
Proceedings of the 10th Conference on Parsing Technologies, pages 48–59,
Prague, Czech Republic, June 2007. c©2007 Association for Computational Linguistics

Efficiency in Unification-BasedN -Best Parsing

Yi Zhang♣, Stephan Oepen♦, and John Carroll♥

♣Saarland University, Department of Computational Linguistics, and DFKI GmbH (Germany)
♦University of Oslo, Department of Informatics (Norway)
♥University of Sussex, Department of Informatics (UK)

Abstract

We extend a recently proposed algorithm for
n-best unpacking of parse forests to deal ef-
ficiently with (a) Maximum Entropy (ME)
parse selection models containing important
classes of non-local features, and (b) forests
produced by unification grammars contain-
ing significant proportions of globally incon-
sistent analyses. The new algorithm empir-
ically exhibits a linear relationship between
processing time and the number of analyses
unpacked at all degrees of ME feature non-
locality; in addition, compared with agenda-
driven best-first parsing and exhaustive pars-
ing with post-hoc parse selection it leads to
improved parsing speed, coverage, and ac-
curacy.†

1 Background—Motivation

Technology for natural language analysis using lin-
guistically precise grammars has matured to a level
of coverage and efficiency that enables parsing of
large amounts of running text. Research groups
working within grammatical frameworks like CCG
(Clark & Curran, 2004), LFG (Riezler et al., 2002),
and HPSG (Malouf & van Noord, 2004; Oepen,
Flickinger, Toutanova, & Manning, 2004; Miyao,
Ninomiya, & Tsujii, 2005) have successfully in-
tegrated broad-coverage computational grammars
with sophisticated statistical parse selection models.
The former delineate the space of possible analy-
ses, while the latter provide a probability distribu-

†The first author warmly acknowledges the guidance of his
PhD advisors, Valia Kordoni and Hans Uszkoreit. We are grate-
ful to Ulrich Callmeier, Berthold Crysmann, Dan Flickinger,
and Erik Velldal for many discussions and their support. We
thank Ron Kaplan, Martin Kay, and Bob Moore for provid-
ing insightful information about related approaches, notably the
XLE and CLE parsers.

tion over competing hypotheses. Parse selection ap-
proaches for these frameworks often use discrimi-
native Maximum Entropy (ME) models, where the
probability of each parse tree, given an input string,
is estimated on the basis of select properties (called
features) of the tree (Abney, 1997; Johnson, Ge-
man, Canon, Chi, & Riezler, 1999). Such features,
in principle, are not restricted in their domain of
locality, and enable the parse selection process to
take into account properties that extend beyond lo-
cal contexts (i.e. sub-trees of depth one).

There is a trade-off in this set-up between the ac-
curacy of the parse selection model, on the one hand,
and the efficiency of the search for the best solu-
tion(s), on the other hand. Extending the context size
of ME features, within the bounds of available train-
ing data, enables increased parse selection accuracy.
However, the interplay of the core parsing algo-
rithm and the probabilistic ranking of alternate (sub-
)hypotheses becomes considerably more complex
and costly when the feature size exceeds the domain
of locality (of depth-one trees) that is characteristic
of phrase structure grammar-based formalisms. One
current line of research focuses on finding the best
balance between parsing efficiency and parse selec-
tion techniques of increasing complexity, aiming to
identify the most probable solution(s) with minimal
effort.

This paper explores a range of techniques, com-
bining a broad-coverage, high-efficiency HPSG
parser with a series of parse selection models with
varying context size of features. We sketch three
general scenarios for the integration: (a) a baseline
sequential configuration, where all results are enu-
merated first, and subsequently ranked; (b) an in-
terleaved but approximative solution, performing a
greedy search for ann-best list of results; and (c) a
two-phase approach, where a complete packed for-

48



est is created and combined with a specialized graph
search procedure to selectively enumerate results in
(globally) correct rank order. Although conceptu-
ally simple, the second technique has not previously
been evaluated for HPSG parsing (to the best of our
knowledge). The last of these techniques, which we
call selective unpacking, was first proposed by Car-
roll & Oepen (2005) in the context of chart-based
generation. However, they only provide an account
of the algorithm for local ME properties and assert
that the technique should generalize to larger con-
texts straightforwardly. This paper describes this
generalization of selective unpacking, in its appli-
cation to parsing, and demonstrates that the move
from features that resemble a context-free domain
of locality to features of, in principle, arbitrary con-
text size can indeed be based on the same algorithm,
but the required extensions are non-trivial.

The structure of the paper is as follows. Sec-
tion 2 summarizes our formalism, grammars used,
parse selection approach, and training and test data.
Section 3 discusses the range of possibilities for
structuring the process of statistical, grammar-based
parsing, and Sections 4 to 6 describe our approach
to efficientn-best parsing. We present experimental
results in Section 7, compare our approach to previ-
ous ones (Section 8), and finally conclude.

2 Overall Set-up

While couched in the HPSG framework, the tech-
niques explored here are applicable to the larger
class of unification-based grammar formalisms. We
make use of the DELPH-IN1 reference formalism,
as implemented by a variety of systems, including
the LKB (Copestake, 2002) and PET (Callmeier,
2002). For the experiments discussed here, we
adapted the open-source PET parsing engine in
conjunction with two publicly available grammars,
the English Resource Grammar (ERG; Flickinger,
2000) and the DFKI German Grammar (GG; Müller
& Kasper, 2000, Crysmann, 2005). Our parse se-
lection models were trained and evaluated on HPSG
treebanks that are distributed with these grammars.
The following paragraphs summarize relevant prop-
erties of the structures manipulated by the parser,

1Deep Linguistic Processing with HPSG, an open-
source repository of grammars and processing tools; see
‘http://www.delph-in.net/’.

subjh

hspec

det the le

the

sing noun

n intr le

dog

third sg fin verb

v unerg le

barks

Figure 1: Sample HPSG derivation tree for the sentencethe
dog barks. Phrasal nodes are labeled with identifiers of gram-
mar rules, and (pre-terminal) lexical nodes with class names for
types of lexical entries.

followed by relevant background on parse selection.

