete items, we introduce symbols JLK � M�

that rep-
resent dotted items (partial derivations) of a rule � %

:

J K � M�0N � � ��� ��� � � �!��� ��� K)O � ��� KQP � �!� ��� �'� M O � ��� M P � � �!�Q� ��� " #
with R ��S %T?$A �!3 3!3Q� - � D and RVU S

. Let JCW be the set of all
symbols J5K � M�

for the dotted items of grammar
�

. Analogous
to complete items, incomplete items are triples

� JXK � M� � = �Y>5� ,
where R[Z A

or
S)\ - � , or both.

The island seeds are represented by a set of indices] �? = � � 3!3 3!� =_^$D of the corresponding input symbols. For the is-
land parsing algorithm, the chart is divided into regions, such
that every region contains exactly one seed. The indices of
the region borders are named ` K , with `ba � A

, `c^ � 1 and= K Ud` K \ = KCP � � R %d? 8 �!3 3!3C��egf 8hD . The region between
a seed and its left border is called right substring, because
items in this region are built in a right-to-left top-down fash-
ion. Analogously, there is a left substring to the right of a
seed, where items are built from left-to-right, respectively.

The algorithm is started by adding all tuples
� 2 (� = f 8 � = �

to
: (Fij��� (

and then calling add complete for all of them. The
program terminates whenever a derivation from the start sym-
bol to the input string was found and the exit statement in
add new was reached, or else, if there are no more items to
add, in which case the string is rejected.

Although items can potentially combine with other items
at both sides, their expansion direction is restricted dynam-
ically to avoid redundant computation of sub-derivations.
These restrictions are implemented using two additional two-
dimensional 17698Ek+1[6l8 arrays block left and block right,
that contain symbols of

�m*d�n* J W . If, for example,. %
block right

� = �Y>o� , the item
� . � = �Y>5� % : (;� <

cannot com-
bine with any item adjacent to its right.

To illustrate the algorithm, figure 2 shows an example chart
that will be referred to throughout the next paragraphs. Com-
plete and incomplete items are represented by solid respec-
tively dashed arcs, bearing symbols from

�
,
�

, and J W as la-
bels. Input items 2 � and 25p are the seeds, the border between
them is at p

� �rq
. The little blocks at the end of the arcs

depict the values of block left and block right, respectively.
The blocking of a complete item is based on its relation to

the seeds. Items dominating a seed, i.e., items whose yield
contains at least one seed, are blocked on both sides and
will only be extended by the projection step in the procedure
add complete below. This is the case for all seed items, but
also for the item

�tsu� A � q �
which projects to the incomplete

item
�t � O s O&v 25pj25w � A � q � . Complete items in a right

substring, like the items labeled v , . , or 2Xx , are blocked at
the left side and can therefore only combine with active items
to their right. Thus, items in a right substring will be built
right-to-left starting at the seed. Complete items in a left sub-
string are treated analogously.

An unusual feature of this algorithm is that two incomplete
items can be combined (see the second and fourth for loop
in procedure add incomplete), while other chart parsing al-
gorithms only allow the combination of an incomplete with
a complete item. At the borders, these are the only possible
combinations, since all complete items have been blocked.

When incomplete items are created, they can at first extend
in both directions, except for those where one of the dots is
at its outermost position. Incomplete items are blocked when
combined with another item for the first time. If they combine
to the right, they will be forced to combine to the right from
that time on by blocking them at the left side, and vice versa.

