
Automatic Error Correction for Tree-Mapping Grammars

Tim vor der Brück
Fernuniversität in Hagen

Universitätsstraße 1
58084 Hagen

tim.vorderbrueck@fernuni-hagen.de

Stephan Busemann
DFKI GmbH

Stuhlsatzenhausweg 3
D-66123 Saarbrücken

stephan.busemann@dfki.de

Abstract

Tree mapping grammars are used in natural lan-
guage generation (NLG) to map non-linguistic
input onto a derivation tree from which the tar-
get text can be trivially read off as the terminal
yield. Such grammars may consist of a large
number of rules. Finding errors is quite tedious
and sometimes very time-consuming. Often the
generation fails because the relevant input sub-
tree is not specified correctly. This work de-
scribes a method to detect and correct wrong
assignments of input subtrees to grammar cat-
egories by cross-validating grammar rules with
the given input structures. The result is imple-
mented in a grammar development workbench
and helps accelerating the grammar writer’s
work considerably.

1 Introduction

Tree mapping grammars are used in natural lan-
guage generation (NLG) to map non-linguistic
input onto a derivation tree, from which the tar-
get text can be trivially read off as the terminal
yield (Busemann, 1996). Grammar rules specify
which type of (partial) input structure they can
interpret. Such grammars may consist of thou-
sands of rules. Debugging is quite tedious and
sometimes very time-consuming. During gram-
mar development the generation process often
fails at some stage because the relevant input
subtree is not specified correctly in the grammar
rule being processed. The grammar writer must
then be aware of what subtree the generation
process should have been working on and verify
what it actually did work on and which rule was
responsible for the failure. In developing NLG
grammars for the systems TG/2 (Busemann,
1996; Busemann, 2005) or XtraGen (Stenzhorn,
2002) using the workbench eGram (Busemann,
2004), it became obvious that up to 60% of the

development time was used to correctly specify
the mappings of subtrees.

This paper introduces a static test algorithm
that identifies rules which cannot be applied at
all, detects wrong assignments of input subtrees
to grammar categories and makes suggestions
how those rules could possibly be corrected.
This is achieved by cross-validating grammar
rules with the given input structures. The run-
time is proportional to the number of grammar
rules. The implementation is added as a mod-
ule to eGram, rendering grammar development
quicker and more rewarding.

We present two methods to compute a re-
lation between categories and input substruc-
tures. The first one uses only grammar rules
while the other uses both grammar rules and the
available test input structures. We may safely
assume that a representative set of test input
structures is always available at grammar de-
velopment time and that these input structures
are correct according to some specification. Of-
ten they are produced automatically by some
other, non-linguistic system in the course of the
generation process. In order to detect incorrect
rules, we identify the grammar-derived relations
that cannot be supported by those also using
the given input structures.

The remainder of this paper is organized as
follows. Section 2 overviews related work on
grammar test methods. In Section 3 we intro-
duce some formal background on input struc-
tures and grammars. Section 4 describes the
detection and correction methods. Some evalu-
ation is provided in Section 5.

2 Related Work

We are not aware of other work on automatic
error location in generation grammars. How-
ever (Zeller, 2005) describes a dynamic test al-























(arg1





(det def)
(head ′′man′′)
(num sg)



)

(pred ′′look − for′′)

(arg2





(det def)
(head ′′dog′′)
(num pl)



)





















Figure 1: A Sample NLG Input Tree as a Fea-
ture Structure.

gorithm for computer programming languages
that exactly determines the causes for a fail-
ure. This algorithm isolates the error by sub-
sequently executing different parts of the com-
puter program with varying program states.
Other kinds of dynamic approaches execute
some specified set of test cases and compare the
results with the desired outcome. A dynamic
test system for natural language analysis of this
kind is described in (Lehmann et al., 1996).

In contrast the algorithm described here is
a static grammar test algorithm (see (Daich et
al., 1994) and (Spillner and Linz, 2003)) that
does not rely on executing the underlying NLG
system.

3 Formal Background

In the present context, an NLG input structure
is an unordered tree that is represented as a fea-
ture structure, which is a set of attribute value
pairs. Attributes are symbols. Values are ei-
ther symbols (or strings) or feature structures.
A sample input structure is given in Figure 1,
using standard matrix notation.

