
Shallow, Deep and Hybrid Processing with UIMA and Heart of Gold

Ulrich Schäfer

German Research Center for Artificial Intelligence (DFKI), Language Technology Lab
Campus D 3 1, Stuhlsatzenhausweg 3, D-66123 Saarbrücken, Germany

email: ulrich.schaefer@dfki.de

Abstract
The Unstructured Information Management Architecture (UIMA) is a generic platform for processing text and other unstructured,
human-generated data. For text, it has been proposed and is being used mainly for shallow natural language processing (NLP) tasks
such as part-of-speech tagging, chunking, named entity recognition and shallow parsing. However, it is commonly accepted that getting
interesting structure and semantics from documents requires deeper methods. Therefore, one of the future goals for UIMA will be inclu-
sion of openly available, deep linguistic parsing technology for the generation of semantics representations from documents.
Heart of Gold is a lightweight, XML-based middleware architecture that has been developed for this purpose. It supports hybrid, i.e.
combined shallow and deep processing workflows of multiple NLP components to increase robustness and exploit synergy, and linguistic
resources for multiple languages. The notion of explicit transformation between component input and output enables flexible interaction
of existing NLP components. Heart of Gold foresees both tightly (same process) and loosely coupled (via networked services) processing
modes. Assuming familarity with UIMA, we introduce Heart of Gold and propose and discuss hybrid integration scenarios in the context
of UIMA. Possible applications include precision-oriented question answering, deep information extraction and opinion mining, textual
entailment checking and machine translation.

1. Introduction
At last with the incubation of UIMA as an Apache project,
language technology and natural language processing tools
are becoming standard techniques usable in mainstream ap-
plication software. More and more pre-existing tools for
text processing got news clothes and found their way into
the UIMA component repository1. So, job done – what’s
next?
If one looks closer at the different types of integrated tools,
then only the same few types of components appear – at
least those openly available: shallow tools such as part-of-
speech taggers, chunkers, named entity recognizers and en-
tity detectors, the latter ones for specific tasks or domains.
But this is only half the range of natural language pro-
cessing (besides the language dimension that is currently
mostly English).
To get structure and semantics from unstructured text, much
more is needed than identifying types of named entities or
part-of-speech tags. Ultimately, one needs text understand-
ing, getting the relations between the various entities men-
tioned in the text, or at least a predicate-argument struc-
ture per sentence. This cannot be provided only by shallow
tools, but requires deep parsing.
Moreover, even rather shallow tasks such as template-based
information extraction work better in rather fixed word-
order languages such as English, but perform worse on free
word-order languages. Again, deep syntactic parsing could
help to improve results. While efficiency is no longer a
problem for deep parsing, robustness can be overcome us-
ing a hybrid approach we will discuss below.
The distinction between shallow and deep processing is
a continuum rather than a strict dichotomy. Deep means
knowledge-intensive, comprehensive, generic. By shal-
low, we mean partial, less informed analysis, often domain-
dependent. It has to be pointed out that the distinction be-

1http://uima.lti.cs.cmu.edu

tween statistical and rule-based NLP is orthogonal to that,
as deep and shallow analyses may involve both. For more
in-depth discussions, cf. (Uszkoreit, 2002; Schäfer, 2007).
There is one further distinction that plays a role when
characterizing the kind of analysis results and its relation
to NLP software architecture. (Cunningham et al., 1997)
present a classification of software infrastructures for NLP
by distinguishing three models they call

• referential (analyses are stored as separate representa-
tions with pointer references into the original text),

• additive (e.g. cumulative SGML/XML annotation
markup), and

• abstraction-based (as in typed feature structures of
deep analysis where the analysis result consists of a
closed, integrated information structure for larger text
entities, typically a whole sentence).

Thus, architectures for shallow and deep components
should support at least referential and abstraction-based
representations. The latter is not supported by architectures
such as GATE (Bontcheva et al., 2004).
Although the designers of UIMA had deep processing in
mind already when they started developing their framework
(Ferrucci and Lally, 2004; Götz and Suhre, 2004), at least
openly available deep processing is currently less devel-
oped in UIMA than in other approaches, and so is the novel
hybrid (combined deep and shallow) integration paradigm.
In this paper, we will present another framework, Heart of
Gold, and discuss its relation to UIMA. This framework has
been developed independently of and in parallel to UIMA.
It integrates mainly openly available shallow and deep pro-
cessing components and linguistic resources for many lan-
guages.
Heart of Gold (Callmeier et al., 2004; Schäfer, 2007)2 is a
lightweight, XML-based middleware architecture that has