In figure 2, incomplete items
�t � O s O�v 2 p 2 w � A � q � and�t � s O&v 2 p 2 w O � q ��yz� have been combined to the com-

plete item
��)� A ��yo�

and were then blocked at the left resp.
right side, with no effect because of the dot positions. Alter-
natively,

�t � O s Ohv 2 p 2 w � A � q � and
�t � s Ohv 2 p O 2 w � q ��{z�

could have been combined. The second item would have been
blocked at the right side (instead of left as in the figure) and�t � s OEv 25p!25w O � q ��yz� could not have been built. Instead,
the resulting incomplete item

�t � O s v 2 p O 2 w � A ��{z� would
combine with the input item

� 2Lw ��{X��yo� to produce
��)� A ��yz�

.
This mechanism synchronizes incomplete items, especially

those that cross region borders, which guarantees that items
whose yield contains more than one seed are built in exactly
one manner.

a1 a2 a3 a4 a5

C->.a1.a2

S->.C.B a5 a6

C

A

B

S->C.B a5.a6

S->C B.a5.a6B->A.a4.

B->A a4..A->a3..

S

a6

S->C.B a5 a6.

p0 p1=2 p2

i0=1 i1=5
0 1 2 3 4 5 6

Figure 2: A decorated parse chart generated by the original algorithm. 2 � �!3 3!3!� 25w are the terminal (input) items, . , v ,
s

and
the nonterminals, ` a � ` � � `c| the region borders, i a and i

�
the seed indices

proc add complete }F~����_���;�����
if �����t�&�7� for some � then

/* seed dominating: block both sides */
block right }����t����� � block right }����;���b���!~g�E�
block left }����;���)� � block left }����;���c���!~����
/* project step: add �u�5�T�����_� ��� ��� ~�� � � �_� ���b� ����� */
for �!� ���¢¡� £ Q¤ with � ��� ���¢¡ �¥~�� do

add new }� �!� ���¦¡� �����;���
else

if §L�B¨ ¡ �����7�I�©�t� for some � then
/* right substring : block complete item left */
block left }��_�F����� � block left }����t���b���!~����
/* combine with � � �T������~�� � � �_� ���¦¡ ����� � ����� */
for }� �!� ª� �;�$�_«+� £�¬� � ®

with � ��� � �¥~��	¯g �!� ª�±°£ block left }²�$��«�� do
block right }²�$��«+��� � block right }²�$��«��b���C �!� ª� �
add new }� � ¨ ¡�� ª� �Y�_�_«��

else /* �t�&�����7�I�[§X� �¢¡ for some � */
/* left substring : block complete item right */
block right }����;����� block right }��_�F���c���C~����
/* combine with �u�5�T����� � �����'� �_� ªo� ~��7����� */
for }� �!� ª� ��«³���t� £�¬ ®´� µ

with ����� ª¶�¢¡��9~g�·¯g �C� ª�±°£ block right }�«[�Y�t� do
block left }�«[���t�)� � block left }�«³���t�b�+�Q �C� ª� �
add new }� �!� ª¶�¦¡� ��«³�;���

end

proc add incomplete }� �!� ª� �_���;�����
/* �!� ª� �B� � �¹¸Q¸�¸_� ��� ��� � ��� ���¢¡ ¸�¸�¸�� �_� ªº� � �_� ª¶�¢¡ ¸�¸�¸ */
if §X�$¨ ¡ �©�j�©��� for some � then l-predict }� �C� ª� ���t�
if �t�&�»�&�[§X� for some � then r-predict }� �!� ª� �F���
if ¼�½�¾�¯, �!� ª� °£ block left }����t��� then

/* combine to the left with complete items */
for };� ��� � �Y«³���t� £�¬ ®´� µ with � ��� � °£ block right }�«³���t� do

block right }��_�F����� � block right }����t���b���C �!� ª� �
add new }� � ¨ ¡�� ª� ��«[�;���

/* combine to the left with incomplete items */
for }� h¿ � �� ��«³�Y��� £�¬ ®´� µ with h¿ � �� °£ block right }�«[���t� do