Figure 1 shows an example ERG derivation tree.
Internal tree nodes are labeled with identifiers of
grammar rules, and leaves with lexical entries. The
derivation tree provides complete information about
the actual HPSG analysis, in the sense that it can be
viewed as a recipe for computing it. Lexical entries
and grammar rules alike are ultimately just feature
structures, complex and highly-structured linguistic
categories. When unified together in the configura-
tion depicted by the derivation tree, the resulting fea-
ture structure yields an HPSG sign, a detailed repre-
sentation of the syntactic and semantic properties of
the input string. Just as the full derivation denotes a
feature structure, so do its sub-trees, and for gram-
mars like the ERG and GG each such structure will
contain hundreds of feature – value pairs.

Because of the lexicalized nature of HPSG (and
similar frameworks) our parsers search for well-
formed derivations in a pure bottom-up fashion.
Other than that, there are no hard-wired assumptions
about the order of computation, i.e. the specific pars-
ing strategy. Our basic set-up closely mimics that of
Oepen & Carroll (2002), where edges indexed by
sub-string positions in a chart represent the nodes of
the tree, recording both a feature structure (as its cat-
egory label) and the identity of the underlying lexi-
cal entry or rule in the grammar. Multiple edges de-
rived for identical sub-strings can be ‘packed’ into a
single chart entry in case their feature structures are
compatible, i.e. stand in an equivalence or subsump-
tion relation. By virtue of having each edge keep
back-pointers to its daughter edges—the immediate
sub-nodes in the tree whose combination resulted in

49



the mother edge—the parse forest provides a com-
plete andexplicit encoding of all possible results in a
maximally compact form.2 A simple unpacking pro-
cedure is obtained from the cross-multiplication of
all local combinatorics, which is directly amenable
to dynamic programming.

Figure 2 shows a hypothetical forest (on the left),
where sets of edges exhibiting local ambiguity have
been packed into a single ‘representative’ edge, viz.
the one in each set with one or more incoming dom-
inance arcs. Confirming the findings of Oepen &
Carroll (2002), in our experiments packing under
feature structure subsumption is much more effec-
tive than packing under mere equivalence, i.e. for
each pair of edges (over identical sub-strings) that
stand in a subsumption relation, a technique that
Oepen & Carroll (2002) termed retro-active pack-
ing ensures that the more general of the two edges
remains in the chart. When packing under subsump-
tion, however, some of the cross-product of local
ambiguities in the forest may not be globally con-
sistent. Assume for example that, in Figure 2, edges
6 and 8 subsume7 and 9 , respectively; combining
7 and 9 into the same tree during unpacking can in
principle fail. Thus, unpacking effectively needs to
deterministically replay unifications, but this extra
expense in our experience is negligible when com-
pared to the decreased cost of constructing the for-
est under subsumption. In Section 3 we argue that
this very property, in addition to increasing parsing
efficiency, interacts beneficially with parse selection
and on-demand enumeration of results in rank order.

Following (Johnson et al., 1999), a conditional
ME model of the probabilities of trees{t1 . . . tn}
for a string s, and assuming a set of feature
functions {f1 . . . fm} with corresponding weights
{λ1 . . . λm}, is defined as:

p(ti|s) =
exp

∑

j λjfj(ti)
∑n

k=1
exp

∑

j λjfj(tk)
(1)

2This property of parse forests is not a prerequisite of the
chart parsing framework. The basic CKY procedure (Kasami,
1965), for example, as well as many unification-based adapta-
tions (e.g. the Core Language Engine; Moore & Alshawi, 1992)
merely record the local category of each edge, which is suffi-
cient for the recognition task and simplifies the search. How-
ever, reading out complete trees from the chart, then, amounts
to a limited form of search, going back to the rules of the gram-
mar itself to (re-)discover decomposition relations amongchart
entries.

Type Sample Features
1 〈0 subjh hspec third sg fin verb〉
1 〈1 △ subjh hspec third sg fin verb〉
1 〈0 hspec det the le sing noun〉
1 〈1 subjh hspec det the le sing noun〉
1 〈2 △ subjh hspec det the le sing noun〉
2 〈0 subjh third sg fin verb〉
2 〈0 subjh hspce〉
2 〈1 subjh hspec det the le〉
2 〈1 subjh hspec sing noun〉
3 〈1 n intr le dog〉
3 〈2 det the le n intr le dog〉
3 〈3 � det the le n intr le dog〉

Table 1: Examples of structural features extracted from the
derivation tree in Figure 1. TheType column indicates the
template corresponding to each sample feature; the integerthat
starts each feature indicates the degree of grandparenting(in the
case of type 1 and 2 features) orn-gram size (type 3 features).
The symbols△ and� denote the root of the tree and left pe-
riphery of the yield, respectively.

Feature functionsfj can test for arbitrary structural
properties of analysesti, and their value typically is
the number of times a specific property is present
in ti. Toutanova, Manning, Flickinger, & Oepen
(2005) propose an inventory of features that per-
form well in HPSG parse selection; currently we re-
strict ourselves to the best-performing of these, of
the form illustrated in Table 1, comprising depth-
one sub-trees (or portions of these) with grammar-
internal identifiers as node labels, plus optionally
a chain of one or more dominating nodes (i.e. lev-
els of grandparents). If a grandparents chain is
present then the feature is non-local. For expository
purposes, Table 1 includes another feature type,n-
grams over leaf nodes of the derivation; in Section 5
below we speculate about the incorporation of these
(and similar) features in our algorithm.

3 Interleaving Parsing and Ranking

At an abstract level, given a grammar and an associ-
ated ME parse selection model, there are three basic
ways of combining them in order to find the single
‘best’ or small set ofn-best results.

The first way is a naı̈ve sequential set-up, in which
the parser first enumerates the full set of analyses,
computes a score for each using the model, and re-
turns the highest-rankingn results. For carefully

50



1 →
〈

2 3
〉

|
〈

4 3
〉

2 →
〈

5 6
〉

|
〈

5 7
〉

4 →
〈

8 6
〉

|
〈

8 7
〉

|
〈

9 6
〉

|
〈

9 7
〉

6 →
〈

10
〉

|
〈

11
〉

Figure 2: Sample forest and sub-node decompositions: ovalsin the forest (on the left) indicate packing of edges under subsump-
tion, i.e. edges4 , 7 , 9 , and 11 arenot in the chart proper. During unpacking, there will be multiple ways of instantiating a
chart edge, each obtained from cross-multiplying alternate daughter sequences locally. The elements of this cross-product we call
decomposition, and they are pivotal points both for stochastic scoring anddynamic programming in selective unpacking. The table
on the right shows all non-leaf decompositions for our example packed forest: given two ways of decomposing6 , there will be
three candidate ways of instantiating2 and six for4 , respectively, for a total of nine full trees.

crafted grammars and inputs of average complexity
the approach can perform reasonably well.

