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Abstract: The paper presents an HRI architecture for human-augmented mapping, which has been implemented
and tested on an autonomous mobile robotic platform. Through interaction with a human, the robot can augment
its autonomously acquired metric map with qualitative information about locations and objects in the environ-
ment. The system implements various interaction strategies observed in independently performed Wizard-of-Oz
studies. The paper discusses an ontology-based approach to multi-layered conceptual spatial mapping that pro-
vides a common ground for human-robot dialogue. This is achieved by combining acquired knowledge with innate
conceptual commonsense knowledge in order to infer new knowledge. The architecture bridges the gap between
the rich semantic representations of the meaning expressed by verbal utterances on the one hand and the robot’s
internal sensor-based world representation on the other. It is thus possible to establish references to spatial areas
in a situated dialogue between a human and a robot about their environment. The resulting conceptual descrip-
tions represent qualitative knowledge about locations in the environment that can serve as a basis for achieving a

notion of situational awareness.

1. Introduction

More and more robots find their way into environments
where their primary purpose is to interact with humans
to help and solve a variety of service-oriented tasks. Par-
ticularly if such a service robot is mobile, it needs to have
an understanding of the spatial and functional properties
of the environment in which it operates. The problem we
address is how a robot can acquire an understanding of
the environment so that it can autonomously operate in it,
and communicate about it with a human. We present an
architecture that provides the robot with this ability
through a combination of human-robot interaction and
autonomous mapping techniques. It captures various
functions that independently performed Wizard-of-Oz
studies have observed to be necessary for such a system.
Several case studies have been conducted to test and
evaluate the resulting integrated system.

The main issue is how to establish a correspondence be-
tween how a human perceives spatial and functional as-
pects of an environment, and what the robot autono-
mously learns as a map. Most existing approaches to ro-
bot map building, or Simultaneous Localization And
Mapping (SLAM), use a metric representation of space.
Humans, though, have a more qualitative, topological
perspective on spatial organization (McNamara, 1986).
We adopt an approach in which we build a multi-layered
representation of the environment, combining metric
maps and topological graphs (as an abstraction over
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geometrical information), like (Kuipers, 2000). We extend
these representations with conceptual descriptions that
capture aspects of spatial and functional organization.
The robot obtains these descriptions either through inter-
action with a human, or through inference combining its
own observations (I see a coffee machine) with ontological
knowledge (Coffee machines are usually found in kitchens, so
this is likely to be a kitchen!). We store objects in the spatial
representations, and so associate the functionality of a
location with that of the functions of the objects present
there. A core characteristic of our approach is that we
analyze each utterance to obtain a representation of the
meaning it expresses, and how it (syntactically) conveys
that meaning — rather than just doing for example key-
word spotting. This way, we can properly handle the
variety of ways in which people may express assertions,
questions, and commands. Furthermore, having a repre-
sentation of the meaning of the utterance we can combine
it with further inferences over ontologies to obtain a
complete conceptual description of the location or object
being talked about. This way we can ground situated
dialogue in the situational awareness of the robot.

Following (Topp & Christensen, 2005) and (Topp et al.,
2006), we talk about Human-Augmented Mapping (HAM)
to indicate the active role that human-robot interaction
plays in the robot's acquisition of qualitative spatial
knowledge. In §2 we discuss various observations that
independently performed Wizard-of-Oz studies have
made on typical interactions for HAM scenarios, and we
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indicate which types of interactions we will be able to
handle. In §3 we present our approach to multi-layered
conceptual spatial mapping and the mechanisms it uses
to encode knowledge about spatial and functional aspects
of the environment. In §4 we describe the natural lan-
guage processing facilities that enable the robot to con-
duct a situated dialogue with its human user about their
environment. We present the implementation of our ap-
proach in an HRI architecture in §5. In these sections,
examples gathered from sample runs at the German Re-
search Center for Artificial Intelligence (DFKI) illustrate
the way information is processed in our architecture. §6
presents descriptions of the robot’s behavior in test runs
carried out at the Royal Institute of Technology (KTH),
followed by a discussion of our experiences with the sys-
tem in §7. The paper closes with conclusions.