2Download, documentation: http://heartofgold.dfki.de

http://www.dfki.de/~uschaefer
mailto:ulrich.schaefer@dfki.de
http://uima.lti.cs.cmu.edu
http://heartofgold.dfki.de

been developed in the context of DELPH-IN3, a collabo-
ration of various research groups developing and sharing
open source tools and linguistic resources for the Head-
driven Phrase Structure Grammar (Pollard and Sag, 1994).
Being open source, Heart of Gold is also contained in the
OpenNLP collection4.
The main motivation why Heart of Gold has been devised
is flexible support for the combination of multiple shallow
NLP analysers with a deep HPSG parser, and for generat-
ing robust deep semantic representations of the meaning of
natural language sentences. It could be shown that through
integration with PoS tagging and named entity recognition,
deep parsing coverage on newspaper text can be doubled,
even on broad-coverage grammars with relatively large lex-
ica (Crysmann et al., 2002; Schäfer, 2007).
We will in the following discuss the Heart of Gold ap-
proach, how it differs from and can be brought together
with UIMA. The idea is that if Heart of Gold would be
migrated to UIMA (hypothetically), not only single com-
ponents should be migrated, but also the efforts invested
in elaborated hybrid integration workflows should be pre-
served, e.g. for English, German and Japanese.

2. Heart of Gold
2.1. Design principles
One of the design decisions that have been made in Heart
of Gold is the choice of open XML standoff markup as the
only representation format for input and output of the com-
ponents. It contains aspects of both referential (through
character offset positions encoded in attributes) and addi-
tive representation architectures mentioned in the introduc-
tion.
Standoff markup is easy to exchange, transformable us-
ing standard XML transformation languages such as XSLT
(Clark, 1999), and interoperability benefits from Unicode
being part of the XML standard. The XML approach is
in principle compatible with UIMA which in addition sup-
ports isomorphic object structure in the supported program-
ming languages. The elegance of the XML approach lies in
the closeness to XML corpus annotation, i.e. persistently
‘multidimensionally’ stored analysis results form an auto-
matically annotated corpus.
Fig. 1 gives a schematic overview of the Heart of Gold
middleware architecture in between applications (top) and
external NLP components (bottom). Communication with
the middleware is supported via XML-RPC web service or
programmatically via a Java API. When a new application
session is started, it takes a configuration specifying the
wrapped NLP components to start for this session. Each
component is started according to its own configuration.
An application client can send texts to the middleware and
the NLP components are then queried in a numerically de-
fined processing order (‘depth’). The shallowest compo-
nents (e.g. tokenizer) are assigned a low number and are
started first etc. The output of each component must be

3DEep Linguistic Processing with HPSG Initiative; http://
www.delph-in.net

4http://opennlp.sf.net

Computed
annotations
XML,RMRS

Application

Module Communication Manager

R
es

ul
ts

Q

ue
rie

s

External,
persistent
annotation
database

 Modules

 External NLP
components

XSLT service

Figure 1: Middleware architecture

XML markup. Each component gets the output of the pre-
vious component as input by default, but can also request
(via configuration) other annotations as input.
As there is no commonly accepted XML standard for lin-
guistic annotation, the architecture itself makes no assump-
tion about the XML format as long as it is well-formed
XML. XML transformation is used to mediate between dif-
ferent I/O formats.
Components may produce multiple output annotations (e.g.
in different formats). Thus, the component dependency
structure in general forms a graph. In Section 2.8., we de-
scribe a further generalization of the default pipeline.

2.2. Session and annotation management

The resulting NLP annotations are stored in a per-session
markup storage (Fig. 2) that groups all annotations for
an input query (a sentence or text) in annotation collec-
tions. The markup can also be made persistent by sav-
ing it to XML files or storing it in an XML database.
Annotations can be accessed uniquely via a URI of the form

 Session Annotation
collection (1
per input text)

Standoff annotations (computed by modules/components)

Figure 2: Session and multi-dimensional markup storage

hog://sid/acid/aid in XPath expressions where sid is
a session ID, acid is an annotation collection ID and aid is
an annotation identifier typically signifying the name of the
producing component. Structured metadata like configura-
tion and processing parameters (e.g. processing time and
date, language ID etc.) are automatically stored within the
annotation markup as first root daughter element.

