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Abstract

We present an approach for creating conceptual representations of human-made indoor environments using mobile
robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings
in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The
complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition.
The system also incorporates a linguistic framework that actively supports the map acquisition process, and which
is used for situated dialogue. Finally, we discuss the capabilities of the integrated system.
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1. Introduction

Recently, there has been an increasing interest
in service robots, such as domestic or elderly care
robots, whose aim is to assist people in human-made
environments. In such situations, the robots will no
longer be operated by trained personnel but instead
have to interact with people from the general pub-
lic. Thus, an important challenge lies in facilitating
the communication between robots and humans.

One of the most intuitive and powerful ways for
humans to communicate is spoken language. It is
therefore interesting to design robots that are able
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to speak with people and understand their words
and expressions. If a dialogue between robots and
humans is to be successful, the robots must make
use of the same concepts to refer to things and phe-
nomena as a person would do. For this, the robot
needs to perceive the world similarly to a human.

An important aspect of human-like perception of
the world is the robot’s understanding of the spatial
and functional properties of human-made environ-
ments, while still being able to safely act in it. For
the robot, one of the first tasks will consist in learn-
ing the environment in the same way as a person
does, sharing common concepts like, for instance,
corridor or living room. These terms are used not
only as labels, but as semantic expressions that re-
late them to some complex object or objective sit-
uation. For example, the term living room usually
implies a place with some particular structure, and
which includes objects like a couch or a television
set. Thus representing the space in a way similar to
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humans needs to also account for the way linguistic
references to spatial entities are established in situ-
ated natural language dialogues. In addition, a spa-
tial knowledge representation for robotic assistants
must address the issues involved with safe and reli-
able navigation control, with

The specific problem we focus on in this arti-
cle is how, given innate (possibly human-like) con-
cepts a robot may have of spatial organization, the
robot can autonomously build an internal represen-
tation of the environment by combining these con-
cepts with different low-level sensory systems. This
is done by creating a conceptual representation of
the environment, in which the concepts represent
spatial and functional properties of typical human-
made indoor environments.

In order to meet both aforementioned require-
ments – robust robot control and human-like con-
ceptualization – we propose a spatial representation
that contains maps at different levels of abstrac-
tion. This stepwise abstraction from raw sensor in-
put not only produces maps that are suitable for
reliable robot navigation, but also yields a level of
representation that is similar to a human conceptu-
alization of spatial organization. Furthermore, this
model provides a richer semantic view of an envi-
ronment that permits the robot to do spatial cate-
gorization rather than only instantiation.

Our approach has been integrated into a system
running on a mobile robot. This robot is capable of
conceptual spatial mapping in an indoor environ-
ment, perceiving the world through different typical
sensors like a laser range finder and a camera. More-
over, the robot is endowed with the necessary abili-
ties to conduct a reflected, situated dialogue about
its environment.

The rest of the paper is organized as follows. In
Section 2 we present related work. Section 3 gives an
overview of the components of our robotic system.
After explaining the individual techniques that are
used for evaluating the sensory input in Section 4,
we describe our approach to a multi-layered concep-
tual spatial representation that bridges the gap be-
tween sensory input and human spatial concepts in
Section 5. Then, the general principles of our robot’s
situated dialogue capabilities are introduced in Sec-
tion 6. In Section 7, we discuss the integration of
the complete system on a mobile robot. Finally, con-
cluding remarks are given in Section 8.

2. Related Work

An approach to endowing autonomous robots
with a human-like conceptualization of space inher-
ently needs to take into account research in sensor-
based mapping and localization for robots as well
as findings about human spatial cognition.

Research in cognitive psychology addresses the in-
herently qualitative nature of human spatial knowl-
edge. Backed up by experimental studies, it is nowa-
days generally assumed that humans adopt a par-
tially hierarchical representation of spatial organiza-
tion [1,2]. The basic units of such a qualitative spa-
tial representation are topological regions [3], which
correspond to more or less clearly bounded spatial
areas. The borders may be defined physically, per-
ceptually, or may be purely subjective to the hu-
man. It has been shown that even in natural envi-
ronments without any clear physical or perceptual
boundaries, humans decompose space into topolog-
ical hierarchies by clustering salient landmarks [4].
In our approach, topological areas are the primitive
units of the conceptual map that is used for human-
robot interaction and dialogue.