With a set of context-free grammar rules, in
which each non-terminal right-hand side (RHS)
category is assigned a substructure of the cur-
rent input, a derivation tree can be generated.
In Figure 2 nodes are labeled by pairs of gram-
mar categories and input structures, while links
are labeled by a path expression that specifies
the input substructure relevant for expansions
of the respective RHS category.1 The empty
path expression ’/’ leaves the current input un-
changed.

1Obviously this is a very simple example used for ex-
pository purposes. Real world input requires quite com-
plex mappings onto linguistic levels.

This section provides some formal underpin-
nings. We first specify the function psel to re-
turn the part of an input feature structure that
is located at the end of the path described by
a list of attributes. Let first, last and rest
be functions over lists that return the first, the
last or all elements except the first, respectively.
Let further A be a set of attributes and F the
set of all feature structures. Then a function
sel : F × A → F can be defined to extract the
value of an attribute from a feature structure:

sel([(a1w1)...(anwn)], ai) = wi

Note that if ai /∈ {a1, ..., an} then wi is the
empty feature structure, denoted by [ ]. The
function sel can be recursively extended to in-
clude a list of attribute names, called a path
expression, as follows: psel : F × A∗ → F with

psel(s, p) =















s, if p = /
[ ], if s = [ ]
psel(sel(s, first(p)), rest(p)),

otherwise

If the specified path expression is empty, the
entire feature structure is returned. Instead of
writing psel(s, p) we also use the infix notation
p • s.

An attribute value pair (a,w) is defined as be-
ing contained in a feature structure s ((a,w) ∈R

s) if there exists some path expression p ∈ A∗

with p • s = w, last(p) = a.
A path expression can be assigned to a path

variable. The usage of path variables bears the
advantage of introducing a further abstraction
level, which is also useful for error correction. In
order to find an appropriate correction, only the
small subset of all possible path expressions has
to be searched that is assigned to path variables.

Next we turn to the definition of the context-
free grammar rules used for tree mapping. Any
RHS element is either a terminal symbol (e.g.,
a string) or a non-terminal category associated
with a path variable. This path variable de-
fines the part of the input structure that can be
accessed by the rule that is selected by the gen-
eration component to further expand the RHS
category in the derivation tree.

Consider some node n in a derivation tree
with category C. Let v1, ..., vm be the path
variables assigned to each RHS category in the



course of the derivation from the root node to
node n and value be a function from path vari-
ables onto path expressions. Then a rule applied
to category C can access the feature structure
s contained in the input structure according to

value(vn) • ... • value(v1) • s

This behavior is illustrated in the sample deriva-
tion tree in Figure 2. Its edges are labelled
with the path variable names and, following the
colon, their values. The nodes are labelled with
pairs (C, s) of the category name and the asso-
ciated part of the input structure.

Furthermore, a grammar rule R : C →
A1[v1], ..., An[vn]2 can only be applied to a pair
(C,s) of category and input structure if none of
the path expressions leads to the empty feature
structure: ∀i ∈ {1, ..., n} : value(vi) • s 6= [ ].

4 Correction Algorithm

For the automatic correction we will compare
the attributes specified by path variables with
those that may occur in some input structure.
Since path variables are associated to RHS el-
ements, the algorithm will be centered around
grammar categories in order to synchronize the
ways in which the grammar is interpreted and
the input structure is accessed.

Note that we currently deal only with path
expressions of a length ≤ 2. Since longer path
expressions do hardly occur in our practice, we
decided to leave it to future work to cover such
cases as well.

In the remainder of the paper we use the
following grammar rules to illustrate the algo-
rithm:3

R1 : START → ”from” TIME [vfrom : /from]

”to”TIME [vto : /to]

R2 : TIME → toString4[vhour : /hour]

toString4[vmin : /min]

2We use C to denote a category symbol and Ai[vi] to
denote a RHS element that has a path variable associ-
ated to it. Ai is either a category symbol or a string-
valued function over some input structure, giving rise
to a terminal element of the derivation tree. We ignore
terminal elements (strings) as they do not carry path
variables.

3To save space, the values of the path variables are
included into the rules.

We assume the following input structure is
given:

[(from [(hour ′12′)(min ′20′)]

(to [(hour ′12′)(min ′30′)])]

Let us further assume that the grammar devel-
oper erroneously specified vfrom instead of vmin

in rule R2 and that this error should be cor-
rected by our algorithm.