Another mode of operation is to organize the
parser’s search according to an agenda (i.e. priority
queue) that assigns numeric scores to parsing moves
(Erbach, 1991). Each such move is an application of
the fundamental rule of chart parsing, combining an
active and a passive edge, and the scores represent
the expected ‘figure of merit’ (Caraballo & Char-
niak, 1998) of the resulting structure. Assuming a
parse selection model of the type sketched in Sec-
tion 2, we can determine the agenda priority for a
parsing move according to the (unnormalized) ME
score of the derivation (sub-)tree that would result
from its successful execution. Note that, unlike in
probabilistic context-free grammars (PCFGs), ME
scores of partial trees do not necessarily decrease as
the tree size increases; instead, the distribution of
feature weights is in the range(−∞,+∞), centered
around0, where negative weights intuitively corre-
spond to dis-preferred properties.

This lack of monotonicity in the scores associated
with sub-trees, on the one hand, is beneficial, in that
performing a greedy best-first search becomes prac-
tical: in contrast, with PCFGs and their monoton-
ically decreasing probabilities on larger sub-trees,
once the parser finds the first full tree the chart nec-
essarily has been instantiated almost completely. On
the other hand, the same property prohibits the appli-
cation of exact best-first techniques like A∗ search,
because there is no reliable future cost estimate; in
this respect, our set-up differs fundamentally from
that of Klein & Manning (2003) and related PCFG
parsing work. Using the unnormalized sum of ME

weights on a partial solution as its agenda score, ef-
fectively, means that sub-trees with low scores ‘sink’
to the bottom of the agenda; highly-ranked partial
constituents, in turn, instigate the immediate cre-
ation of larger structures, and ideally the bottom-up
agenda-driven search will greedily steer the parser
towards full analyses with high scores. Given its
heuristic nature, this procedure cannot guarantee
that itsn-best list of results corresponds to the glob-
ally correct rank order, but it may in practice come
reasonably close to it. While conceptually simple,
greedy best-first search does not combine easily with
ambiguity packing in the chart: (a) at least when
packing under subsumption, it is not obvious how
to accurately compute the agenda score of packed
nodes, and (b) to the extent that the greedy search
avoids exploration of dis-preferred local ambigu-
ity, the need for packing should be greatly reduced.
Unfortunately, in scoring bottom-up parsing moves,
ME features involving grandparenting are not ap-
plicable, leading to a second potential source of re-
duced parse selection accuracy. In Section 7 below,
we provide an empirical evaluation of both the naı̈ve
sequential and greedy best-first approaches.

4 Selective Unpacking

Carroll & Oepen (2005) observe that, at least for
grammars like the ERG, the construction of the
parse forest can be very efficient (with observed
polynomial complexity), especially when packing
edges under subsumption. Their selective unpacking
procedure, originally proposed for the forest created
by a chartgenerator, aims to unpack then-best set

51



1 procedureselectively-unpack-edge(edge, n) ≡
2 results← 〈〉; i← 0;
3 do
4 hypothesis← hypothesize-edge(edge , i); i← i + 1;
5 if (new← instantiate-hypothesis(hypothesis)) then
6 n← n − 1; results← results ⊕ 〈new〉;
7 while (hypothesis and n ≥ 1)
8 return results;

9 procedurehypothesize-edge(edge , i) ≡
10 if (edge.hypotheses[i]) return edge.hypotheses[i];
11 if (i = 0) then
12 for each(decomposition in decompose-edge(edge)) do
13 daughters← 〈 〉; indices← 〈 〉
14 for each(edge in decomposition.rhs) do
15 daughters← daughters ⊕ 〈hypothesize-edge(edge, 0)〉;
16 indices← indices ⊕ 〈0〉;
17 new-hypothesis(edge, decomposition, daughters, indices);
18 if (hypothesis← edge.agenda.pop()) then
19 for each(indices in advance-indices(hypothesis.indices)) do
20 if (indices ∈ hypothesis.decomposition.indices) then continue
21 daughters← 〈 〉;
22 for each(edge in hypothesis.decomposition.rhs) each(i in indices) do
23 daughter← hypothesize-edge(edge, i);
24 if (not daughter) then daughters← 〈〉; break
25 daughters← daughters ⊕ 〈daughter〉;
26 if (daughters) then new-hypothesis(edge, hypothesis.decomposition, daughters, indices)
27 edge.hypotheses[i]← hypothesis;
28 return hypothesis;

29 procedurenew-hypothesis(edge , decomposition , daughters , indices) ≡
30 hypothesis← new hypothesis(decomposition, daughters, indices);
31 edge.agenda.insert(score-hypothesis(hypothesis), hypothesis);
32 decomposition.indices← decomposition.indices∪ {indices};

Figure 3: Selective unpacking procedure, enumerating then best realizations for a top-level resultedgefrom a packed forest. An
auxiliary functiondecompose-edge() performs local cross-multiplication as shown in the examples in Figure 2. Another utility
function not shown in pseudo-code isadvance-indices(), a ‘driver’ routine searching for alternate instantiations of daughter edges,
e.g.advance-indices(〈0 2 1〉)→ {〈1 2 1〉 〈0 3 1〉 〈0 2 2〉}. Finally, instantiate-hypothesis() is the function that actually builds
result trees, replaying the unifications of constructions from the grammar (as identified by chart edges) with the feature structures
of daughter constituents.

of full trees from the forest, guaranteeing the glob-
ally correct rank order according to the probability
distribution, with a minimal amount of search. The
basic algorithm is a specialized graph search through
the forest, with local contexts of optimization corre-
sponding to packed nodes.