2. Observations on HAM

Various Wizard-of-Oz studies have investigated the na-
ture of human-robot interaction in HAM. (Topp et al,,
2006) discuss a study on how a human presents a familiar
indoor environment to a robot, to teach the robot more
about the spatial organization of that environment. (Shi &
Tenbrink, 2005) study the different types of dialogues
found when a subject interacts with a robot wheelchair
(while being seated in it). Below we discuss several cru-
cial insights these studies yield.

The experimental setup in (Topp et al., 2006) models a
typical guided tour scenario. The human tutor guides the
robot around and names places and objects. One result of
the experiment is the observation that tutors employ
many different strategies to introduce new locations.
Besides naming whole rooms (“this is the kitchen” refer-
ring to the room itself) or specific locations in rooms
(“this is the kitchen” referring to the cooking area), an-
other frequently used strategy was to name specific loca-
tions by the objects found there (“this is the coffee ma-
chine”). Any combination of these individual strategies
could be found during the experiments. Moreover, it has
been found that subjects only name those objects and
locations that they find interesting or relevant, thus per-
sonalizing the representation of the environment that the
robot constructs.

In the study presented in (Shi & Tenbrink, 2005), the sub-
jects are seated in a robot wheelchair and asked to guide
it around using verbal commands. This setup has a major
impact on the data collected. The tutors must use verbal
commands containing deictic references in order to steer
the robot. Since the perspective of the human tutor is
identical to that of the robot, deictic references can be
mapped one-to-one to the robot's frame of reference. One
interesting finding is that people tend to name areas that
are only passed by. This can either happen in a ‘virtual
tour” when giving route directions or in a ‘real guided
tour” (“here to the right of me is the door to the room
with the mailboxes.”). A robust conceptual mapping sys-

tem must therefore be able to handle information about
areas that have not yet been visited.

Next we discuss how we deal with the above findings,
combining information from dialogue and commonsense
knowledge about indoor environments.

3. Spatial Organization

In order for a robot to be able to understand and commu-
nicate about spatial organization, we must close the gap
between the different ways humans and robots conceive
of spatial entities in their environment.

Spatial entities, such as e.g. rooms, areas or floors, are the
units of the spatial organization of an (indoor) environ-
ment. We assume that spatial and functional aspects of
the environment define what the spatial entities are and
how one can refer to these entities in situated dialogue.
We discuss here our approach to representing the spatial
and functional aspects of an environment at multiple lev-
els of abstraction, thus closing this gap. Spatial aspects
cover the organization of an environment in terms of the
geometry, shape and boundaries of connected areas and
gateways that together constitute a conception of free and
reachable space. Functional aspects are higher-order prop-
erties that allow or disallow an embodied agent to per-
form specific actions, such as e.g. passing through a
doorway or preparing a meal. In our current approach,
we associate functional aspects with an area on the basis
of objects present in it. Through dialogue, we can build,
query, and clarify these representations, and we point out
how they are used in carrying out tasks.

Fig. 1. Snapshot of an online visualization that shows an
example of an automatically acquired metric map of a
part of the DFKI language technology lab. It shows line
features detected in the environment (extended to 3D
planes to facilitate viewing) used for SLAM. A navigation
graph of interconnected nodes represents free and rea-
chable space. Large red stars indicate doorways and the
different colouring of the nodes depicts the topological
partitioning of the environment.
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Fig. 2. The three layers of the spatial represention contain-
ing a simplified map of an exemplary situation

3.1 Representing the environment

The spatial organisation of an (indoor) environment is
represented at three levels (Fig. 2).

At the lowest level, we have a metric map (Fig. 1), captur-
ing observed spatial structures in the environment with a
feature-based representation and establishing a notion of
free and reachable space through a navigation graph.
The example of Fig. 2 shows line features, which typically
correspond to walls. Each map primitive (line features
and navigation nodes) is parameterized in world coordi-
nates. A line is for example defined by a start- and an
end-point. The metric map is automatically generated
from sensor data as the robot moves around the envi-
ronment. Using features has several advantages. Firstly,
they give a compact representation, which, secondly, al-
lows for efficient updates. Among the disadvantages, we
find that the map does not explicitly model the free space
of the environment as for example an occupancy-grid
model would. Only structures that fit the model primi-
tives (e.g. lines) will be captured.