4.1 Determining left and right

attributes of a category

For the automatic correction we investigate the
top-level attributes of the kind of input struc-
ture that is associated to a category. We call
the attributes of these input structures right at-
tributes of that category. Similarly we call the
set of attributes leading to an input structure
related to a RHS category left attributes of that
category.

As mentioned in the introduction, a
grammar-based method will be introduced
and validated by a method based on both
the grammar and the input structures. Thus
we define the left and right attributes first as
grammar and then as validation attributes.

4.1.1 Grammar attributes

Consider all rules with left-hand side (LHS) C
that contain one or several RHS elements with
path variables. The right attributes of a cate-
gory C, derived from the grammar, are defined
as the set of the first components of the values
of these path variables. They are called right
grammar attributes of a category. If the path
expression of a RHS category is empty, addi-
tionally the right grammar attributes of that
category are also considered as right grammar
attributes for C.

Formally the right grammar attributes of a
category are defined as follows:

attrr,g(C) = {a|∃R ∈ Rules :

R : C → A1[v1]...An[vn] ∧

(first(value(vi)) = a ∨

value(vi) = / ∧

Ai ∈ Categories ∧

4toString is a string-valued function adding some in-
put structure, e.g., a string, directly to the output string.



S [(arg1 [(det def)(head “man”)]) (arg2 [(det def)(head “dog”)]) (pred “look-for”)]

v1 : /arg1 vp : /pred v2 : /arg2

NP [(det def) (head “man”)] V [(pred “look-for”)] NP [(det def) (head “dog”)]

ART “the” N “man” ART “the” N “dog”

vd : /det vd : /detvh : /head vh : /head

The man looks for the dogs

vs : / vs : /

vs : /

vs : / vs : /

Figure 2: Derivation Tree Generated Using the Input From Figure 1.

a ∈ attrr,g(Ai)) ∧

1 ≤ i ≤ n}

In the derivation tree (see Figure 2) the right
grammar attributes of a category contain all
first elements of the path expressions attached
to the edges that are leaving from that category.

Now consider RHS elements with a category
Ai, which are associated with path variables.
The left attributes of a category Ai, derived
from the grammar, are defined as the last el-
ements of these path expressions. Those at-
tributes are called left grammar attributes of a
category; they are formally defined as follows:

attrl,g(Ai) = {a|∃R ∈ Rules :

R : C → A1[v1]...An[vn] ∧

(last(value(vi)) = a ∨

value(vi) = / ∧

Ai ∈ Categories ∧

a ∈ attrl,g(C)) ∧

1 ≤ i ≤ n}

In the derivation tree the left grammar at-
tributes of a category contain all last path com-
ponents of the path expressions attached to the
edges that are leading to that category. In our
(erroneous) sample grammar the following right
and left grammar attributes can be determined:

category attrr,g attrl,g

START {from, to} ∅
TIME {hour, from} {from, to}

4.1.2 Validation attributes

To derive the attributes of a category from both
grammar and input structures, we need a sin-
gle representation of all available input feature
structures.

Let Inp be the set of all input feature struc-
tures available for the given grammar. We de-
fine a function children to denote the set of
top-level attributes that may occur in a given
attribute’s feature value: children : A → 2A

b ∈ children(a) ⇔ ∃s ∈ Inp, f ∈R s :

sel(f, a) = [...(b, w)...]

We further introduce an additional attribute
name top which has as its children all attributes
that do not have a parent. We thus have

children(top) := {a|∃s ∈ Inp ∧ (a, b) ∈R s

∧ 6 ∃c : a ∈ children(c)}

b is called a child of a (and a is called the
parent of b) if b ∈ children(a). Instead of refer-
ring to the input structures directly we use the
function children to introduce the facts about
input structures into the checking procedure.

In our sample input we have e.g.
hour ∈ children(from).

We now describe the attributes associated to
some category Ai (right attributes) and their



parent attributes (left attributes). Let R be a
grammar rule containing a RHS element Ai and
R′ a rule that expands Ai (cf. Figure 3). Using
the last element am of the (non-empty) path ex-
pression vi, children(am) determines a superset
of the top level attributes of the kind of input
structure s the rule R′ operates on. If vi is the
empty path expression, s is identical to the in-
put structure the rule R is associated with.

For a given category Ai and for all rules with
Ai as a RHS element we build the union of
all supersets of top-level attributes as described
above. We call this set the right validation at-
tributes of Ai.