Each such node represents local combinatorics,
and two key notions in the selective unpacking pro-
cedure are the concepts of (a)decomposingan edge
locally into candidate ways of instantiating it, and
of (b) nested contexts of local search for ranked
hypotheses(i.e. uninstantiated edges) about candi-
date subtrees. See Figure 2 for examples of the de-
composition of edges. Given one decomposition—
i.e. a vector of candidate daughters for a particu-
lar rule—there can be multiple ways of instanti-

ating each daughter: a parallel index vector~I =
〈i0 . . . in〉 serves to keep track of ‘vertical’ search
among daughter hypotheses, where each indexij
denotes thei-th best instantiation (hypothesis) of
the daughter at positionj. If we restrict ME fea-
tures to a depth of one (i.e. without grandparent-
ing), then given the additive nature of ME scores
on complete derivations, it can be guaranteed that
hypothesized trees including an edgee as an im-
mediate daughter must use the best instantiation of
e in their own best instantiation. Assuming a bi-
nary rule, the corresponding hypothesis would use
daughter indices of〈0 0〉. The second-best instan-
tiation, in turn, can be obtained from moving to the
second-best hypothesis foroneof the elements in the
(right-hand side of the) decomposition, e.g. indices

52



〈0 1〉 or 〈1 0〉 in the binary example. Hypotheses are
associated with ME scores and ordered within each
nested context by means of a local priority queue
(stored in the original representative edge, for con-
venience). Therefore, nested local optimizations re-
sult in a top-down, breadth-first, exactn-best search
through the packed forest, while avoiding exhaustive
cross-multiplication of packed nodes.

Figure 3 shows the unchanged pseudo-code of
Carroll & Oepen (2005). The main function
hypothesize-edge() controls both the ‘horizontal’ and
‘vertical’ search, initializing the set of decompo-
sitions and pushing initial hypotheses onto the lo-
cal agenda when called on an edge for the first
time (lines 11 – 17). For each call, the procedure
retrieves the current next-best hypothesis from the
agenda (line 18), generates new hypotheses by ad-
vancing daughter indices (while skipping over con-
figurations seen earlier) and calling itself recursively
for each new index (lines 19 – 26), and, finally, ar-
ranging for the resulting hypothesis to be cached for
later invocations on the sameedgeandi values (line
27). Note that unification (ininstantiate-hypothesis())
is only invoked on complete, top-level hypotheses,
as our structural ME features can actually be eval-
uatedprior to building each full feature structure.
However, as Carroll & Oepen (2005) suggest, the
procedure could be adapted to perform instantiation
of sub-hypotheses within each local search, should
additional features require it. For better efficiency,
the instantiate-hypothesis() routine applies dynamic
programming (i.e. memoization) to intermediate re-
sults.

5 Generalizing the Algorithm

Carroll & Oepen (2005) offer no solution for selec-
tive unpacking with larger context ME features. Yet,
both Toutanova et al. (2005) and our own experi-
ments (described in Section 7 below) suggest that
properties of larger contexts and especially grand-
parenting can greatly improve parse selection ac-
curacy. The following paragraphs outline how to
generalize the basic selective unpacking procedure,
while retaining its key properties: exactn-best enu-
meration with minimal search. Our generalization of
the algorithm distinguishes between ‘upward’ con-
texts, with grandparenting with dominating nodes as

a representative feature type, and ‘downward’ exten-
sions, which we discuss for the example of lexical
n-gram features.

A naı̈ve approach to selective unpacking with
grandparenting might be extending the cross-
multiplication of local ambiguity to trees of more
than depth one. However, with multiple levels of
grandparenting this approach would greatly increase
the combinatorics to be explored, and it would pose
the puzzle of overlapping local contexts of opti-
mization. Choices made among the alternates for
one packed node would interact with other ambi-
guity contexts in their internal nodes, rather than
merely at the leaves of their decompositions. How-
ever, it is sufficient to keep the depth of decompo-
sitions to minimal sub-trees and rather contextual-
ize each decomposition as a whole. Assuming our
sample forest and set of decompositions from Fig-
ure 2, let〈1 4 〉 : 6 →〈10 〉 denote the decomposi-
tion of node 6 in the context of 4 and 1 as its
immediate parents. When descending through the
forest,hypothesize-edge() can, without significant ex-
tra cost, maintain a vector~P = 〈pn . . . p0〉 of par-
ents of the current node, forn-level grandparenting.
For each packed node, the bookkeeping elements of
the graph search procedure need to be contextual-
ized on ~P , viz. (a) the edge-local priority queue,
(b) the record of index vectors hypothesized already,
and (c) the cache of previous instantiations. Assum-
ing each is stored in an associative array, then all
references toedge.agenda in the original procedure
can be replaced byedge.agenda[~P], and likewise for
other slots. With these extensions in place, the orig-
inal control structure of nested, on-demand creation
of hypotheses and dynamic programming of partial
results can be retained, and for each packed node
with multiple parents (6 in our sample forest) there
will be parallel, contextualized partitions of opti-
mization. Thus, extra combinatorics introduced in
this generalized procedure are confined to only such
nodes, which (intuitively at least) appears to estab-
lish the lower bound of added search needed—while
keeping the algorithm non-approximative. Section 7
provides empirical data on the degradation of the
procedure in growing levels of grandparenting and
the number ofn-best results to be extracted from the
forest.

Finally, we turn to enlarged feature contexts that

53



capture information from nodesbelowthe elements
of a local decomposition. Consider the example
of feature type 3 in Table 1,n-grams (of vari-
ous size) over properties of the yield of the parse
tree. For now we only consider lexicalbi-grams.
For an edgee dominating a sub-string ofn words
〈wi . . . wi+n−1〉 there will ben− 1 bi-grams inter-
nal to e, and two bi-grams that interact withwi−1

and wi+n—which will be determined by the left-
and right-adjacent edges toe in a complete tree. The
internal bi-grams are unproblematic, and we can as-
sume that ME weights corresponding to these fea-
tures have been included in the sum of weights as-
sociated toe. Seeing thate may occur in multiple
trees, with different sister edges, the selective un-
packing procedure has to take this variation into ac-
count when evaluating local contexts of optimiza-
tion.