Aside from the functionality of the cognitive map,
another relevant question from cognitive science is
how people categorize spatial structures. Categories
determine how people can interact with, and lin-
guistically refer to entities in the world. Basic-level
categories represent the most appropriate name for
a thing or an abstract concept. The basic-level cat-
egory of a referent is assumed to provide enough in-
formation to establish equivalence with other mem-
bers of the class, while distinguishing it from non-
members [5,6]. We draw from these notions when
categorizing the spatial areas in the robot’s concep-
tual map. We are specifically concerned with deter-
mining appropriate properties that allow a robot to
both successfully refer to spatial entities in a situ-
ated dialogue between the robot and its user, and
meaningfully act in its environment.

There are different cognitively inspired ap-
proaches to robot navigation. These approaches
need not necessarily rely on an exact global self-
localization, but rather require the execution of
a sequence of strictly local, well-defined behav-
iors in order to iteratively reach a target position.
Kuipers [7] presents the Spatial Semantic Hierarchy
(SSH). Alternatively, the Route Graph model is in-
troduced by Krieg-Brückner et al. [8]. Both theories
propose a cognitively inspired multi-layered repre-
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sentation of the map in the head, which is at the
same time suitable for robot navigation. Their cen-
tral layer of abstraction is the topological map. Our
approach differs in that it provides an additional
abstraction layer that can be used for categorization
of topological entities.

Recently, a number of methods originating in
robotics research have been presented that con-
struct multi-layered environment models. These
layers range from metric sensor-based maps to ab-
stract conceptual maps that take into account infor-
mation about objects acquired through computer
vision methods. Vasudevan et al. [9] suggest a hier-
archical probabilistic representation of space based
on objects. The work by Galindo et al. [10] presents
an approach containing two parallel hierarchies,
spatial and conceptual, connected through anchor-
ing. Inference about places is based on objects
found in them. Furthermore, the Hybrid Spatial Se-
mantic Hierarchy (HSSH), introduced by Beeson et
al. [11], allows a mobile robot to describe the world
using different representations, each with its own
ontology. Compared to these approaches our sys-
tem puts more emphasis on user interaction, both
for collecting knowledge about the world and for
communicating the robot’s knowledge to its user.
Moreover, our conceptual spatial representation is
constructed through fusion of acquired, asserted,
and both inferred and innate knowledge.

Additionally, several approaches on mobile
robotics extend metric maps of indoor environ-
ments with semantic information. The work by
Diosi et al. [12] creates a metric map through a
guided tour. The map is then segmented according
to the labels given by the instructor. Martinez Mo-
zos et al. [13] extract a topological semantic map
from a metric one using supervised learning. Alter-
natively, Friedman et al. [14] use Voronoi Random
Fields for extracting the topologies. In our system
we use a similar approach to [13] for semantic place
classification.

Moreover, a number of systems have been imple-
mented that permit a robot to interact with humans
in their environment. Rhino [15] and Robox [16]
are robots that work as tour-guides in museums.
Both robots rely on an accurate metric representa-
tion of the environment and use limited dialogue to
communicate with people. Examples of robots with
more elaborate dialogue capabilities are RoboVie
[17], BIRON [18], Godot [19], WITAS [20] and Mel
[21]. BIRON is endowed with a system that inte-
grates spoken dialogue and visual localization ca-

pabilities on a robotic platform. This system differs
from ours in the degree to which conceptual spatial
knowledge and linguistic meaning are grounded in,
and contribute to, situation awareness. In contrast,
in our system information from dialogue- and sit-
uated contexts can be combined during processing
utterances [22]. Furthermore, whereas RoboVie and
BIRON use finite state machines to model dialogue
behavior, we combine information states [23], like
Godot, together with a task-oriented perspective, as
WITAS or Mel.

In [24] we present the cognitive architecture of our
robotic system and give details on its dialogue ca-
pabilities. We furthermore discuss how these com-
ponents are used for interactive map acquisition.
Complementing this work the present article focuses
on our method for representing the environment on
several levels of abstraction. Details about the com-
puter vision algorithms used for object detection,
about the processing of sensory input from a laser
scanner, and about the principles of knowledge pro-
cessing in the conceptual map layer are given.

3. System Overview

Following research in spatial cognition and quali-
tative spatial reasoning on the one hand, and in mo-
bile robotics and artificial intelligence on the other
hand, we propose a spatial representation for indoor
mobile robots that is divided into layers. These lay-
ers represent different levels of abstraction from sen-
sory input to human-like spatial concepts.