http://www.delph-in.net
http://www.delph-in.net
http://opennlp.sf.net

Component NLP Type Languages Implemented in
JTok tokenizer de, en, it,... Java
ChaSen Japanese segm./tagger. ja C
TnT HMM tagger de, en,... C
Treetagger statistical tagger en, de, es, it,... C
Chunkie HMM chunker de, en,... C
ChunkieRMRS chunk RMRSes de, en XSLT, SDL/Java
LingPipe statistical NER en, es,... Java
FreeLing morph./tagger/NER ca, en, es, gc, it C++
Sleepy shallow parser de OCaml
SProUT morph., shallow NLP/NER de, el, en, ja,... XTDL, Java
LoPar/wbtopo PCFG parser de C, XSLT
Corcy coref resolver en Python
RASP shallow NLP en C, Lisp
PET HPSG parser de, el, en, ja,... C, C++, Lisp
RMRSmerge RMRS merger de, en,... XSLT, SDL/Java
SDL generic sub-architectures SDL/Java

Figure 3: Integrated components from shallow (top) to deep (bottom). Details and references on http://heartofgold.dfki.de.

2.3. Wrapped NLP components

NLP components are integrated through adapters called
modules (either Java-based, subprocesses or via XML-
RPC) that are also responsible for generating XML standoff
output in case this is not supported natively by the under-
lying, pre-existing component. Various shallow and deep
NLP components have already been integrated, cf. Fig. 3.

2.4. Integration through transformation

Heart of Gold heavily relies on the use of XSLT for com-
bining and integrating XML markup produced by the NLP
components. The general idea is to use XSLT to trans-
form XML to other XML formats, or to combine and query
annotations. In particular, XSLT stylesheets may resolve
conflicts resulting from multi-dimensional markup, choose
among alternative readings, follow standoff links, or decide
which markup source to give higher preference.
(Carletta et al., 2003), e.g. propose the NXT Search
query language (for corpus access) that extends XPath by
adding query variables, regular expressions, quantification
and special support for querying temporal and structural
relations. Their main argument against standard XPath is
that it is impossible to constrain both structural and tempo-
ral relations within a single XPath query. Our argument is
that XSLT can complement XPath where XPath alone is not
powerful enough, yet providing a standardized language.
Further advantages we see in the XSLT approach are porta-
bility and efficiency (in contrast to ‘proprietary’ and slow
XPath extensions like NXT), while it has a quite sim-
ple syntax in its (currently employed) 1.0 version. XSLT
can be conceived as a declarative specification language as
long as an XML tree structure is preserved (not necessarily
fully isomorphic to the input structure). However, XSLT
is Turing-capable and therefore suited to solve in principle
any markup integration or query problem.
Finally, extensions like the upcoming XSLT/XPath 2.0 ver-
sion or efficiency gains through XSLTC (translet compila-
tion) can be taken on-the-fly and for free without giving
up compatibility. Technically, the built-in Heart of Gold

XSLT processor could easily replaced or complemented by
an XQuery processor. However, for the combination and
transformation of NLP markup, we see no advantage of
XQuery over XSLT.
Heart of Gold comes with a built-in XSL transforma-
tion service, and module adapters can easily implement
transformation support by including a few lines of code.
Stylesheets can also be generated automatically in Heart
of Gold, provided a formal description of the transforma-
tion input format is available. An example is the mapping
from named entity grammar output type definitions in the
deep-shallow integration scenario we will describe briefly
by example below.

2.5. Performance
There is a slight performance drawback Heart of Gold
shares with other service-oriented architectures. It is im-
posed by the XML framework, yet partly countervailed by
fast XSL transformation. While deep parsing alone is in
the range of milliseconds per sentence thanks to the very
efficient PET system, a hybrid parse may take up to 1-2
seconds including PoS tagging, named entity recognition,
and some more seconds for very long sentences.
The majority of the time goes into Java-based XML pro-
cessing, and there is room for optimization. However, we
think this is an acceptable tradeoff for very flexible and
quick experimental integration of (new) NLP components
in exciting new, rapidly prototyped applications, including
the benefits of Unicode given for free in multilingual inte-
gration scenarios.