/* block both incomplete items appropriately */
block left }�«³�Y����� � block left }�«³�Y���À���Q º¿ � �� �
block right }��_�F����� � block right }����t���b���C �!� ª� �
add new }� ¿ � ª� ��«[�;���

if Á¢�©Â � ¯� �!� ª� °£ block right }����;��� then

/* combine to the right with complete items */
for };� ��� ª¶�¢¡ �;�$��«+� £�¬ � ® with � ��� ª¶�¢¡ °£ block left }²�$��«+� do

block left }����;���)� � block left }����;���b���Q �!� ª� �
add new }� �!� ª¶�¦¡� �Y�_�Y«+�

/* combine to the right with incomplete items */
for }� ªÃ� ¿� �;�$�_«+� £�¬� � ® with ªÃ� ¿�Ä°£ block left }²�B�Y«+� do

block left }����;���)� � block left }����;���b���Q �!� ª� �
block right }²�B�Y«+��� � block right }²�$�_«��À���C ªÃ� ¿� �
add new }� �!� ¿� ������«��

end

proc add new }�Å������;�����
if Ån�Æ hÇ � È #� then

if ���É�9Ê�¯g�¦�¥¾�¯&���¥Ë then exit } accept �
if }F� � �����t��� °£g¬ µ�� then¬ µF� � � ¬ µF� ���h}F���$�_���;���_�

add complete }F�u�$�����;���
else

if }�Å��Y�_�t��� °£g¬ µ�� then¬ µF� � � ¬ µF� ���h}�Å��_���;���_�
add incomplete }�Å������;���

end

proc l-predict }� �C� ª� ���t���
if � �_� � £ ~Ì¯�� �_� � °£ predict left }��t� then

predict left }��t�)� � predict left }��t�À���!� �_� � �
for ÈCÍz� ÈCÍÎ with � Î �l����� � do

add incomplete }� È Í � È ÍÎ �����_���
l-predict }� È!Íh� ÈCÍÎ ���t�

end

proc r-predict }� �!� ª� ���t�+�
if � �_� ª¶�¦¡ £ ~Ï¯�� ��� ª¶�¢¡ °£ predict right }��t� then

predict right }��t��� � predict right }��t�b�+�!� �_� ª¶�¦¡ �
for Ç � ÇÎ with � Î �9� ��� ª¶�¢¡ do

add incomplete }� Ç � ÇÎ �����_���
r-predict }� Ç � ÇÎ �_���

end

The procedures l-predict and r-predict recursively generate
top down predictions for an incomplete item, to both sides, if
the item is dominating a seed, to the left, if it is in a right
substring, and to the right otherwise. They keep track of the
predictions generated so far using two arrays of length 1[698 ,

storing the nonterminals for which left or right predictions
have been introduced at a specific chart node.

The loops at chart node 3 and 4 in figure 2 have been gen-
erated by l-predict. Items that lie completely in right or left
substrings stem from these top down predictions, like the item
labeled with v � . O 25Ð O or the complete item with label v .

[Satta and Stock, 1994] give a more formal description of
the algorithm, including an invariant describing its behaviour.

3 Modified Algorithm
In the modified algorithm, instead of fixing seed and border
indices in advance, every chart item is assigned a state, which
is one of right substring, left substring or seed dominating
(right, left and seed in the pseudo-code, respectively). Addi-
tionally, complete items with a terminal category, i.e., input
items, can have neutral state, in fact, they are given this state
during initialization.

Because the search strategy of the parser shall be adapt-
able, a priority is assigned to every item, which is used in
connection with a priority queue (an agenda) to expand the
best items first. The assignment of priority values is omitted
here for the sake of clarity.

During initialization, all input items are added to the chart,
their state is set to neutral and they are added to the priority
queue. Parsing then continues by taking the highest ranked
item from the priority queue and expanding it. A seed is
selected when a neutral terminal item is retrieved from the
queue. Its state is updated to seed dominating, i.e., the item
itself becomes a seed. This puts seed selection on a level with
the expansion of items, simplifying the implementation of a
search strategy, owing to uniformity.