This multi-layered spatial representation is the
centerpiece of our integrated robotic system. It is
created using information coming from different
modalities, as shown in Figure 1. The individual
modalities range from low level robot control and
perception modules to a communication subsys-
tem for spoken dialogue with the user. There are
three main subsystems involved in constructing,
maintaining, and using the spatial representation:
the perception subsystem for evaluation of sensory
input, the communication subsystem for situated
spoken dialog, and the subsystem for multi-layered
conceptual spatial mapping that bridges the gap
between sensor-based maps and a human-like spa-
tial representation. The main techniques used in the
perception and communication subsystems and the
structure of the multi-layered spatial representation
that sits at the core of our system are explained in
more detail in the following sections.
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Fig. 1. Overview of the components of our robotic system.

4. Perception

The perception subsystem gathers information
from the laser range scanner and from a camera.
Different techniques are used for evaluation of the
sensory input. The laser data is processed and used
to create the low level layers of the spatial represen-
tation. At the same time the input from the laser
scanner is used by a component for detecting and
following people [25]. Finally, the images acquired
by the camera are analyzed by a computer vision
component for object recognition.

4.1. Simultaneous Localization and Mapping

To reach a high level of autonomy the robot needs
the ability to build a map of its environment that can
be used to safely navigate and stay reliably localized.
To this end we use the Simultaneous Localization
and Mapping (SLAM) technique described in [26].
In our system the SLAM module extracts geomet-
ric primitives from laser range scans and applies an
Extended Kalman Filter (EKF) framework for the
integration of feature measurements. The geometric
features used in our approach are lines, which typ-
ically correspond to walls and other straight struc-
tures that that appear as a line segment at the height
of the laser scanner. Since walls are in most cases
static, these invariant features of the environment
are used to keep the robot localized. The line fea-

Fig. 2. The SLAM module creates a metric line map repre-
senting walls and other straight surfaces in the environment.

tures are stored in a global metric map with an ab-
solute frame of reference. Figure 2 shows an example
of a line map created using this method.

4.2. Place Information

Apart from line features, i.e. walls, other features
can be derived from the laser range data. These fea-
tures are useful to semantically interpret the posi-
tion at which they were detected. In our approach a
laser scan can be semantically interpreted as belong-
ing to one of three place classes: doorway, corridor,
or room.

Doorways indicate the transition between differ-
ent spatial regions. They are detected and added
whenever the robot passes through an opening of
door width. The width of the opening is selected so
that it agrees with standard doorways in the envi-
ronment. Information about the door opening, such
as width and orientation, is stored along with the de-
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Fig. 3. Examples of features generated from laser data,
namely the average distance between two consecutive beams,
the perimeter of the area covered by a scan, and the major
axis of the ellipse that approximates the polygon described
by the scan. Here, the laser beams cover a 360o field of view.

tected position of the doorway. A more complex door
model as in [27,28] would allow more robust door de-
tection but also puts constraints on how doors have
to look to be recognized. Our only model assump-
tion is that the door is a narrow opening which the
robot passes through but we make no assumptions
about having a swinging or sliding door leaf, hav-
ing some special structure around the door, for ex-
ample. This is important considerations for a robot
that has to operate in different environments. An al-
ternative would be to use a learning approach such
as in [29] where both visual features and the motion
of the door is taken into account.

Corridors and rooms are classified according to
the laser observation that the robot takes at that lo-
cation. The main idea of this approach is to extract
simple geometrical features from the laser scans and
their polygonal approximation. All features are ro-
tational invariant to make the classification of a pose
dependent only on the (x, y)-position of the robot
and not of its orientation. Examples for typical fea-
tures are shown in Figure 3. Features are then rep-
resented by weak hypotheses that are boosted into
a strong classifier as presented in [30].

This approach is supervised, which means that the
robot must be first trained in an indoor environment
containing rooms and corridors. However, as we will
see later, the training environment can be a different
one than where the classifier is used, as it is able to
generalize quite well.

4.3. Object Recognition

Objects play an integral role in the semantic map
presented in this paper, as the information of recog-
nized objects is used for inferring subconcepts (e.g.
“kitchen” or “living room”) for rooms in the envi-
ronment.

Object recognition has been and still is a very ac-
tive area of research. Recently, the so called Scale
Invariant Feature Transform or SIFT [31] was pre-

Fig. 4. Two of the training images for object recognition

sented. It has been shown to give good results for ob-
ject recognition. We have investigated two slightly
different methods for recognition of objects.