2.6. Integrating shallow and deep processing
The main motivation for integrating deep and shallow pro-
cessing is that deep parsing alone is not robust enough.
Open class words such as names, locations, time expres-
sions not in the deep lexicon prevent construction of full
parse trees. A simple, yet very efficient way of making
parsing more robust to gaps in the lexicon is using PoS tag-
ging as pre-processing. From the PoS information for a
word unknown to the deep lexicon, one or more generic

http://heartofgold.dfki.de

Figure 4: Hybrid workflows for German, English, Japanese

lexicon entry is put on the deep parser’s chart containing at
least the information about the word class and maybe other
information such as morphological or basic semantics fea-
tures.
In the same way, named entity recognizers and gazetteers
may contribute e.g. domain-specific information missing in
the deep grammars. This forms a division of labor: the (ex-
pensive) deep grammar is responsible for modelling correct
general language use, syntax and generating a sentence-
semantic representation, while the shallow components add
domain-specific information that does not need to be main-
tained in the deep lexicon and can be easily changed for a
different application domain.
We now give an example for such a hybrid workflow, de-
picted for English in the middle of Figure 4. The configu-
ration for German is analogous except that there is no sec-
ondary shallow fallback component.
The raw input sentence text is sent to the JTok tokenizer
and the named entity recognizer SProUT (Drożdżyński et
al., 2004), because SProUT comes with its own tokenizer
with a finer-grained token classification. Chunkie (HMM
chunker) and TnT (HMM tagger) use the tokenized output
from JTok as input, Chunkie output is used as secondary in-
put for the ChunkieRMRS cascade (left branch in Figure 4
for German and English) we will be explain Section 2.8.
The output of this cascade (shallow RMRS) can be used
as shallow fallback result in case the deep parser fails to
parse the input sentence. Similarly, RASP (English only)
produces another shallow RMRS as fallback annotation.
Back to the middle pipeline, the tagger output for the sen-
tence ’George Washington was born in Virginia’

<w id="TNT0" cstart="0" cend="5">

<surface>George</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT1" cstart="7" cend="16">

<surface>Washington</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

<w id="TNT2" cstart="18" cend="20">

<surface>was</surface>

<pos tag="VBD" prio="1.000000e+00"/>

</w>

<w id="TNT3" cstart="22" cend="25">

<surface>born</surface>

<pos tag="VBN" prio="1.000000e+00"/>

</w>

<w id="TNT4" cstart="27" cend="28">

<surface>in</surface>

<pos tag="IN" prio="1.000000e+00"/>

</w>

<w id="TNT5" cstart="30" cend="37">

<surface>Virginia</surface>

<pos tag="NNP" prio="1.000000e+00"/>

</w>

as well as the recognized named entities from SProUT

<w id="SPR1" cstart="0" cend="16" prio="0.5"

constant="yes">

<surface>George Washington</surface>

<typeinfo id="TIN1" baseform="no">

<stem>$genericname</stem>

</typeinfo>

</w>

<w id="SPR2" cstart="30" cend="37" prio="0.5"

constant="yes">

<surface>Virginia</surface>

<typeinfo id="TIN2" baseform="no">

<stem>$genericname</stem>

</typeinfo>

</w>

are transformed into the deep parser’s (PET; (Callmeier,
2000)) input chart format using XSLT (shown above is al-
ready the transformed version). Another XSLT stylesheet

Figure 5: Heart of Gold analysis results in GUI with specialized XML visualizations

is used to combine these and possibly other annotations in
a single PET input chart document 5.
From this XML input chart, the deep parser generates or
looks up deep lexicon entries, then starts HPSG parsing.

2.7. Output: semantics representation
Instead of huge typed feature structures containing the
monotonically assembled unification result of the HPSG
parse tree per sentence, applications are rather interested
in a distilled sentence semantics representation. This distil-
late largely omits linguistics details from morphology and
syntax, but provides a graph structure of connected seman-
tic entities for the whole sentence, including its predicate-
argument structure.
One such representation generated by many modern HPSG
grammars is MRS - minimal recursion semantics (Copes-
take et al., 2005) or its robust XML variant RMRS (Copes-
take, 2003). RMRS turns the semantics representation of
a sentence into an XML standoff format as well (including
references back into character positions of the input sen-
tence) and thus is appropriate for being processed by the
middleware and forwarded to applications.
An RMRS contains EPs (elementary predications) with ar-
gument connected via handle and individual variables. The
idea is that shallow NLP components may deliver equiva-
lent where possible, but maybe underspecified representa-
tions, e.g. the argument positions of a transitive verb may
be empty when a shallow parser cannot find the appropriate
object. The HCONS (handle constraints) attribute allows
to concisely express scopus ambiguities via handles. The

5Stylesheets are also employed to visualize the linguistic
markup, e.g. by transforming analysis results to HTML (Fig. 5)
or LATEX.