If terminal items are neutral when they are combined with
another item in the first or third for loop of the modified
add incomplete procedure, they change state accordingly, ei-
ther to left or right, depending on whether the incomplete
item grew to the left, in which case the item is now member
of a right substring, or vice versa. When such a terminal item
is retrieved from the priority queue later during parsing, its
state is already set and it does not become a seed.

Any other complete or incomplete combined items inherit
their state from their daughters: if at least one of the daugh-
ters is seed dominating, the new item becomes seed domi-
nating too, otherwise all daughters are members of the same
substring, and the new item gets assigned the same state.

All conditionals that use the seed and border indices in the
original algorithm are replaced by conditionals checking the
state of the items. As a consequence, the seed and border
indices are no longer needed.

Instead of a string with 1 elements, the parser gets a word
graph as input. A word graph is an acyclic directed graphÑ

of terminal items
� 2 � = ��>5� with exactly one source and one

sink node (nodes with in-degree resp. out-degree zero). The
start and end node indices of the input items are typically in
topological order, so that the source node gets index zero and
the sink the maximal end node index of all input items, which
in the modified version becomes the value of 1 .

Parsing stops when either a complete derivation was found
or the priority queue becomes empty, which means that the

word graph must be rejected. Since all input items were
added to the priority queue in the beginning, it is also guaran-
teed that every sub-path of the word graph has been processed
properly if parsing should stop with a failure. Every input
item will then have a non-neutral state, which means that it at
least took part in some of the derivations.

The procedures l-predict and r-predict are the same as in
the original algorithm, and are omitted here.

proc add complete }F~����_���;�����
if state }F~��������t����� seed then

/* project step: add � � �T�����_����� � � ~�� � �j�_� ���b�¢����� */
for �!� ���¢¡� £ ¤ with � ��� ���¢¡ �¥~�� do

add new }� �!� ���¦¡� �����;�$� seed � seed �
elsif state }F~��������t����� right then

/* combine with �u�L�T���Q�_~�� � � ��� ���¢¡ �Q��� � ����� */
for }� �!� ª� �;�$��«+� £�¬ � ®

with � �_� � �9~g�·¯� �!� ª� °£ block left }²�$��«�� do
add new }� � ¨ ¡�� ª� �����_«³� right � state }� �C� ª� �;�$��«����
block right }²�$��«+��� � block right }²�$�_«+�X�+�C �!� ª� �

elsif state }F~��������t����� left then
/* combine with �u�L�T���Q� � �Q���'� ��� ªº� ~g�»����� */
for }� �!� ª� ��«³�Y��� £�¬ ®´� µ

with � �_� ª¶�¢¡ �9~��	¯g �!� ª�±°£ block right }�«³���t� do
add new }� �!� ª¶�¢¡� ��«³�F�B� left � state }� �!� ª� ��«³���t���
block left }�«[���t��� � block left }�«[���t�b���C �!� ª� �

end

proc add incomplete }� �!� ª� �_���;�����
/* �!� ª� �B�u�Ò�¹¸Q¸�¸_� ��� ��� � ��� ���¢¡ ¸�¸�¸�� �_� ªº� � �_� ª¶�¢¡ ¸�¸�¸ */
if state }� �!� ª� �Y�_�t��� £ � seed � right � then l-predict }� �!� ª� �Y���
if state }� �!� ª� �Y�_�t��� £ � seed � left � then r-predict }� �!� ª� �;���
if ¼�½�¾�¯, �!� ª�±°£ block left }����t��� then

/* combine to the left with complete items */
for };� ��� � �Y«³���t� £�¬ ®´� µ

with state };� �_� � ��«³���t� £ � right � neutral � do
if state };����� �º��«[���t��� neutral

then state };� ��� � �_«[�Y�t��� � right
add new }� � ¨ ¡�� ª� ��«[�;�$� state };� ��� � ��«[�Y�t��� state }� �C� ª� �����;�����
block right }��_�F����� � block right }����t���b���C �!� ª� �

/* combine to the left with incomplete items */
for }� ¿ � �� ��«³�Y��� £�¬ ®´� µ with ¿ � �� °£ block right }�«[���t� do

add new }� ¿ � ª� ��«[�;�$� state }� ¿ � �� ��«[���t��� state }� �C� ª� �����;�����
block left }�«³�Y����� � block left }�«³�Y���À���Q ¿ � �� �
block right }��_�F����� � block right }����t���b���C �!� ª� �

if Á¢�©Â � ¯� �!� ª� °£ block right }����;��� then
/* combine to the right with complete items */
for };� ��� ª¶�¢¡ �;�$��«+� £�¬ � ®

with state };� �_� ª¶�¦¡ �;�$��«�� £ � left � neutral � do
if state };� ��� ª¶�¦¡ �F�B�Y«+�j� neutral

then state };����� ª¶�¦¡Q�F�B�Y«+��� � left
add new }� �!� ª¶�¦¡� �Y�_�Y«³� state }� �!� ª� �Y�_�F����� state };� �_� ª¶�¢¡ �;�$�_«����
block left }����;���)� � block left }����;���b���Q �!� ª� �

/* combine to the right with incomplete items */
for }� ªÃ� ¿� �;�$�_«+� £�¬� � ®©¯�Ó block left }� ªÃ� ¿� �;�$�_«+� do

add new }� �!� ¿� ������«[� state }� �C� ª� �����t����� state }� ªÃ� ¿� �;�$��«+���
block left }����;���)� � block left }����;���b���Q �!� ª� �
block right }²�B�Y«+��� � block right }²�$�_«��À���C ªÃ� ¿� �

end

proc add new }�Å������;�$��Ô ¬YÕ�¬YÖ�× �_Ô ¬YÕ�¬YÖ Ø ���
if Ån�Æ hÇ � È #� then ÅÙ� �l� �
if Ån�9Ê�¯,�¦�¥¾�¯&���9Ë then exit } accept �
if }�Å������;��� °£�¬ µF� then

if Ô ¬�Õh¬YÖB× � seed Ú�Ô ¬�Õ�¬�Ö!Ø � seed then
state }�Å������;���)� � seed

else
if Ô ¬�Õh¬YÖB× � right

then state }�Å������t����� � right
else state }�Å������;���)� � left¬ µF� � � ¬ µF� ���h}�Å������t���_�

push }�}�Å������;����� p queue �
end

proc main };ÛÜ���
for } Õ �����;��� £ Û do¬ µ�� � � ¬ µ�� �+��} Õ �Y�_�F���_�

state } Õ �Y���t���)� � neutral
push }�} Õ �����t����� p queue �

while Ó empty } p queue � do}�Å������;���)� � pop max } p queue �
if Å £�Ý ¯ state }�Å������;����� neutral then

state }�Å������;���)� � seed
if Å £ ~T� Ý then add complete }�Å������t���
else add incomplete }�Å������;���

exit } reject �
end

4 Correctness of the modified algorithm
If

Ñ
contains only string input and priorities are set appropri-

ately to select the right seeds, the modified algorithm works
like the original. This is achieved by using the maximal pri-
ority value for all seed input items, the minimal value for all
other input items, and priority values strictly between these
values for all other items. Thus, seeds will be considered
first and appropriately marked, and other input items will be
considered after all possible combinations have been tried in
some order, which is consistent with the original.

It remains to be shown that in case of true word graph in-
put, the algorithm will still be correct and redundancy-free.
New situations arise from the fact that there are parallel sub-
paths of neutral input items to previously treated regions of
the chart, and new, possibly derived items can now interact
with existing ones created from previous expansions.