In the first method, SIFT features are extracted
from all training images and put in one common KD-
tree. Each SIFT feature is given a label that refers
back to from what object it comes. During recogni-
tion, SIFT features are extracted from the new im-
ages. Each feature is matched to all training images
at once using the KD-tree to perform fast matching.
Each match with a feature in the KD-tree represents
one vote for a certain object, namely the one con-
tributing the corresponding SIFT feature. The out-
put of this initial matching step is the list of objects
that accumulated the most votes. In the second step
we try to verify a match using the standard SIFT
matching algorithm [31] against this list of most
likely objects. The initial step allows us to prune
the search space in order to avoid having to perform
matching against all objects in the database. As we
use a low resolution image (320 x 240 pixels) we are
limited to using rather large objects, like the TV-set
and the flower from Figure 4. Also note that since
we do not segment the objects and thus do not tell
the system what is foreground and background in
the training image we are actually performing im-
age recognition rather than object recognition. This
means that unless the object in question is dominant
enough in the image the system might still recognize
the scene as that object even without it.

In an attempt to allow for use of smaller objects,
like cups, books, etc we applied a second method
which is based on the ideas presented in [32]. One of
the key points here is that object recognition, when
performed on a mobile platform, actually should be
thought of as two separate processes, object detec-
tion and object recognition. The first step consists
in finding out where the objects are. In a second
step, the identity of the objects is verified. As reli-
able recognition of small objects at typical indoor
distances (2–3m) is not possible with the low reso-
lution images, we also rely on the use of zoom. Fig-
ure 5 shows the type of training image used in this
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Fig. 5. The training image followed by an example of how
zooming allows for a closer look of the object.

Fig. 6. Image and the corresponding vote matrix from RFCH
that guides the zooming.

approach along with a sequence of more and more
zoomed in images of the same object.

To guide the search, we use an attention mech-
anism based on receptive field cooccurrence his-
tograms (RFCH) [33]. RFCH provides us with a
vote matrix for each object we search for. This vote
matrix tells us where in the image the correspond-
ing object is likely to be found, if at all. Figure 6
shows an example of a test image and the corre-
sponding vote matrix when looking for this object.
The lighter the color the higher the likelihood of a
match. A more detailed description of this system
can be found in [34].

With this method we can detect even quite small
objects at a relatively long distance. The main prob-
lem with the method is that it is rather slow in
its current form. The time to search a scene scales
roughly linearly with the number of objects in the
database. One improvement to this would be to use
top-down information to cut the number of objects
to search for. For example, if we know that we are in
a living room we do not have to search for a coffee
machine.

5. Multi-Layered Spatial Representation

The sensors that a robot has are very different
from the human sensory modalities. Yet if a robot
is to act in a human-populated environment, and to
interact with users that are not expert roboticists,
it needs to understand its surrounds in terms of hu-
man spatial concepts. We propose a layered model
of space at different levels of abstraction that range
from low-level metric maps for robot localization
and navigation to a conceptual layer that provides
a human-like decomposition and categorization of
space. Fig. 7 depicts the main layers of the concep-
tual spatial representation.

The lower layers of our model are derived from
sensor input. Different methods are used to gradu-
ally construct more abstract representations. On the
highest level of abstraction, we regard topological re-
gions and spatially situated objects as the primitive
entities of a spatial conceptualization that is com-
patible with human environment models. In order
for a robot to meaningfully act in, and talk about,
an environment, it must be able to assign human
categories to spatial entities. Our work rests on the
assumption that the basic-level categories of spatial
entities in an environment are determined by the ac-
tions they afford. Many types of rooms are designed
in a way that their structure and spatial layout af-
ford specific actions, such as corridors, or staircases.
Other types of rooms afford more complex actions.
These are in most cases provided by objects that are
located there. For instance, the concept living room
applies to rooms that are suited for resting. Having a
rest, in turn, can be afforded by certain objects, such
as couches or TV sets. We thus conclude that be-
sides basic geometric properties, such as shape and
layout, the objects that are located in a room are
a reliable basis for appropriately categorizing that
room.

Below, the individual layers of our spatial repre-
sentation will be addressed more closely.

5.1. Metric Map

At the lowest layer of our spatial model, we have a
metric map. In this map, lines are the basic primitive
to represent the boundaries of open space. The met-
ric line map supports self-localization of the robot.
It is maintained and used by the SLAM component,
as described in Section 4.1).