ING (in-group) attribute explicitly indicates conjunction of
its contained pairs.
A sample RMRS as produced by the deep parser PET run-
ning the HPSG grammar ERG6 in Heart of Gold is shown
in Figure 6, depicted in the MRS matrix format instead of
raw XML for better readability.
Figure 7 shows a structured result from the named entity
recognizer SProUT transformed to the RMRS format. It
contains information such as name variants or the indica-
tion that Virginia is of type province. This information was
not passed to the deep grammar as it is irrelevant for pars-
ing in this case, but it might be interesting for consuming
applications.
Thus, RMRS is used as a uniform, though not manda-
tory output format of both deep and shallow components.
The RMRSmerge module at the end of the shallow-deep
pipeline can be used to merge RMRSes produced by mul-
tiple components into a single representation (‘merged
RMRS’ in Figure 4).

2.8. Sub-architectures
Heart of Gold modules roughly correspond to TAEs (Text
Analysis Engines) in UIMA. The equivalent to UIMAs
composed TAEs are sub-architectures in Heart of Gold.
The SDL module enhances Heart of Gold with a compi-
lable NLP module control flow for sub-architectures, i.e.,
enabling declarative specification of modules that are com-
posed of other modules. SDL (System Description Lan-
guage) has been developed independently of Heart of Gold
by (Krieger, 2003).
SDL generates Java code for declaratively defined architec-
tures of NLP systems obeying a class interface imposed by

6English Resource Grammar; http://www.delph-in.net/erg/

http://www.delph-in.net/erg/

TEXT George Washington was born in Virginia.
TOP h1

RELS

prop-or-ques m rel
LBL h1
ARG0 e2tense=past

MARG h4

PSV x3num=sg
pers=3

proper q rel
LBL h6
ARG0 x3
RSTR h7
BODY h8

compound name rel
LBL h9
ARG0 e11

ARG1 x10num=sg
pers=3

ARG2 x3

udef q rel
LBL h12
ARG0 x10
RSTR h13
BODY h14

named rel
LBL h15
ARG0 x10
CARG George

named rel
LBL h31
ARG0 x3
CARG Washington

bear v
LBL h16
ARG0 e2
ARG2 x3

in p
LBL h32
ARG0 e19tense=u

ARG1 e2
ARG2 x18

proper q rel
LBL h20
ARG0 x18
RSTR h21
BODY h22

named rel
LBL h23

ARG0 x18num=sg
pers=3

CARG Virginia

HCONS {h4 qeq h16,h7 qeq h9,h13 qeq h15,h21 qeq h23}
ING {h9 ing h31,h16 ing h32}

Figure 6: Deep semantics representation (RMRS) by ERG and PET for “George Washington was born in Virginia”.

TEXT George Washington
TOP h100

RELS

ne-person rel
LBL h100
ARG0 x100
CARG George Washington

variant rel
LBL h101
ARG0 x101
CARG Washington | G. Washington
ARG1 x100

surname rel
LBL h111
ARG0 x111
CARG Washington
ARG1 x100

given name rel
LBL h112
ARG0 x112
CARG George
ARG1 x100

ING {h100 ing h101,h100 ing h111,h100 ing h112}

TEXT Virginia
TOP h100

RELS

ne-location rel
LBL h100
ARG0 x100
CARG Virginia

surface rel
LBL h103
ARG0 x103
CARG Virginia
ARG1 x100

prepositions rel
LBL h104
ARG0 x104
CARG in
ARG1 x100

locname rel
LBL h108
ARG0 x108
CARG virginia
ARG1 x100

loctype rel
LBL h110
ARG0 x110
CARG province
ARG1 x100

ING {h100 ing h103,h100 ing h104,h100 ing h108,h100 ing h110}

Figure 7: Shallow RMRS by SProUT for the named entities “George Washington” and “in Virginia”.

the SDL framework. The initial intention was to be able
to declaratively define cascaded SProUT instances, e.g. for
shallow chunk parsing. An application are e.g. cascades of
(shallow) NLP modules and XSL transformations.
Although the described mainly sequential control flow ap-
proach in Heart of Gold for NLP modules by defining a
depth and canonical processing order based upon, aug-
mented with potentially multiple input and multiple output
annotations in each processing step, was flexible enough
for deep-shallow integrations for many languages, it turned
out that some envisaged, RMRS-related shallow processing
applications required additional features such as loops and
parallelism – which SDL supports.
The declarative specification of the architecture is a sin-
gle expression consisting of symbolic module names con-
nected via operators, plus assignment of these symbolic
module names to Java class names, constructor arguments,
and some processing options.
The SdlModule is a generic wrapper plugging SDL sub-
architectures into the Heart of Gold. SdlModule acts like
any other Heart of Gold module in that it takes a (config-
urable) XML annotation as input, and returns an output an-
notation.
The name of the embedded SDL Java class containing the
compiled architecture description (previous section) is part
of the SdlModule configuration. The generated Java code