Formally the right validation attributes of a
category are defined as follows:

attrr,v(Ai) = {a|R ∈ Rules :

R : C → A1[v1]...An[vn] ∧

(a ∈ children(last(value(vi))) ∨

value(vi) = / ∧

a ∈ attrr,v(C)) ∧

1 ≤ i ≤ n}

Note that the right validation attributes of
the start category5 are just the attributes with-
out parents: attrr,v(START ) = children(top).

To elucidate the relation between grammar
and validation attributes in a derivation tree,
let us consider a pair of a category C and some
input structure (cf. Figure 2), as well as the un-
derlying rule R with LHS category C. Note
that the top level attributes of that input struc-
ture should always be subset of the right vali-
dation attributes of C. The right grammar at-
tributes of C derived from R must appear in
the right validation attributes of C. Otherwise
R can never be applied, and the RHS element
expanded by C is a potential error candidate.

We now define left validation attributes in
a similar way. Consider a rule R : C →
A1[v1]...An[vn] with value(vi) = /a1/.../am (cf.
Figure 4), where vi is not assigned an empty
path expression. The top-level attributes of the
input structures rule R operates on are a subset
of all parents a of a1 (a1 ∈ children(a)). For
a given category C and for all rules with C as

5The start category is the top-most category in a
derivation tree.

A

C (rule R)

A1

A’1 ... A’

iA  (rule R’)... ...

r

v : /a /.../a i

mchildren(a  )={a , ... ,a }
1 l

1 m

n

Figure 3: Right Validation Attributes: retriev-
ing the children of am.

children(a)={a ,b , ... ,b }l

iv : /a /.../a 

iA

C (rule R )

11

m1

... ... AA1 n

Figure 4: Left Validation Attributes: retrieving
the parents of a1.

their LHS category we build the union of all at-
tributes a that are parents of a1, as described
above. We call this set the left validation at-
tributes of C.

Formally the left validation attributes of a
category are defined as follows:

attrl,v(C) = {a|∃R ∈ Rules with

R : C → A1[v1]...An[vn] ∧

(first(value(vi)) ∈ children(a) ∨

value(vi) = / ∧

a ∈ attrl,v(Ai)) ∧

1 ≤ i ≤ n}

Note that there is no left validation attribute
of the start category: attrl,v(START ) = ∅.

In our sample grammar the following right
and left validation attributes can be determined
as follows:

category attrr,v attrl,v

START {from, to} ∅
TIME {hour, min} {from, to}



4.2 Identifying incorrect path variable

occurrences

Basically a path variable in some RHS element
is considered incorrect if a grammar attribute
of some category was derived but could not be
verified by some validation attribute of that cat-
egory.

However, there is one exception to this ba-
sic rule. Consider the case that both the set of
right validation attributes and the set of right
grammar attributes of some category are empty.
Without right grammar attributes no left vali-
dation attributes can be derived for this cate-
gory, and hence the left grammar attributes for
this category cannot be checked by any valida-
tion attributes.

The sets of possibly incorrect grammar at-
tributes for some category C can be defined as
follows:

attrl,err(C) :=

{

∅, if attrr,g(C) = ∅
attrl,g(C)\attrl,v(C), else

attrr,err(C) := attrr,g(C)\attrr,v(C)

In order to identify an incorrect RHS element,
each grammar attribute is assigned to the RHS
elements it was derived from.

With our sample grammar this algorithm
would evaluate to the attribute from of cate-
gory TIME being incorrect:

category attrr,err attrl, err

START ∅ ∅
TIME {from} ∅

Usually this method identifies the actual error
location. However, if empty path expressions
are used in a sequence of rule applications, an
error can be located at any rule in such a se-
quence. We currently use a heuristic to resolve
such ambiguities.

4.3 Correcting invalid path variables

This section describes how the information
about a possibly incorrect path expression can
be used to correct grammar errors automati-
cally. The correction information should con-
tain the following information:

• incorrect rule;

• incorrect RHS element of that rule;

• wrong path variable appearing in that ele-
ment;

• possible correct path variables.

A grammar error is due to the grammar
writer either selecting the wrong path variable
or using a wrong definition of the correct path
variable. In the first case the correct path vari-
able is already defined in the grammar and just
has to be retrieved. In the second case no au-
tomatic correction can be made as the correct
definition is unavailable. In this section, we con-
centrate on the first case.