As can be seen in Figure 2, the line based metric

6



navigation
graph

Multi-Layered Conceptual Spatial Map

topological
map

2

1

3
4

conceptual
map

Area

Room Corridor

Office

2 31

Kitchen

4

M
a
p
p
i
n
g

R
e
a
s
o
n
i
n
g

metric
line map
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Fig. 8. The navigation map overlayed on the metric map.
The navigation map is visually represented by the stars.
Different colors represent different areas separated by doors,
which are marked by bigger red stars.

map gives a rather sparse description of the envi-
ronment, not sufficient to fully support navigation
actions. In comparison to an occupancy grid repre-
sentation [35], the line based map does not provide
a description of the free space but only the part of
the space that can be described by lines. Moreover,
since the global co-ordinate system of the metric
map is purely internal to the robot and since humans
are not able to easily (i.e. without additional tools)
evaluate quantitative spatial descriptions, the met-
ric map alone does not provide a suitable common
ground for human-robot dialogues.

5.2. Navigation Graph

The next layer of our representation is composed
of a navigation graph, which establishes a model
of free space and its connectivity, i.e. reachability.
It is based on the notion of a roadmap of virtual
free-space markers as described in [36,37]. As the
robot navigates through the environment, a marker
or navigation node is dropped whenever the robot
has traveled a certain distance from the closest ex-
isting node. Nodes are connected following the order
in which they were generated. This order is given by

the trajectory that the robot follows during the map
acquisition process (see Figure 8). The final graph
serves for planning and autonomous navigation in
the already visited part of the environment.

It is also in the navigation graph that the robot’s
spatial representation is augmented with semantic
environment information. This is encoded by assign-
ing navigation nodes one of three classes which can
be considered to be present in every indoor environ-
ment. The classes are room, corridor, and doorway.

The approach presented in Section 4.2 for seman-
tic classification assigns a label (corridor or room) to
each pose of the robot during a trajectory. However,
we are interested in classifying navigation nodes,
which are dropped only when the robot has moved
a certain distance (1 meter in our case). Classifying
only the exact location of the node into one class
will ignore previous information about the labels of
the poses leading to the mark. To use this informa-
tion, we store the classification of the last N poses
of the robot in a short term memory. This label his-
tory will be used to classify the node using a major-
ity vote approach. In our experiments we obtained
a significant improvement when using this approach
for node classification.

Objects detected by the computer vision compo-
nent are also stored on this level of the map. They
are associated with the navigation node that is clos-
est to their estimated metric position.

5.3. Topological Map

The topological map divides the set of nodes in
the navigation graph into areas. An area consists of
a set of interconnected nodes which are separated
by a node classified as a doorway. In Figure 8, the
topological segmentation is represented by the col-
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oring of the nodes. This layer of abstraction corre-
sponds to a human-like qualitative segmentation of
an indoor space into distinct regions. In this view,
the exact shape and boundaries of an area, as rep-
resented in the lower map layers, are abstracted to
a coarse categorical distinction between rooms and
corridors. In order to determine the category of an
area, we take a majority vote approach of the clas-
sification results of all nodes in the given area. The
topological areas, along with detected objects (Sec-
tion 4.3), are passed on to the conceptual map, where
they are represented as instances of their respective
categories.

5.4. Conceptual Map

On the highest level of abstraction, our system is
endowed with a conceptual map. The nature of this
map is two-fold. For one, it contains an innate con-
ceptual ontology that defines abstract categories for
rooms and objects and how they are related. Second,
information extracted from sensor data and given
through situated dialogue about the actual environ-
ment is represented as tokens that instantiate ab-
stract concepts. This division corresponds to the dis-
tinction between a TBox (terminological knowledge,
i.e. concepts) and an ABox (assertional knowledge,
i.e. instances) in traditional knowledge representa-
tion systems.

The conceptual knowledge is encoded in an OWL-
DL ontology of an indoor office environment (see
Figure 9). It describes taxonomies (is-a relations) of
room types and typical objects found in an office en-
vironment. In line with the way humans categorize
space, our ontology defines room types on the basis
of the objects they contain – represented by has-a
relations. The conceptual ontology in the TBox con-
stitutes innate knowledge, since it has been prede-
fined and cannot be changed during run-time. How-
ever, while the robot operates in its environment, the
sensors constantly acquire new information, which is
then represented as instance knowledge in the ABox.
Through situated dialogue the robot can obtain as-
serted knowledge from its user. A description logic
reasoner can then fuse this knowledge in order to in-
fer new knowledge about the world that is neither
given verbally nor actively perceived.
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Fig. 9. Illustration of a part of the commonsense ontology of
an indoor office environment. Edges with solid arrow heads
denote the taxonomical ‘is-a’ relation.
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Fig. 10. Combining different types of knowledge in the con-
ceptual map.

5.5. Spatial Knowledge Processing

Below, we describe the information processing
principles for these individual types of knowledge
in more detail. Figure 10 shows an example of how
spatial knowledge from different sources converges
in the conceptual map.