We therefore represent the free space and its connectivity
as a navigation graph. When the robot moves around, it
adds nodes to the graph at the robot's current position if
there is not already a node close by in the graph. This

approach is inspired by the notion of ‘free space markers’,
cf. (Newman et al., 2002). Each node is associated with a
coordinate in the reference frame of the metric map and
thus states that the area around that position was free
from obstacles when it was added to the graph. Assum-
ing a mostly static environment, this location is likely to
be free also when revisiting it. When the robot travels
between nodes, edges are added to the graph to connect
the corresponding nodes. We distinguish between two
types of nodes: normal nodes and gateway nodes. The
gateway nodes (large red stars in Fig. 1 and Fig. 2) encode
passages between different areas and typically corre-
spond to doors. In the current implementation, doorways
are detected from the laser range data when passing
through a narrow opening.

As an intermediate level of abstraction, we have a topo-
logical map, which divides the navigation graph into areas
that are delimited by gateway nodes. There is evidence
that humans adopt a topological representation of spatial
organization, cf. (Stevens & Coupe, 1978), (Hirtle & Jon-
ides, 1985), and (McNamara, 1986). The topological layer
of our map can thus be considered a first approximation
of a more humanlike perspective on space.

Fig. 1 shows a real example of a map that the robot has
built. The metric map is represented by the lines, which
have been extended to pseudo-3D walls to indicate that
they typically correspond to walls. The navigation graph
is shown as the connected set of stars. The larger (red)
stars are gateway nodes and, as can be seen, connect dif-
ferent rooms in this case. The grouping of the nodes in
the topological map is illustrated by colouring the nodes.
Each area has its own colour.

Finally, we have a conceptual map at the top level. In this
layer, we store knowledge about names of areas and in-
formation about objects present therein. Through fusion
of acquired (from sensor data) and asserted (given by the
human user) information and innate conceptual knowl-
edge (given in a handcrafted commonsense ontology, cf.
§3.2) a reasoner can infer new, additional knowledge.
This includes inferences over how a room can be verbally
referred to, what kinds of objects to expect in a room, and
ultimately a functional understanding of what can be
done where and why.

3.2 A commonsense ontology of an office environment

Since the robot may have observed only part of an area
and the objects therein, and since, as we already pointed
out in §2, humans do not necessarily convey complete
information about a room, the robot needs to be able to
infer knowledge on the basis of only partial information.
For this, we use knowledge about spatial and functional
properties of an indoor office environment. This concep-
tual knowledge is modeled in a handcrafted common-
sense ontology (Fig. 3). Within this ontology, spatial enti-
ties, i.e. instances of the top-level concept Area, are cate-
gorized on the basis of their spatial and functional pro-
perties. Our system makes use of the approach by (Marti-
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nez Mozos et al., 2005) to categorize areas into Corridor or
Room based on scans obtained from the laser range sensor
in that area, thus considering its spatial aspects. Further
distinctions are then made using functional aspects. The
subconcepts of Room are defined by the instances of Ob-
ject that are found there. This is encoded by the hasObject
relation. If a given instance of Room is related with a spe-
cific instance of Object by an instance of the hasObject rela-
tion, this Room instance fulfills the conditions for being an
instance of the respective specific subconcept of Room.
Based on the knowledge representation in the ontology,
we use description-logics reasoning to infer general na-
mes for rooms, places to look for specific objects, and to
resolve linguistically given references to spatial entities
(cf. §4.4). Asserted knowledge about locations and objects
is derived from structural descriptions of verbal input of
a human tutor originating in the communication subsys-
tem (cf. §4.1). Acquired knowledge is derived from laser
sensor data via the place classifier or from automatically
recognized objects provided by a visual object recognition
subsystem (cf. §5.3).

The simplified representation in Fig. 2 shows an example
of the interplay between innate, asserted, acquired, and
inferred knowledge. The laser-range based classifier as-
signs areal to the concept Room. Through interaction with
the human user, however, the robot has the more specific
information that areal can also be referred to as an ins-
tance of Office. In the next area, area2, the automatic classi-
fication yields the information that it is of type Room. Mo-
reover the camera-based object recognition provides the
information that there is an instance of Coffeemachine in
this area. Using the commonsense knowledge that coffee
machines are usually found in kitchens that is encoded in
our ontology, it can be inferred that area2 also instantiates
the more specific concept Kitchen.