The argumentation will be based on the respective prop-
erties of the original, which can not be shown here. It is
clear that sub-derivations with equal span and item label may
be produced because of the ambiguity in the word graph in-
put. These items are not redundant because they have dif-
ferent yields. The type of redundancy that must be avoided
is the multiple creation of identical items with both identical
derivation and yield, which could be produced by an incorrect
implementation of the island algorithm due to bidirectional-
ity and multiple seeds. Redundancy can therefore only occur
relative to a path through the word graph.1

Although there are six cases in total to be considered (three
each for left and right substrings), the treatment of left and
right substrings will be completely analogous, so we will con-
tent ourselves with the discussion of the former.

1For an in-depth description of the redundancy problem on
strings and formal proofs, see [Satta and Stock, 1994]

4.1 A new left substring ends in a right substring
In this situation, which is depicted in fig. 3, node

>
behaves

like a new border node between seed Þ a and Þ$| . Because
of the completeness of the original algorithm, all possible
derivations compatible with the seed ÞBa must be available at
node

>
, although some of them may be blocked. Assume we

lose a complete derivation because of an indispensable in-
complete item that is blocked on the left side (like the item
labeled . in fig. 3). If this is the case, there must be ancestor
items of . whose creation caused the blocking. One of these
ancestors, ultimately the one that ends in the sink node2, is
available for combination at node

>
, which is a contradiction.

s0

s2

s1 j

A

k

Figure 3: A new left substring ends in a right substring. The
thick arcs are items that are expanded later in the parsing pro-
cess. R is the old border node.

As was argued above, redundant items can only occur rela-
tive to a path of input items through the word graph. Since the
same synchronization of items was used for the path throughÞ | and Þ a with border

>
as in the string method, the chart must

be free of redundancy for this path too.
A special case of the configuration described in this section

is given when the new sub-path hits the old border node (e.g.,
node R in fig. 3). In this case, it is obvious that all, and only
the correct derivations will be created.

4.2 A new left substring ends in a left substring

s0

s2

j

Figure 4: A new left substring ends in a left substring

All complete items starting at node
>

in figure 4 are avail-
able to the new sub-path. Every derivation starting at

>
that is

compatible with the new seed ÞB| but not with the old one (Þ a)
will be constructed by the appropriate predictions and expan-
sions, and since the predict methods keep track of which non-
terminals have already been predicted, no work is duplicated
and thus, no redundancy is produced. For blocked incom-
plete items, the same argumentation as in 4.1 applies, which
guarantees completeness.

2Incomplete items ending in the sink node can not be blocked at
the left side because there is no item to the right they can combine
with.

4.3 An alternative left substring path overruns a
seed

s0 s1 j

Figure 5: A seed is overrun by an alternative left substring

This situation, which is shown in figure 5, is almost the
same as in section 4.2, except that the new items ending in
node

>
do not come from a new seed on the parallel path, but

from an alternative path from seed ÞBa . Therefore, the same
argumentation applies as in 4.2 above.

4.4 Worst Case Complexity
The number of symbols J5K � M�

is bounded by - |Wuß
 ß where - W
is the maximal length of a rule � %

. On the chart, and
on the agenda, can not be more than à | � ß � ß 6 - |W ß
 ß � items,
where àáU ß Ñ ß is the highest chart index and ß � ß � ß �d*�� ß .

The function add complete is called at most à | ß � ß times,
and the second and third for loops in this function are exe-
cuted at most à - |W�ß
 ß times, while the first is executed at most- W ß
 ß times, which makes this function â � à x ß � ß - |W ß
 ß � .

The function add incomplete is called at most à | - |W�ß
 ß
times. The second and fourth for loops, where active items
are combined, can be executed at most à - W ß
 ß times, which
makes the whole function â � à x - xW�ß
 ß � , while the first and
third are executed at most à ß � ß times.

These two functions clearly dominate the prediction func-
tions, which makes the whole algorithm â � à x ß � ß - |W ß
 ß � orâ � à x - xW ß
 ß � , whichever is dominant.