5.5.1. Acquired Knowledge
While the robot moves around constructing the

metric and topological maps, our system derives
higher-level knowledge from the information in these
layers. Each topological area, for instance, is repre-
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sented in the conceptual map as an ontological in-
stance of the category area. Furthermore, as soon as
reliable information about the semantic classifica-
tion of an area is available (cf. Section 5.3), this is re-
flected in the conceptual map by assigning the area’s
instance a more specific category (room or corri-
dor). Information about recognized objects stem-
ming from the vision subsystem (cf. Section 4.3) is
also represented in the conceptual map. Whenever a
new object in the environment is recognized, a new
instance of the object’s type, e.g. couch, is added to
the ABox. Moreover, the object’s instance and the
instance of the area where the object is located are
related via the hasObject relation.

5.5.2. Asserted Knowledge
During a guided tour with the robot, the user typ-

ically names areas and certain objects that he or she
believes to be relevant for the robot. Typical asser-
tions in a guided tour include “You are in the cor-
ridor,” or “This is the charging station.” Any such
assertion is stored in the conceptual map, either by
specifying the type of the current area or by creat-
ing a new object instance of the asserted type and
linking it to the area instance with the hasObject
relation.

5.5.3. Innate Conceptual Knowledge
We have handcrafted an ontology (Figure 9) that

models conceptual commonsense knowledge about
an indoor office environment. On the top level of the
conceptual taxonomy, there are the two general con-
cepts area and object. The concept area can be fur-
ther partitioned into the concepts room and corri-
dor. The basic-level categories, i.e. the subconcepts
of room, are characterized by the object instances
that are found there, as represented by the hasOb-
ject relation.

5.5.4. Inferred Knowledge
Based on the knowledge representation in the on-

tology, our system uses a description-logic based rea-
soning software that allows us to move beyond a
pure labeling of areas. Combining and evaluating
acquired and asserted knowledge within the context
of the innate conceptual ontology, the reasoner can
infer more specific categories for known areas. For
example, combining the acquired information that
a given topological area is classified as room and
contains a couch, with the innate conceptual knowl-
edge given in our commonsense ontology, it can be

inferred that this area can be categorized as being
an instance of living room. Conversely, if an area is
classified as corridor and the user shows the robot
a charging station in that area, no further inference
can be drawn. The most specific category the area
instantiates will still be corridor.

Our method allows for multiple possible classifi-
cations of any area because the main purpose of the
reasoning mechanisms in our system is to facilitate
human-robot interaction. The way people refer to
the same room can differ from situation to situation
and from speaker to speaker [38]. For example, what
one speaker prefers to call the kitchen might be re-
ferred to as the recreation room by another person.
Since our aim is to be able to resolve all such possi-
ble referring expressions, our method supports am-
biguous classifications of areas.

6. Situated Dialogue

In this section, we discuss the functionality which
enables a robot to carry out a natural language di-
alogue with a human.

A core characteristic of our approach is that the
robot builds up a meaning representation for each
utterance. The robot interprets it against the dia-
logue context, relating it to previously mentioned
objects and events, and to previous utterances in
terms of “speech acts” (dialogue moves). Because
dialogues in human-robot interaction are inherently
situated, the robot also tries to ground the utter-
ance content in the situated context – including
past and current visuo-spatial contexts (reification
of visuo-spatial references), and future contexts (no-
tably, planned events and states). Below we high-
light several aspects; for more detail, we refer the
reader to [22,24].

Speech recognition yields a string-based repre-
sentation for spoken input, which is subsequently
parsed using the Combinatory Categorial Grammar
(CCG) parser of OpenCCG 1 [39] . The parser an-
alyzes the utterance syntactically and derives a se-
mantic representation [40]. The semantic represen-
tation is a logical form in which propositions are as-
signed ontologically sorts, and related along typed
relations (e.g. “Location”, “Actor”).

The logical forms yielded by the parser are in-
terpreted further, both within the dialogue system
and against information about the situated context.

1 http://openccg.sourceforge.net
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Objects and events in the logical form are related
against the preceding context (co-reference resolu-
tion), as is the dialogue move of the utterance. The
resulting dialogue model is similar to that proposed
in [41,19]. The robot also builds up a temporal-
aspectual interpretation for events, relating it to pre-
ceding events in terms of how they temporally and
causally follow on each other [42]. In combination
with the dialogue model, this is closely related to
[21].