A correct path variable must fulfill the follow-
ing conditions:

• The first element of its value must be con-
tained in the right validation attributes of
the LHS category of the rule containing the
incorrect RHS element.

• The last element of its value must be con-
tained in the left validation attributes of
the incorrect RHS element.

Let V be the set of path variables and lhs(Ai)
be the LHS category of the rule with RHS el-
ement Ai. The set Vc of possible correct path
variables can formally be described as follows:

Vc(Ai) =

{v ∈ V : first(value(v)) ∈ attr r,v(lhs(Ai))}

∩

{v ∈ V : last(value(v)) ∈ attr l,v(Ai)}

Remember that a terminal RHS element (a
string-valued function) is not assigned to any
category. In this case we just have

Vc(Ai) =

{v ∈ V : first(value(v)) ∈ attrr,v(lhs(Ai))}

The special path variable vself containing the
empty path expression is predicted as a possible
correction as well if the right/left attributes of
Ai and lhs(Ai) seem to be identical:

attrr,g(Ai) ⊂ attrr,v(lhs(Ai))

attrl,g(lhs(Ai)) ⊂ attrl,v(Ai)

Vc may contain multiple elements as a unique
solution cannot always be found. In this case
several heuristics may be applied to rule out
some of the candidates. For instance, one



heuristic we use exploits the fact that usually
the same path variable does not occur twice in
connection with the same category in a single
rule. Such variables are discharged in favor of
less frequent ones.

In our example grammar the set of pos-
sibly correct path attributes is evaluated to
attrr,v(TIME) = {hour,min}. Therefore the
path variable vfrom occurring in rule R2 has to
be replaced by either vhour or vmin. Applying
the above heuristic yields the unique solution
vmin, which is actually correct.

4.4 Interdependencies of errors

An incorrect RHS element may result into de-
riving incorrect right validation attributes for
other RHS elements of that rule as well as de-
riving incorrect left validation attributes at the
LHS category of that rule. Therefore some er-
rors may not be found, or multiple corrections
are suggested.

Since the right validation attributes of the
start category are always correct, the algorithm
determines the errors in the right grammar at-
tributes of that category correctly. If errors
are found, the associated RHS elements are
excluded from determining right validation at-
tributes of the start category’s daughter cat-
egories, thus maintaining a correct set of at-
tributes for further processing. However, some
right grammar attributes of a daughter cate-
gory may no longer by covered by associated
right validation attributes and therefore, new
errors can eventually be found in these right at-
tributes. This in turn can prevent determining
incorrect right validation attributes of grand-
children etc.

To detect all such errors the categories are or-
dered top-down according to their appearance
in the derivation tree and processed in this or-
der.

For the same reason left attributes are pro-
cessed in reverse order.6

5 Implementation and Evaluation

This work has been implemented as a Java
plugin to the editor eGram (Busemann, 2004).
eGram is a development environment for gram-
mars and input structures, as they are used by

6Actually the usage of this algorithm for left valida-
tion attributes needs a heuristic, which is beyond the
scope of this paper.

the NLG systems TG/2 (Busemann, 2005) and
XtraGen (Stenzhorn, 2002).

The plugin offers menu items for displaying
the set differences between validation and gram-
mar attributes as well as the suggested correc-
tions. The right and left grammar and vali-
dation attributes together with the RHS ele-
ments they are derived from can be displayed as
well. Errors must be manually corrected within
eGram.

The algorithm was evaluated on two gram-
mars, the larger one (gr. 2 in the following table)
having 270 rules and 111 input structures. Both
grammars were verified to be correct. First we
evaluated how many of the RHS of both gram-
mars’ rules, which we assumed to be correct,
were indeed classified as correct by our algo-
rithm (“Recognised correctness”). Second we
evaluated the recall of errors found after insert-
ing an erroneous path variable randomly into
the grammar. In 200 trials it was counted how
often the grammar modification was recognised
by our algorithm.

Criterion gr. 1 gr. 2

Recognised correctness 100% 98%
Total correct detections 88% 64%
Correct corrections 2 85% 49%
Correct corrections 1 58% 45%

“Total correct detections” specifies how often
the incorrect RHS element and associated path
variable could be detected correctly. “Correct
corrections 1” (“Correct corrections2”) specifies
how often one (at most two) path variables were
suggested for correction, and one of them was
correct indeed.

First investigations of cases in which the al-
gorithm did not work correctly revealed several
possible reasons.