5 Conclusion and further considerations
An efficient island parsing algorithm for string input was gen-
eralized to make it more feasible for the use in speech appli-
cations. The new version deals with word graphs as input
without losing the beneficial properties of the original. It also
integrates the selection of seeds into the parser’s search pro-
cess, which, in addition to more uniformity, provides the user
with more flexibility in the design of the search strategy.

The data structures for blocking and keeping the state of an
item can be implemented as bit vectors, which produces min-
imal space and time overhead for all the blocking and state
conditionals.

The modified algorithm has been implemented for context
free grammars with annotated feature structures. This imple-
mentation also provides pluggable search strategies to facili-
tate experimentation.

From the point of view of the search strategy, the atomic
action of the modified algorithm (one parsing task) is the
expansion of an item, like, for example, in [Caraballo and
Charniak, 1998]. To be able to define a more fine grained
strategy, the parser could be changed such that the tasks are

instead combination of two items, projection and prediction,
or a subset of the three ([Kay, 1986], [Erbach, 1991]).

The price to pay for the increased flexibility is a larger
agenda, maybe prohibitively large, if the word graphs are big
and/or the grammar is highly ambiguous. The changes to the
algorithm are obvious, and it will depend on the specific task,
whether the more elaborate search strategy will achieve better
results or improved parsing efficiency.

Acknowledgments
I am very indebted to Giorgio Satta for his help in fully under-
standing the bits and pieces of the original algorithm, for the
discussions and for his patience. I also want to thank Berthold
Crysmann and Melanie Siegel for their help in preparing this
paper and the anonymous reviewers for their constructive
comments. This research was supported by the German Min-
istry for Education and Research under grant no. 01 IM D01,
to the project SmartWeb.

References
[Ageno, 2003] A. Ageno. An Island-Driven Parsing System.

PhD thesis, Universitat Politècnica de Catalunya, 2003.

[Brietzmann, 1992] A. Brietzmann. “Reif für die Insel”.
Syntaktische Analyse natürlich gesprochener Sprache
durch bidirektionales Chart-Parsing. In H. Mangold, ed-
itor, Sprachliche Mensch-Maschine-Kommunikation. Old-
enbourg, München; Wien, 1992.

[Caraballo and Charniak, 1998] S. Caraballo and E. Char-
niak. New figures of merit for best-first probabilistic chart
parsing. Computational Linguistics, 24(2):275–298, 1998.

[Erbach, 1991] G. Erbach. An environment for experimenta-
tion with parsing strategies. In Proc. of the 12th Int. Conf.
on AI, pages 931–936, 1991.

[Gallwitz et al., 1998] F. Gallwitz, M. Aretoulaki, M. Boros,
J. Haas, S. Harbeck, R. Huber, H. Niemann, and E. Nöth.
The Erlangen Spoken Dialogue System EVAR: A State–
of–the–Art Information Retrieval System. In Proc. of ISSD
98), pages 19–26, Sydney, Australia, 1998.

[Kay, 1986] Martin Kay. Algorithm schemata and data struc-
tures in syntactic processing. In B. J. Grosz, K. Sparck
Jones, and B. L. Webber, editors, Natural Language Pro-
cessing, pages 35–70. Kaufmann, Los Altos, CA, 1986.

[Mecklenburg et al., 1995] K. Mecklenburg, P. Heisterkamp,
and G. Hanrieder. A robust parser for continuous spoken
language using prolog. In Proc. of NLULP 95, pages 127–
141, Lisbon, Portugal, 1995.

[Satta and Stock, 1994] G. Satta and O. Stock. Bidirectional
context-free grammar parsing for natural language pro-
cessing. Artifical Intelligence, 69:123–164, 1994.

[Thanopoulos et al., 1997] A. Thanopoulos, N. Fakotakis,
and G. Kokkinakis. Linguistic processor for a spoken dia-
logue system based on island parsing techniques. In Proc.
of 5th Eurospeech, volume 4, pages 2259–2262, 1997.