7. System Integration

Our approach has been implemented as an inte-
grated system, running on an ActivMedia People-
Bot mobile robot platform. In this section, we dis-
cuss the integration of the components presented in
the earlier sections. We focus on what integration
brings us in terms of achieving a better understand-
ing of sensory signals – i.e. one that is more complete
and more appropriate for interacting with humans.
Particularly, given that sensory information usually
only provides a partial, potentially noisy view of the
environment.

For perceiving the environment, the robot is
equipped with a SICK laser range finder, and a
pan-tilt-zoom camera (cf. Figure 1). As discussed
in Section 4, the laser scanner is used for the met-
ric map creation, for the semantic classification of
places, and for people following. The PTZ camera
is used for object detection. The software for con-
trolling the robot, the individual components that
contribute to the multi-layered spatial map, and the
dialogue system run on a number of computers, in-
cluding an on-board machine, interconnected using
a wireless network. Additionally a speech recogni-
tion software connected to a bluetooth headset, and
a text-to-speech engine connected to the robot’s
built-in speakers are used for spoken interaction
between the robot and its user.

Below we discuss system integration and its
effects on complementation and robustness, illus-
trated on several core capabilities in a “home tour
scenario” [43,44]. During a guided tour, a user takes
the robot around the house. The advantage of such
a scenario is that the user can tell the robot where
specific rooms and objects are, or instruct the robot
to perform particular tasks. The robot concurrently,
incrementally builds up an internal representation
of the spatial organization of the environment. For
this, the robot needs to be able to recognize areas,

and boundaries between areas to build up organiza-
tion. But it also needs to overcome the drawbacks
that such a scenario brings. One obvious problem is
for instance that the user constantly occupies large
parts of the robot’s field of view while guiding the
robot around.

For each of these aspects, we present how the func-
tionalities of the individual components interact to
give rise to these capabilities, and how their integra-
tion improves robustness and completeness of inter-
pretation.

7.1. Place Classification

First of all, in such a scenario where the robot con-
tinuously interacts with a user and is facing her/him
most of the time, the information content of the laser
sensor input suffers as the user occupies a large part
of the field of view. Secondly, the original approach
to laser-based place classification presented in [30]
relies on laser observations covering a 360o field of
view. However, our robot is equipped with only one
laser covering 180o in front of the robot.

The first step we take to solving these problems is
to simulate a rear-view laser scanner by ray tracing
in a local occupancy grid. When classifying a pose
of the robot during a trajectory, we simulate the
rear beams by determining the end points of laser
beams that hit some occupied cell in the occupancy
grid. For each simulated beam that does not hit any
object in the occupany grid, we calculate its value
using an interpolation between the values of their
(known) neighboring beams at both sides.

The second step we take in order to achieve ro-
bust place classifications even while interacting with
a user is to not try to classify every possible geomet-
ric coordinate inside an area, but instead to classify
only the nodes in the navigation graph. For deter-
mining a robust classification of a navigation node
we compute the majority vote of consecutive classi-
fications of that node, as described in Section 5.2.

In order to test our method for classification of
rooms and corridors, we used trajectories in different
floors of the CAS building at KTH for training and
evaluating the classifier. To train our classifier we
used a trajectory of the 6th floor (Figure 11). The
robot was then moved to the 7th floor of the same
building, which contains a similar structure. In this
new floor, we classified two different trajectories in
opposite directions. The classification rates of all the
poses of the robot during its movement ranged from
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Corridor Room

Fig. 11. Trajectory followed by the robot to train the classifier
for distinguishing between corridor and room. The different
places are depicted with distinct colors.

93.18% to 96.8%.

7.2. Object Recognition

The user’s presence not only disturbs the laser-
based place classification, but also the camera-
based object recognition. In our case, the camera
is mounted on a pan-tilt unit and could have been
used to actively look for objects and build a met-
ric map using visual information while following
the user. However, most of the time the camera
only sees the user and not the environment. There-
fore, we opted for giving the user the possibility to
instruct the robot to “have a look around.”

For object recognition we tested the two different
methods presented in Section 4.3. The first one uses
unsegmented images and allows the system to ex-
pand its database of objects in a much easier way. It
is a matter of making sure that the object is in the
field of view of the camera and acquire an image. The
problem is that depending on how close the robot
gets to the objects the background might dominate
the image. In that case what the robot recognizes
is not the human concept of an object but also its
neighboring information.

Additionally, we carried out experiments using
the second approach of Section 4.3, which uses seg-
mented images. This makes the acquisition of knowl-
edge about new objects more complicated. In [32], it
is suggested to use image differencing combined with
morphological operations to segment the image. For
this to work the user has to present the robot with
two images, one with and one without the objects.
While this might be feasible for small objects, it is
clearly a problem for objects like a TV.