• Multiple suggestions and overlooks may
arise if a transition in the grammar from
one category to another can occur in con-
nection with several different path vari-
ables.

• Wrong path variables at terminal elements
may yield multiple suggestions since the re-
lated paths cannot be checked using left
validation attributes (cf. our guiding exam-
ple).



• If an attribute has different sets of children
in the input structures (from and to could
e.g. also be used for local descriptions), ad-
ditional spurious suggestions may be gen-
erated.

• If a category is just used in very few gram-
mar rules, the usage of a wrong path vari-
able by the grammar developer can result
in the determination of incomplete left or
right validation attributes. This effect can
also happen in the case of interacting errors
(cf. Section 4.4). In either case some other,
correctly specified path variable might not
be verified by those right/left validation at-
tributes and would therefore be presented
as a potential error canditate.

The above results are also valid for multiple
errors if the errors do not interfere with each
other. Interference can occur if the grammar
allows for a direct transition from one error cat-
gory to another one by a single RHS element
or by a sequence of calls where each RHS ele-
ment is assigned the empty path expression (cf.
Section 4.4).

Further evaluation with different grammars
and multiple errors is needed to better under-
stand the effects of their mutual interdependen-
cies.

6 Conclusion and Further Work

An algorithm for the automatic detection and
correction of path expressions for context-
free tree-mapping grammars has been devel-
oped and implemented. The evaluation re-
sults showed this work might be a valuable sup-
port for grammar developers. Practical tests in
the context of NLG grammar development will
probably cut down the development time con-
siderably.

Sometimes the algorithm specified so far in-
dicates a grammar error although the gram-
mar developer specified the correct path vari-
able, but used a wrong category. This algorithm
has been successfully extended to also correct
wrong LHS categories. Consider a rule R with
a wrong LHS side category C. For a correct
category C ′ we require that the right grammar
attributes of C that are derived from R be a
subset of the right validation attributes of C ′:
attrr,g,R(C) ⊂ attrr,v(C

′) (and analogously for
the left attributes).

Future research includes the extension of the
algorithm to longer path expressions, a system-
atic evaluation of mutually dependent errors,
and the treatment of constraint errors. Con-
straints are a formal element of eGram gram-
mar rules that allows for the percolation of e.g.
agreement features across the derivation tree
(Busemann, 1996). The detection and correc-
tion of missing equations and inconsistent value
assignments will be of interest.

Acknowledgement

We wish to thank our colleagues in the Lan-
guage Technology departments at DFKI GmbH
and the FU Hagen for their support, espe-
cially Matthias Rinck, who contributed much
to developing eGram, for fruitful discussions.
This work was partially supported by a re-
search grant from the German Federal Ministry
of Education, Science, Research and Technol-
ogy (BMBF) to the DFKI project COLLATE2
(FKZ: 01 IN C02).

References

Stephan Busemann. 1996. Best-first surface real-
ization. In Donia Scott, editor, Proc. 8th INLG
Workshop, Herstmonceux, Univ. of Brighton,
England.

Stephan Busemann. 2004. eGram – a grammar de-
velopment environment and its usage for language
generation. In Proc. 4th LREC, Lisbon, Portugal.

Stephan Busemann. 2005. Ten years after: An up-
date on TG/2 (and friends). In Proc. 10th ENLG
Workshop, Aberdeen, Scotland.

Gregory T. Daich, Gordon Price, Bryce Raglund,
and Mark Dawood. 1994. Software test technolo-
gies report.

Hans-Ulrich Krieger and Ulrich Schäfer. 1994. TDL
– a type description language for constraint-based
grammars. In Proc. 15th COLING, Kyoto, Japan.

Sabine Lehmann, Stephan Oepen, Sylvie Regnier-
Prost, Klaus Netter, and al. 1996. TSNLP – Test
suites for natural language processing. In Proc.
16th COLING, Copenhagen, Denmark.

Andreas Spillner and Tilo Linz. 2003. Basiswissen
Softwaretest. Dpunkt Verlag.

Holger Stenzhorn. 2002. XtraGen. A natural lan-
guage generation system using Java and XML
technologies. In Proc. 2nd Workshop on NLP and
XML, Taipeh, Taiwan.

Andreas Zeller. 2005. Locating causes of program
failures. In Proc. 27th International Conference
on Software Engineering (ICSE), Saint Louis,
Missouri, USA.