Let xey denote an edgee, with x and y as the
lexical types of its leftmost and rightmost daugh-
ters, respectively. Returning to our sample forest,
assume lexicalizationsβ 10β andγ 11 γ (each span-
ning only one word), withβ 6= γ. Obviously, when
decomposing4 as〈8 6 〉, its ME score, in turn, will
depend on the choice made in the expansion of6 :
the sequences

〈

α 8 α β 6 β

〉

and
〈

α 8α γ 6 γ

〉

will dif-
fer in (at least) the scores associated with the bi-
grams〈αβ〉 vs. 〈αγ〉. Accordingly, when evalu-
ating candidate decompositions of4 , the number of
hypotheses that need to be considered is doubled;
as an immediate consequence, there can be up to
eight distinct lexicalized variants for the decompo-
sition 1 →〈4 3 〉 further up in the tree. It may look
as if combinatorics will cross-multiply throughout
the tree—in the worst case returning us to an ex-
ponential number of hypotheses—but this is fortu-
nately not the case: regarding the external bi-grams
of 1 , node 6 no longer participates in its left- or
rightmost periphery, so variation internal to6 is not
a multiplicative factor at this level. This is essen-
tially the observation of Langkilde (2000), and her
bottom-up factoring ofn-gram computation is eas-
ily incorporated into our top-down selective unpack-
ing control structure. At the point wherehypothesize-

edge() invokes itself recursively (line 23 in Figure 3),
its return value is now a set of lexicalized alternates,
and hypothesis creation (in line 26) can take into ac-
count the local cross-product of all such alternation.

Including additional properties from non-local sub-
trees (for example higher-ordern-grams and head
lexicalization) is a straightforward extension of this
scheme, replacing our per-edge left- and rightmost
periphery symbols with a generalized vector of ex-
ternally relevant, internal properties. In addition
to traditional (head) lexicalization as we have just
discussed it, such extended ‘downward’ properties
on decompositions—percolated from daughters to
mothers and cross-multiplied as appropriate—could
include metrics of constituent weight too, for exam-
ple to enable the ME model to prefer ‘balanced’ co-
ordination structures.

However, given that Toutanova et al. (2005) ob-
tain only marginally improved parse selection accu-
racy from the inclusion ofn-gram (and other lexical)
ME features, we have left the implementation of lex-
icalization and empirical evaluation for future work.

6 Failure Caching and Propagation

As we pointed out at the end of Section 4, during
the unpacking phase, unification is only replayed in
instantiate-hypothesis() on the top-level hypotheses. It
is only at this step that inconsistencies in the local
combinatorics are discovered. However, such a dis-
covery can be used to improve the unpacking rou-
tine by (a) avoiding further unification on hypothe-
ses that have already failed to instantiate, (b) avoid-
ing creating new hypotheses based on failed sub-
hypotheses. This requires some changes to the rou-
tinesinstantiate-hypothesis() andhypothesize-edge(), as
well as an extra boolean marker for each hypothesis.

The extended instantiate-hypothesis() starts by
checking whether the hypothesis is already marked
as failed. If it is not so marked, the routine recur-
sively instantiates all sub-hypotheses. Any failure
will again lead to instant return. Otherwise, unifica-
tion is used to create a new edge from the outcome of
the sub-hypothesis instantiations. If this unification
fails, the current hypothesis is marked. Moreover,
all its ancestor hypotheses are also marked (by re-
cursively following the pointers to the direct parent
hypotheses) as they are also guaranteed to fail.

Correspondingly, hypothesize-edge() needs to
check the instantiation failure marker to avoid re-
turning hypotheses that are guaranteed to fail. If
a hypothesis coming out of the agenda is already

54



marked as failed, it will be used to create new hy-
potheses (withadvance-indices()), but dropped af-
terward. Subsequent hypotheses will be popped
from the agenda until either a hypothesis that is not
marked as failed is returned, or the agenda is empty.

Moreover,hypothesize-edge() also needs to avoid
creating new hypotheses based on failed sub-
hypotheses. When a failed sub-hypothesis is found,
the creation of the new hypothesis is skipped. But
the index vector~I may not be simply discarded.
Otherwise hypotheses based onadvance-indices(~I)

will not be reachable in the search. On the other
hand, simply adding everyadvance-indices(~I) on to
the pending creation list is not efficient either in the
case where multiple sub-hypotheses fail.

To solve the problem, we compute a failure vec-
tor ~F = 〈f0 . . . fn〉, wherefj is 1 when the sub-
hypothesis at positionj is known as failed, and0
otherwise. If a sub-hypothesis at positionj is failed
then all the index vectors having valueij at posi-
tion j must also fail. By putting the result of~I + ~F

on the pending creation list, we can safely skip the
failed rows of sub-hypotheses, while not losing the
reachability of the others. As an example, suppose
we have a ternary index vector〈3 1 2〉 for which a
new hypothesis is to be created. By checking the in-
stantiation failure marker of the sub-hypotheses, we
find that the first and the third sub-hypotheses are al-
ready marked. The failure recording vector will then
be 〈1 0 1〉. By putting 〈4 1 3〉 = 〈3 1 2〉 + 〈1 0 1〉
on to the pending hypothesis creation list, the failed
sub-hypotheses are skipped.

We evaluate the effects of instantiation failure
caching and propagation below in Section 7.

7 Empirical Results

To evaluate the performance of the selective unpack-
ing algorithm, we carried out a series of empirical
evaluations with the ERG and GG, in combination
with a modified version of the PET parser. When
running the ERG we used as our test set theJH4
section of the LOGON treebank3, which contains
1603 items with an average sentence length of 14.6
words. The remaining LOGON treebank (of around

3The treebank is comprised of several booklets of
edited, instructional texts on backcountry activities in Nor-
way. The data is available from the LOGON web site at
‘http://www.emmtee.net’.

Configuration GP Coverage Time (s)

greedy best-first 0 91.6% 3889
exhaustive unpacking 0 84.5% 4673

selective unpacking

0 94.3% 2245
1 94.3% 2529
2 94.3% 3964
3 94.2% 3199
4 94.2% 3502

Table 2: Coverage on the ERG for different configurations, with
fixed resource consumption limits (of 100k passive edges or 300
seconds). In all cases, up to ten ‘best’ results were searched,
and Coverageshows the percentage of inputs that succeed to
parse within the available resource.Timeshows the end-to-end
processing time for each batch.