7.3. Conceptualizing Areas

What does it mean to recognize an area? What
defines an area? In SLAM-based approaches, the
notion of area roughly corresponds to an “enclosed
space.” Observed linear structures are interpreted
as walls, delineating an area. This yields a purely ge-
ometrical interpretation of the notion of area, based
on its perceivable physical boundaries. Doorways are
regarded as transitions between distinct topological
areas. Although this is already a suitable level of
abstraction, it is not yet sufficient for discriminat-
ing between areas. Another observation from human
spatial cognition is that humans tend to categorize
space not only geometrically, but also functionally.
This functionality is often a result of the different
objects inside an area, like home appliances or furni-
ture, that afford these functions. In order to achieve
a functional-geometric interpretation, a robot thus
has to integrate its knowledge about distinct topo-
logical areas with its knowledge about the presence
of certain objects.

Figure 12 illustrates the way in which the modules
in our system (cf. Section 4) contribute to the indi-
vidual layers of our conceptual spatial map (cf. Sec-
tion 5), and how additional pieces of knowledge are
combined to achieve a more complete conceptual-
ization of space.

In our experiment [44], this is illustrated when
the user repeatedly asks the robot about where it
thinks it is. At first, the only thing the robot knows
is that the current area is classified as room, and an-
swers “I am in a room.” However, after the robot
has recognized the couch and the TV set in the cur-
rent room, its ontological reasoning capabilities can
infer the appropriate subconcept living room. Hence
the robot can produce an answer that contains more
information: “I am in the living room.”

Our approach thus not only creates a qualitative
representation of space that is similar to the way
humans perceive it. It also serves as a basis for suc-
cessful dialogues by allowing the robot to sucessfully
refer to spatial entities using natural language ex-
pressions [45].

Finally, experiments highlighted the need for non-
monotonic reasoning, that is, knowledge must not
be written in stone. As erroneous acquired or as-
serted knowledge will otherwise lead to irrecoverable
errors in inferred knowledge. One solution to this
would be to not maintain spatial conceptual knowl-
edge in the ABox of the monotonic DL reasoner. In-
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Fig. 12. Process diagram showing convergence on consistent interpretation across levels of spatial interpretation.

stead only the most recent, ideally reliable and sta-
ble, knowledge about area classes and object posi-
tions should be propagated to the conceptual map
when it is needed, e.g. when generating or resolving
linguistic referring expressions.

7.4. Recognizing Transitions Between Areas

Boundaries segment space into different areas, i.e.
different topological regions. Gateways, like doors,
are a typical type of transitional boundary.

The door detector used in this work finds doors
by looking for narrow openings in the laser data, as
explained in Section 4.2. We tested this approach
and it produced some false positives, as there are
many gaps in the environment with similar width as
doorways. To counteract this, we only accept open-
ing that the robot passes through itself. This signifi-
cantly reduces the number of false positives. We ad-
ditionally used the method presented in [46,24] for
clarification dialogue to handle the few false doors
that are still found. The disadvantage with this door
detection scheme is that the robot is unable to de-
tect doors where it has not traveled so far. In some
cases it would be of value to be able to detect doors
further away to allow reasoning about unexplored
space. An example of this is when the user refers to
a room when walking down the corridor with the
robot as explained in [38].

Boundaries need not be explicit, though. The
transition from a hall into a corridor may just be
indicated by a “pronounced” difference in geomet-
rical shape (rectangular to elongated), whereas the
segmentation of e.g. a living kitchen into dining-
and cooking areas is based purely on functional
aspects. In our presented system we only partition
navigation nodes into areas based on detected door-
ways. This is an obvious disadvantage in the men-

tioned cases where a space enclosed by walls and
doors itself can be considred to consist of several,
functionally and/or geometrically distinct, regions.
We currently investigate how the knowledge about
present objects and their alignment, along with
the shift in probability distributions of the laser
based place classifier along a trajectory can serve as
additional cues for segmenting space into regions.

8. Conclusions

We presented an integrated approach for creat-
ing conceptual representations of human-made envi-
ronments where the concepts represent spatial and
functional properties of typical office indoor envi-
ronments. Our representation is based on multiple
maps at different levels of abstraction. The informa-
tion needed for each level was originated from dif-
ferent modalities, including a laser sensor, a camera,
and a natural language processing system. The com-
plete system was integrated and tested on a mobile
robot including a framework for spoken interaction.
The experiments show that our system is able to
provide a high level of human-robot communication
and conceptual representation.
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