of the SDL description is compiled and executed at runtime
in the SdlModule code using Java reflection.
ChunkieRMRS (Frank et al., 2004), left branch of the Ger-
man and English workflows in Figure 4, shall now serve as
an example of such a compound, SDL-based component.
Externally, it acts like a single component, but consists of
eight sub-modules in this case (Fig. 8).
A robust, partial semantics representation is generated from
a shallow chunker’s output and morphological analysis by
means of a processing cascade consisting of four SProUT
grammar instances with four interleaved XSLT transforma-
tions. SProUT is used here for intermediate, rule-based
transformation of complex typed feature structures.
The scenario is equally a good example for XSLT-based
annotation integration. Chunker analysis results are in-
cluded in the RMRS to be built through an XSLT stylesheet
using the XPath expression
document($uri)/chunkie/chunks/chunk[

@cstart=$beginspan and @cend=$endspan]

where $uri is a variable containing an annotation iden-
tifier of the form hog://sid/acid/aid as explained in
Section 2.2.

2.9. Applications
A recent application of the middleware for English is hy-
brid processing of scientific papers in the field of language

Heart of Gold NLP architecture instance

input sentence Chunkie

nodeid_cat
SProUT SProUT

rmrs_final
XSLT SProUT XSLT XSLT XSLT

rmrs_phrase reorderfs2rmrsxmlrmrs_lex

RMRS result

pos_filter
SProUT
rmrs_morph

 . . . other NLP components . . .

SDL−defined SProUT−XSLT cascade sub−architecture

Figure 8: SDL sub-architecture for constructing RMRSes from chunks in Heart of Gold

technology (Schäfer et al., 2008). Currently abstracts, later
full papers from the ACL Anthology (Bird et al., 2008) are
extracted from PDF, parsed with Heart of Gold, and so-
called quriples are extracted from the RMRS. Quriples are
query-oriented subject-verb-object-rest tuples that are in-
dexed and made searchable from a GUI application called
the Scientist’s Workbench. 62.5% full parse coverage could
be reached with out-of-the-box components and lingware
resource in a pipeline as described in Section 2.6.
Another application is question answering from structured
knowledge sources such as ontologies or databases. In the
QUETAL system (Frank et al., 2006), the hybridly com-
puted RMRSes of natural language questions, both German
and English, are directly translated to SPARQL ontology
queries of which the results are returned as answers formu-
lated by a template-based generator.
There are various further applications of purely shallow
configuration instances of Heart of Gold, e.g. for infor-
mation extraction on soccer game descriptions (Buitelaar et
al., 2006) and opinion mining.

2.10. Related Work
There is few related work on hybrid NLP architecture.
Most others such as (Grover and Lascarides, 2001) are sys-
tems that integrate specific instances of shallow and deep
tools without having the right or claiming themselves to
form generic architectures. GATE is shallow by design
and (without modification) not suited for abstraction-based
components such as deep parsers.
An interesting approach from a research area unrelated
to language technology by (Löwe and Noga, 2002) bears
some similarity with Heart of Gold. They describe a
generic XML-based, network-enabled middleware archi-
tecture for re-usable components that explicitly makes use
of XSLT as adapter language between components. It has
been proposed as a generic middleware in the spirit of
CORBA, DCOM or EJB. However, it can well be conceived
as a supporting, independent argument that the XML and
XSLT-based middleware approach is a useful design pat-
tern for software architecture.