@ hasObject _| LivingroomObject

‘Workbench

@ @ hasObiject

Whiteboard

B> LabObject '% Computer

@ hasObject / o officeObject
Phone

hasObject

Object Oven

KitchenObject Microwave
Cooker

Coffeemachine

Teamaker

Flowerpot

Bookcase

HHGlB

Fig. 3. Commonsense ontology of an office environment.
Unlabeled arrows denote the taxonomical is-a relation.

4. Situated Dialogue

If robots are to enter the everyday lives of ordinary peo-
ple, human-robot interaction should minimize the reluc-
tance that people might have towards autonomous ma-
chines in their environment. Our natural language com-
muniation system accommodates the fact that spoken
interaction, dialogue, is the most intuitive way for humans
to communicate. (Lansdale & Ormerod, 1994) define dia-
logue as a “joint process of communication,” which “in-
volves sharing of information (data, symbols, context)
between two or more parties.” In the context of human-
robot interaction (HRI), (Fong et al., 2003) claim that “dia-
logue, regardless of form, is meaningful only if it is
grounded, i.e. when the symbols used by each party de-
scribe common concepts.” In the previous section, we
have presented our approach to establishing a common
conceptual ground for a human-robot shared environ-
ment. In this section, we will present the linguistic meth-
ods used for natural language dialogue with a robot. We
will also address the role of dialogue for supervised map
acquisition and task execution.

4.1 Deriving the meaning of an utterance

On the basis of a string-based representation that is gen-
erated from spoken input through a speech recognition
software, a Combinatory Categorial Grammar (CCG)
(Steedman & Baldridge, 2003) parser analyzes the utter-
ance syntactically and derives a semantic representation
in the form of a Hybrid Logics Dependency Semantics
(HLDS) logical form, (Kruijff, 2001) and (Baldridge &
Kruijff, 2002). HLDS offers an ontologically richly sorted
relational representation of different sorts of semantic
meaning: propositional content and intention. Complex
logical forms can be differentiated further by the onto-
logical sort of their intention and their propositional con-
tent. Ex. 1-3 show semantic representations of some ut-
terances that would lead to the situation depicted in Fig.
2. Ex. 3 shows the meaning representation for the asser-
tion “This is a bookcase.”

It consists of several, related elementary predicates (EPs).
One type of EP represents a discourse referent as a
proposition with a handle: @pz.ming(bookcase) means that
the referent BI is a physical object, namely a bookcase.
Another type of EP states dependencies between referents
as modal relations, e.g. in Ex. 1 we have @uzregion)(in &
<Dir:Anchor>(L1: location & office)), which means that
discourse referent I1 — an enclosed region — is anchored in
a region L1 being an office. We represent regions explic-
itly to enable later reference to the region using deictic
reference (e.g. “there”). Within each EP we can have se-
mantic features, e.g. the deictic pronoun “this” is charac-
terized as having a visual antecedent that is spatially
nearby (proximal) the speaker. From these semantic rep-
resentations, structural descriptions of the discourse enti-
ties they refer to are constructed. The conceptual map is
then updated with the information encoded in those
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structural descriptions that can be resolved to spatial enti-
ties (Ex. 1) or objects in the environment (Ex. 3).

(1) “We are in the office.”
@(Blzstate)(be

& <Mood>indicative

& <Restr>(W1: person & we)

& <Scope>(I1: region & in

& <Dir: Anchor>(L1: location & office

& <Delimitation>unique
& <Number>singular)))

(2) “Follow me!”
@(F3:action}(follow
& <Mood>imperative
& <Actor>(R8: hearer & robot)
& <Patient>(12: speaker & I))

(3) “This is a bookcase.”
@(Bs:state)(be

& <Mood>indicative

& <Restr>(T1: thing & this
& <VisualContext>(O1: visualobject

& <Proximity>proximal))

& <Scope>(C1: thing & bookcase
& <Delimitation>existential
& <Number>singular)))

A structural description is an HLDS logical form of a
nominal phrase - i.e. a syntactic constituent whose head
is a noun or a pronoun - that ascribes properties to a dis-
course referent. The following examples show the struc-
tural descriptions that can be derived from the complex
logical forms of Ex. 1 and Ex. 3.