5 15 2525 35

String Length (Number of Input Tokens)

0

1

2

3

4

5

6
(s)

(generated by [incr tsdb()] at 23-mar-2007 (12:44 h))◦
◦

◦

◦

•
•

•

•

⋄
⋄

⋄

⋄

⋆
⋆

⋆

⋆

◦ gready best-first
• exhaustive unpacking
⋄ selective unpacking
⋆ forest creation

Figure 4: Parsing times for different configurations using the
ERG, in all three cases searching for up to ten results, without
the use of grandparenting.

8,000 items) was used in training the various ME
parse disambiguation models. For the experiment
with GG, we designated a 2825-item portion of the
DFKI Verbmobil treebank4 for our tests, and trained
ME models on the remaining 10,000 utterances. At
only 7.4 words, the average sentence length is much
shorter in the Verbmobil data.

We ran seven different configurations of the parser
with different search strategies and (un-)packing
mechanisms:

• Agenda driven greedyn-best parsing using the
ME score without grandparenting features; no
local ambiguity packing;

• Local ambiguity packing with exhaustive un-
packing, without grandparenting features;

4The data in this treebank is taken from transcribed appoint-
ment scheduling dialogues; see ‘http://gg.dfki.de/’
for further information on GG and its treebank.

55



1 10 20 30 40 50 60 70 80 90 100

Maximum Number of Trees to Unpack (n)

0.00

0.02

0.04

0.06

0.08

0.10
(s)

◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦ ◦ ◦
◦ ◦ ◦ ◦

◦
◦ ◦ ◦

◦ ◦ ◦ ◦
◦

◦ ◦
◦ ◦ ◦ ◦ ◦

◦◦ ◦
◦ ◦ ◦ ◦ ◦

◦

GP=0

GP=1

GP=2

GP=3

GP=4

Figure 5: Mean times for selective unpacking of all test items
for n-best parsing with the ERG, for varyingn and grandpar-
enting (GP) levels

• Local ambiguity packing and selective unpack-
ing for n-best parsing, with0 through4 levels
of grandparenting (GP) features.

As a side-effect of differences in efficiency, some
configurations could not complete parsing all sen-
tences given reasonable memory constraints (which
we set at a limit of 100k passive edges or 300 sec-
onds processing time per item). The overall cover-
age and processing time of different configurations
on JH4are given in Table 2.

The correlation between processing time and cov-
erage is interesting. However, it makes the efficiency
comparison difficult as parser behavior is not clearly
defined when the memory limit is exceeded. To cir-
cumvent this problem, in the following experiments
we average only over those 1362 utterances from
JH4 that complete parsing within the resource limit
in all seven configurations. Nevertheless, it must
be noted that this restriction potentially reduces effi-
ciency differences between configurations, as some
of the more challenging inputs (which typically lead
to the largest differences) are excluded.

Figure 4 compares the processing time of differ-
ent configurations. The difference is much more
significant for longer sentences (i.e. with more than
15 words). If the parser unpacks exhaustively, the
time for unpacking grows with sentence length at a
quickly increasing rate. In such cases, the efficiency
gain with ambiguity packing in the parsing phase
is mostly lost in the unpacking phase. The graph
shows that greedy best-first parsing without packing
outperforms exhaustive unpacking for sentences of

Configuration Exact Match Top Ten

random choice 11.34 43.06
no grandparenting 52.52 68.38
greedy best-first 51.79 69.48

grandparenting[1] 56.83 85.33
grandparenting[2] 56.55 84.14
grandparenting[3] 56.37 84.14
grandparenting[4] 56.28 84.51

Table 3: Parse selection accuracy for various levels of grandpar-
enting. Theexact matchcolumn shows the percentage of cases
in which the correct tree, according to the treebank, was ranked
highest by the model; conversely, thetop tencolumn indicates
how often the correct tree was among the ten top-ranking re-
sults.

less than 25 words. With sentences longer than 25
words, the packing mechanism helps the parser to
overtake greedy best-first parsing, although the ex-
haustive unpacking time also grows fast.

With the selective unpacking algorithm presented
in the previous sections, unpacking time is reduced,
and grows only slowly as sentence length increases.
Unpacking up to ten results, when contrasted with
the timings for forest creation (i.e. the first parsing
phase) in Figure 4, adds a near-negligible extra cost
to the total time required for both phases. Moreover,
Figure 5 shows that with selective unpacking, asn

is increased, unpacking time grows roughly linearly
for all levels of grandparenting (albeit always with
an initial delay in unpacking the first result).

Table 4 summarizes a number of internal parser
measurements using the ERG with different pack-
ing/unpacking settings. Besides the difference in
processing time, we also see a significant difference
in “space” between exhaustive and selective un-
packing. Also, the difference in“unifications” and
“copies” indicates that with our selective unpacking
algorithm, these expensive operations on typed fea-
ture structures are significantly reduced.

In return for increased processing time (and
marginal loss in coverage) when using grandparent-
ing features, Table 3 shows some large improve-
ments in parse selection accuracy (although the pic-
ture is less clear-cut at higher-order levels of grand-
parenting5). A balance point between efficiency

5The models were trained using the open-sourceTADM pack-
age (Malouf, 2002), using default hyper-parameters for allcon-
figurations, viz. a convergence threshold of10

−8, variance of
the prior of10−4, and frequency cut-off of5. It is likely that

56



Configuration GP
Unifications Copies Space Unpack Total

(#) (#) (kbyte) (s) (s)

≤ 15

greedy best-first 0 1845 527 2328 – 0.12

words

exhaustive unpacking 0 2287 795 8907 0.01 0.12

selective unpacking

0 1912 589 8109 0.00 0.12
1 1913 589 8109 0.01 0.12
2 1914 589 8109 0.01 0.12
3 1914 589 8110 0.01 0.12
4 1914 589 8110 0.02 0.13

> 15

greedy best-first 0 25233 5602 24646 – 1.66

words

exhaustive unpacking 0 39095 15685 80832 0.85 1.95

selective unpacking

0 17489 4422 33326 0.03 1.17
1 17493 4421 33318 0.05 1.21
2 17493 4421 33318 0.09 1.25
3 17495 4422 33321 0.13 1.27
4 17495 4422 33320 0.21 1.34

Table 4: Contrasting the efficiency of various (un-)packingsettings in use with ERG on short (top) and medium-length (bottom)
inputs; in each configuration, up to ten trees are extracted.UnificationandCopiesis the count of top-level FS operations, where
only successful unifications require a subsequent copy (when creating a new edge).UnpackandTotalare unpacking and total parse
time, respectively.

and accuracy can be made according to application
needs.