3. UIMA Integration Scenarios
In this section, we discuss a hypothetical migration of hy-
brid processing in Heart of Gold to UIMA. The cheap way
of migrating to UIMA would be to wrap Heart of Gold con-
figuration instances as a whole in a UIMA TAE (text anal-
ysis engine). But this would probably not add any value.
There is no doubt that components currently integrated in
Heart of Gold could be migrated to UIMA, each in a sepa-
rate TAE, as well as the simple, ’direct’ pipelines for hybrid

processing, as composed TAEs.
Going this way would require more implementation work,
but the result would be (hopefully) analogous configurabil-
ity, then UIMA-enabled. To keep the same flexibility as
in Heart of Gold, the configurable stylesheets for transfor-
mation between components could be put in separate TAEs
or as adapters. At the end, UIMA would benefit from new
(mostly open source) TAEs, and the new paradigm of hy-
brid analysis.
An interesting, but even more implementation-intensive ap-
proach would be separating linguistic resources such as
grammars or lexica specific to components by putting them
behind KSAs (knowledge source adapters). Currently, each
component comes with its own resources and resource for-
mat. There is some synergetic gain forseeable through
KSAs, but there is doubt that this will be worth the effort
for every component.
Another interesting approach would be sharing the type hi-
erarchy among deep and shallow components. Currently,
this is possible for the deep parser PET and the generic
NLP engine SProUT. Both use the same very efficient bit-
vector encoding technique for their type system (Callmeier,
2000). As it is for HPSG, it necessarily supports multi-
ple inheritance, while in the UIMA, only single-inheritance
type systems seem to be supported which would cause a
problem e.g. for the feature structure structure representa-
tion of parse results.
The biggest effort will probably have to be invested in the
CAS (Common Analysis Structure). The lightweight Heart
of Gold proposes and supports RMRS as optional com-
mon format, but is also open to any other standoff for-
mat. Agreements on the formats are only necessary be-
tween connected components.
In UIMA, the I/O of TAEs has to be specified more rigidly
as part of the CAS. In the ideal case, this could result in sys-
tems where the workflow can be computed automatically
(in the ideal case) from a global I/O specification, e.g. by
an application. Currently, this is a manual task in Heart of
Gold.

4. Summary and Outlook
We have presented Heart of Gold and discussed its re-
lation to and possible connection with UIMA. UIMA is
an emerging, industrial-strength platform for application-
oriented processing of unstructured data such as natural lan-
guage text. It has been designed very thoroughly and now
constitutes a rather complex framework. Therefore, mainly
shallow NLP tools have been migrated to UIMA so far.
Heart of Gold is meant mainly as a lightweight research
instrument for flexible experimentation with hybrid, XML-

based NLP component integration and for rapid prototyp-
ing of applications using semantic analyses of text. Re-
search on deep processing and improving it with respect
to robustness through various approaches, also other than
integrating it with shallow tools, e.g. through additional
statistical models and extensions, is a hot research topic.
Now that hybrid processing has turned out promising and
proven successful for a range of applications, UIMA may
help to bring deep and hybrid processing faster to a broader
community and market. And vice versa: UIMA and
UIMA-based applications will benefit from increased anal-
ysis depth gained through hybrid processing.

5. Acknowledgments
This work has been supported by a grant from the German
Federal Ministry of Education and Research (FKZ 01 IW
F02). Thanks to the anonymous reviewers for their valu-
able, concise and encouraging comments.

6. References
Steven Bird, Robert Dale, Bonnie Dorr, Bryan Gibson,

Mark Joseph, Min-Yen Kan, Dongwon Lee, Brett Pow-
ley, Dragomir Radev, and Yee Fan Tan. 2008. The ACL
anthology reference corpus: a reference dataset for bibli-
ographic research. In Proceedings of LREC-2008, Mar-
rakech, Morocco.

Kalina Bontcheva, Valentin Tablan, Diana Maynard, and
Hamish Cunningham. 2004. Evolving GATE to meet
new challenges in language engineering. Natural Lan-
guage Engineering, 10(3-4).

Paul Buitelaar, Thomas Eigner, Greg Gulrajani, Alexander
Schutz, Melanie Siegel, Nicolas Weber, Philipp Cimi-
ano, Günter Ladwig, Matthias Mantel, and Honggang
Zhu. 2006. Generating and visualizing a soccer knowl-
edge base. In Frank Keller and Gabor Proszeky, editors,
Proceedings of the EACL06 Demo Session, Trento, Italy.

Ulrich Callmeier, Andreas Eisele, Ulrich Schäfer, and
Melanie Siegel. 2004. The DeepThought core architec-
ture framework. In Proceedings of LREC-2004, pages
1205–1208, Lisbon, Portugal.

Ulrich Callmeier. 2000. PET – A platform for experimen-
tation with efficient HPSG processing techniques. Natu-
ral Language Engineering, 6(1):99–108.

Jean Carletta, Stefan Evert, Ulrich Heid, Jonathan Kil-
gour, Judy Robertson, and Holger Voormann. 2003.
The NITE XML toolkit: flexible annotation for multi-
modal language data. Behavior Research Methods, In-
struments, and Computers, special issue on Measuring
Behavior, pages 353–363.