Finally, we compare the processing time of the
selective unpacking algorithm with and without in-
stantiation failure caching and propagation (as de-
scribed in Section 4 above). The empirical results
for GG are summarized in Table 5, showing clearly
that the technique reduced unnecessary hypotheses
and instantiation failures. The design philosophy of
the ERG and GG differ. During the first, forest cre-
ation phase, GG suppresses a number of features (in
the HPSG sense, not the ME sense) that can actually
constrain the combinatorics of edges. This move
makes the packed forest more compact, but it im-
plies that unification failures will be more frequent
during unpacking. In a sense, GG thus moves part
of the search for globally consistent derivations into
the second phase, and it is possible for the forest to
contain ‘result’ trees that ultimately turn out to be
incoherent. Dynamic programming of instantiation
failures makes this approach tractable, while retain-
ing the general breadth-first characteristic of the se-
lective unpacking regime.

further optimization of hyper-parameters for individual config-
urations would moderately improve model performance, espe-
cially for higher-order grandparenting levels with large numbers
of features.

8 Discussion

The approach ton-best parsing described in this pa-
per takes as its point of departure recent work of Car-
roll & Oepen (2005), which describes an efficient al-
gorithm for unpackingn-best trees from a forest pro-
duced by a chart-based sentence generator and con-
taining local ME properties with associated weights.
In an almost contemporaneous study, but in the con-
text of parsing with treebank grammars, Huang &
Chiang (2005) develop a series of increasingly effi-
cient algorithms for unpackingn-best results from
a weighted hypergraph representing a parse forest.
The algorithm of Carroll & Oepen (2005) and the
final one of Huang & Chiang (2005) are essentially
equivalent, and turn out to be reformulations of an
approach originally described by Jiménez & Marzal
(2000) (although expressed there only for grammars
in Chomsky Normal Form).

In this paper we have considered ME properties
that extend beyond immediate dominance relations,
extending up to 4 levels of grandparenting. Pre-
vious work has either assumed properties that are
restricted to the minimal parse fragments (i.e. sub-
trees of depth one) that make up the packed repre-
sentation (Geman & Johnson, 2002), or has taken a
more relaxed approach by allowing non-local prop-

57



Configuration
Unifications Copies Hypotheses Space Unpack Total

(#) (#) (#) (kbyte) (ms) (ms)

greedy best-first 5980 1447 – 9202 – 400
selective, no caching 5535 1523 1245 27188 70 410
selective, with cache 4915 1522 382 27176 10 350

Table 5: Efficiency effects of the instantiation failure caching and propagation with GG, without grandparenting. All statistics are
averages over the 1941 items that complete within the resource bounds in all three configurations.Unification, Copies, Unpack,
andTotalhave the same interpretation as in Table 4, andHypothesesis the average count of hypothesized sub-trees.

erties but without addressing the problem of how to
efficiently extract the top-ranked trees from a packed
forest (Miyao & Tsujii, 2002).

Probably the work closest in spirit to our approach
is that of Malouf & van Noord (2004), who use an
HPSG grammar comparable to the ERG and GG,
non-local ME features, and a two-phase parse for-
est creation and unpacking approach. However, their
unpacking phase uses a beam search to find a good
(single) candidate for the best parse; in contrast—
for ME models containing the types of non-local
features that are most important for accurate parse
selection—we avoid an approximative search andef-
ficiently identify exactlythen-best parses.

When parsing with context free grammars, a (sin-
gle) parse can be retrieved from a parse forest in
time linear in the length of the input string (Bil-
lot & Lang, 1989). However, as discussed in Sec-
tion 2, when parsing with a unification-based gram-
mar and packing under feature structure subsump-
tion, the cross-product of some local ambiguities
may not be globally consistent. This means that ad-
ditional unifications are required at unpacking time.
In principle, when parsing with a pathological gram-
mar with a high rate of failure, extracting a single
consistent parse from the forest could take exponen-
tial time (see Lang (1994) for a discussion of this is-
sue with respect to Indexed Grammars). In the case
of GG, a high rate of unification failure in unpacking
is dramatically reduced by our instantiation failure
caching and propagation mechanism.

9 Conclusions and Future Work

We have described and evaluated an algorithm for
efficiently computing then-best analyses from a
parse forest produced by a unification grammar, with
respect to a Maximum Entropy (ME) model con-
taining two classes of non-local features. The al-

gorithm is efficient in that it empirically exhibits a
linear relationship between processing time and the
number of analyses unpacked, at all degrees of ME
feature non-locality. It improves over previous work
in providing the only exact procedure for retrieving
n-best analyses from a packed forest that can deal
with features with extended domains of locality and
with forests created under subsumption. Our algo-
rithm applies dynamic programming to intermediate
results and local failures in unpacking alike.

The experiments compared the new algorithm
with baseline systems representing other possible
approaches to parsing with ME models: (a) a single
phase of agenda-driven parsing with on-line prun-
ing based on intermediate ME scores, and (b) two-
phase parsing with exhaustive unpacking and post-
hoc ranking of complete trees. The new approach
showed better speed, coverage, and accuracy than
the baselines.

Although we have dealt with the non-local ME
features that in previous work have been found to be
the most important for parse selection (i.e. grand-
parenting and n-grams), this does not exhaust the
full range of features that could possibly be useful.
For example, it may be the case that accurately re-
solving some kinds of ambiguities can only be done
with reference to particular parts—or combinations
of parts—of the HPSG feature structures represent-
ing the analysis of a complete constituent. To deal
with such cases we are currently designing an exten-
sion to the algorithms described here which would
add a ‘controlled’ beam search, in which the size of
the beam was limited by the interval of score adjust-
ments for ME features that could only be evaluated
once the full linguistic structure became available.
This approach would involve a constrained amount
of extra search, but would still produce the exactn-
best trees.

58



References
Abney, S. P. (1997). Stochastic attribute-value grammars.Com-

putational Linguistics, 23, 597 – 618.

Billot, S., & Lang, B. (1989). The structure of shared forests
in ambiguous parsing. InProceedings of the 27th Meeting
of the Association for Computational Linguistics(pp. 143 –
151). Vancouver, BC.

Callmeier, U. (2002). Preprocessing and encoding techniques
in PET. In S. Oepen, D. Flickinger, J. Tsujii, & H. Uszkor-
eit (Eds.),Collaborative language engineering. A case study
in efficient grammar-based processing.Stanford, CA: CSLI
Publications.

Caraballo, S. A., & Charniak, E. (1998). New figures of merit
for best-first probabilistic chart parsing.Computational Lin-
guistics, 24(2), 275 – 298.

Carroll, J., & Oepen, S. (2005). High-efficiency realization for
a wide-coverage unification grammar. In R. Dale & K. F.
Wong (Eds.),Proceedings of the 2nd International Joint
Conference on Natural Language Processing(Vol. 3651, pp.
165 – 176). Jeju, Korea: Springer.

Clark, S., & Curran, J. R. (2004). Parsing the WSJ using CCG
and log-linear models. InProceedings of the 42nd Meeting
of the Association for Computational Linguistics(pp. 104 –
111). Barcelona, Spain.

Copestake, A. (2002).Implementing typed feature structure
grammars.Stanford, CA: CSLI Publications.

Crysmann, B. (2005). Relative clause extraposition in German.
An efficient and portable implementation.Research on Lan-
guage and Computation, 3(1), 61 – 82.

Erbach, G. (1991). A flexible parser for a linguistic develop-
ment environment. In O. Herzog & C.-R. Rollinger (Eds.),
Text understanding in LILOG(pp. 74 – 87). Berlin, Ger-
many: Springer.

Flickinger, D. (2000). On building a more efficient grammar
by exploiting types.Natural Language Engineering, 6 (1),
15 – 28.

Geman, S., & Johnson, M. (2002). Dynamic programming for
parsing and estimation of stochastic unification-based gram-
mars. InProceedings of the 40th Meeting of the Association
for Computational Linguistics.Philadelphia, PA.

Huang, L., & Chiang, D. (2005). Better k-best parsing. In
Proceedings of the 9th International Workshop on Parsing
Technologies(pp. 53 – 64). Vancouver, Canada.

Jiménez, V. M., & Marzal, A. (2000). Computation of the
n best parse trees for weighted and stochastic context-free
grammars. InProceedings of the Joint International Work-
shops on Advances in Pattern Recognition(pp. 183 – 192).
London, UK: Springer-Verlag.

Johnson, M., Geman, S., Canon, S., Chi, Z., & Riezler, S.
(1999). Estimators for stochastic ‘unification-based’ gram-
mars. InProceedings of the 37th Meeting of the Association
for Computational Linguistics(pp. 535 – 541). College Park,
MD.

Kasami, T. (1965). An efficient recognition and syntax al-
gorithm for context-free languages(Technical Report # 65-
758). Bedford, MA: Air Force Cambrige Research Labora-
tory.

Klein, D., & Manning, C. D. (2003). A* parsing. Fast exact
Viterbi parse selection. InProceedings of the 4th Confer-
ence of the North American Chapter of the ACL.Edmonton,
Canada.

Lang, B. (1994). Recognition can be harder than parsing.Com-
putational Intelligence, 10(4), 486 – 494.

Langkilde, I. (2000). Forest-based statistical sentence gener-
ation. In Proceedings of the 1st Conference of the North
American Chapter of the ACL.Seattle, WA.

Malouf, R. (2002). A comparison of algorithms for maxi-
mum entropy parameter estimation. InProceedings of the
6th Conference on Natural Language Learning.Taipei, Tai-
wan.

Malouf, R., & van Noord, G. (2004). Wide coverage parsing
with stochastic attribute value grammars. InProceedings of
the IJCNLP workshop Beyond Shallow Analysis.Hainan,
China.

Miyao, Y., Ninomiya, T., & Tsujii, J. (2005). Corpus-oriented
grammar development for acquiring a Head-Driven Phrase
Structure Grammar from the Penn Treebank. In K.-Y. Su,
J. Tsujii, J.-H. Lee, & O. Y. Kwong (Eds.),Natural language
processing(Vol. 3248, pp. 684 – 693). Hainan Island, China.

Miyao, Y., & Tsujii, J. (2002). Maximum entropy estimation
for feature forests. InProceedings of the Human Language
Technology Conference.San Diego, CA.

Moore, R. C., & Alshawi, H. (1992). Syntactic and semantic
processing. In H. Alshawi (Ed.),The Core Language Engine
(pp. 129 – 148). Cambridge, MA: MIT Press.

Müller, S., & Kasper, W. (2000). HPSG analysis of German.
In W. Wahlster (Ed.),Verbmobil. Foundations of speech-to-
speech translation(Artificial Intelligence ed., pp. 238 – 253).
Berlin, Germany: Springer.

Oepen, S., & Carroll, J. (2002). Efficient parsing for
unification-based grammars. In S. Oepen, D. Flickinger,
J. Tsujii, & H. Uszkoreit (Eds.),Collaborative language en-
gineering. A case study in efficient grammar-based process-
ing (pp. 195 – 225). Stanford, CA: CSLI Publications.

Oepen, S., Flickinger, D., Toutanova, K., & Manning, C. D.
(2004). LinGO Redwoods. A rich and dynamic treebank for
HPSG.Journal of Research on Language and Computation,
2(4), 575 – 596.

Riezler, S., King, T. H., Kaplan, R. M., Crouch, R., Maxwell III,
J. T., & Johnson, M. (2002). Parsing the Wall Street Journal
using a Lexical-Functional Grammar and discriminative es-
timation techniques. InProceedings of the 40th Meeting of
the Association for Computational Linguistics.Philadelphia,
PA.

Toutanova, K., Manning, C. D., Flickinger, D., & Oepen, S.
(2005). Stochastic HPSG parse selection using the Red-
woods corpus.Journal of Research on Language and Com-
putation, 3(1), 83 – 105.

59