James Clark, 1999. XSL Transformations (XSLT). World
Wide Web Consortium, http://w3c.org/TR/xslt.

Ann Copestake, Dan Flickinger, Ivan A. Sag, and Carl Pol-
lard. 2005. Minimal recursion semantics: an introduc-
tion. Journal of Research on Language and Computa-
tion, 3(2–3):281–332.

Ann Copestake. 2003. Report on the design of RMRS.
Technical Report D1.1b, University of Cambridge, Cam-
bridge, UK.

Berthold Crysmann, Anette Frank, Bernd Kiefer, Stefan
Müller, Jakub Piskorski, Ulrich Schäfer, Melanie Siegel,

Hans Uszkoreit, Feiyu Xu, Markus Becker, and Hans-
Ulrich Krieger. 2002. An Integrated Architecture for
Deep and Shallow Processing. In Proceedings of ACL
2002, pages 441–448, Philadelphia, PA.

Hamish Cunningham, Kevin Humphreys, Robert
Gaizauskas, and Yorick Wilks. 1997. Software
infrastructure for natural language processing. In
Proceedings of the 5th Conference on Applied Natural
Language Processing, pages 237–244, San Francisco,
CA, USA. Morgan Kaufmann Publishers Inc.

Witold Drożdżyński, Hans-Ulrich Krieger, Jakub Pisko-
rski, Ulrich Schäfer, and Feiyu Xu. 2004. Shallow
processing with unification and typed feature structures
– foundations and applications. Künstliche Intelligenz,
2004(1):17–23.

David Ferrucci and Adam Lally. 2004. UIMA: an architec-
tural approach to unstructured information processing in
the corporate research environment. Natural Language
Engineering, 10(3-4):327–348.

Anette Frank, Kathrin Spreyer, Witold Drożdżyński, Hans-
Ulrich Krieger, and Ulrich Schäfer. 2004. Constraint-
based RMRS construction from shallow grammars. In
Proceedings of the HPSG-2004 Conference, Center for
Computational Linguistics, Katholieke Universiteit Leu-
ven, pages 393–413. CSLI Publications, Stanford, CA.

Anette Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszko-
reit, Berthold Crysmann, Brigitte Jörg, and Ulrich
Schäfer. 2006. Question answering from structured
knowledge sources. Journal of Applied Logic, pages 20–
48. DOI: 10.1016/j.jal.2005.12.006.

Thilo Götz and Oliver Suhre. 2004. Design and implemen-
tation of the UIMA common analysis system. IBM Sys-
tems Journal, 43(3). DOI: 10.1147/sj.433.0476.

Claire Grover and Alexis Lascarides. 2001. XML-based
data preparation for robust deep parsing. In Proceedings
of ACL/EACL 2001, pages 252–259, Toulouse, France.

Hans-Ulrich Krieger. 2003. SDL – A description language
for building NLP systems. In Proc. of the HLT-NAACL
Workshop on the Software Engineering and Architecture
of Language Technology Systems, pages 84–91.

Welf Löwe and Markus L. Noga. 2002. A lightweight
XML-based middleware architecture. In Proceedings of
IASTED AI 2002, Innsbruck. ACTA Press.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase
Structure Grammar. Studies in Contemporary Linguis-
tics. University of Chicago Press, Chicago.

Ulrich Schäfer, Hans Uszkoreit, Christian Federmann,
Torsten Marek, and Yajing Zhang. 2008. Extracting and
querying relations in scientific papers on language tech-
nology. In Proc. of LREC-2008, Marrakesh, Morocco.

Ulrich Schäfer. 2007. Integrating Deep and Shallow Nat-
ural Language Processing Components – Representa-
tions and Hybrid Architectures. Ph.D. thesis, Faculty of
Mathematics and Computer Science, Saarland Univer-
sity, Saarbrücken, Germany.

Hans Uszkoreit. 2002. New Chances for Deep Linguis-
tic Processing. In Proceedings of COLING 2002, pages
xiv–xxvii, Taipei, Taiwan.

http://w3c.org/TR/xslt

	Introduction
	Heart of Gold
	Design principles
	Session and annotation management
	Wrapped NLP components
	Integration through transformation
	Performance
	Integrating shallow and deep processing
	Output: semantics representation
	Sub-architectures
	Applications
	Related Work

	UIMA Integration Scenarios
	Summary and Outlook
	Acknowledgments
	References