(4) @(Ll:localion)(office
& <Delimitation>unique & <Number>singular)

(5) @crmingi(bookcase
& <Delimitation>existential& <Number>singular)

In dialogue analysis, the linguistic meaning of an utter-
ance is related to the current dialogue context, in terms of
how it rhetorically and referentially relates to preceding
utterances. The rhetorical relation of an utterance indicates
how the utterance extends the current discourse — for
example, we try to relate an answer to a question that
preceded it, to represent what the answer is an answer to.
(This plays an important role in handling e.g. clarification
questions.) The referential relations of an utterance indi-
cate how contextual references like definite noun-phrases
(“the box”) and anaphora (“it”) can be related to objects
that have been mentioned in preceding utterances. After
the utterance is related to the preceding context in this
way, an updated model of the dialogue context is ob-
tained in the sense of e.g. (Asher & Lascarides, 2003) and
(Bos et al., 2003).

4.2 Mediation of meaning

There are several reasons for why we may want to relate
content across different modalities in an HRI architecture.
One obvious reason is symbol grounding, i.e. the connec-
tion of symbolic representations with perceptual or mo-
toric interpretations of a situation, to achieve a situated
understanding of higher-level cognitive (symbolic) proc-
esses. Achieving such an understanding is an active proc-
ess. We do not only use the fusion of different content to
establish possible connections, but also want it to aid in
disambiguating and completing information where and
when needed. Finally, relating content may actively trig-
ger processes in a modality (e.g. executing a motor action
on the basis of a spoken command) or prime how infor-
mation is processed (e.g. attentional priming). Altogether
this means that we cannot just see content as a symbolic
representation without further qualification. We consider
content as a tuple that provides a characterization in
terms of intention, propositional content, and a truth-value.
An intention reflects why the content is provided to other
modalities in the architecture. The intention influences
what a connection with content in other modalities is
expected to yield.

Fig. 4 illustrates an ontology of the types of intentions
(top figure) we consider here. The ontology is inspired by
theories of speech acts ((Searle, 1969) and (Core & Allen,
1997)). We discern commands, assertions, and questions.
(asser-
tion.attributive). A question can inquire after a fact (ques-

An  assertion attributes a characteristic
tion.factual), whether a particular state is true (ques-
tion.polar), or whether an agent is capable of performing a
certain act (question.ability). The intention types in Fig. 4
(top) provide a high-level characterization of the purpose
of connecting the content to information in other modali-
ties. When we combine them with the ontological charac-
terization of the propositional content, we get a detailed
qualification of what we need to try and relate the content

factual
question < polar

to.

ability
intention assertion e—— attributive
command
endurant movement
instance generic quality position motion

thing region location size color causative subjective locationchange

in-situ motion transport

POse  guidance destination

subjective direction
relative

Fig. 4. Two parts of the complex semantic ontology: inten-
tion (top) and propositional content (bottom)
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Fig. 4 (bottom) gives part of the ontology used for sorting
propositional content. It classifies objects (endurant) and
different types of movement processes (movement). Endu-
rants can be physical objects, regions, or locations, and
may have qualities such as size or color.

The classification of movement processes is inspired by
(Maierborn, 1990) and (Hamp & Feldweg, 1997). Move-
ments are divided into motion, and the results of an action
as a change of position. The latter may concern the agent
itself (subjective), or regard an object (with the change
performed by the agent, causative). Motions are move-
ment actions that an agent performs on the spot (in-situ),
changing pose (pose.relative), or that make the agent move
to a new position. The latter types of movement can be
relative to a person being followed (guidance), a subjective
frame of reference (subjective), a direction, or an explicitly
given destination. Ex. 6 and Ex. 7 illustrate the types.

(6) several typical commands:
command. ...

(a) “go to the laboratory”
... movement.motion.locationchange.motion.destination

(b) “turn to the right”
... movement.motion.locationchange.motion.direction

(c) “follow me”
... movement.motion.locationchange.motion.guidance

(7) “we are in the office”
assertion.attributive.endurant.perspective.spatial

We combine the types of the propositional content with
the intentions of Fig. 4. In the examples above, Ex. 6a
shows a command to go to a particular destination. Ex. 6b
also gives a command. If we change it into “Can you turn
to the right?” we get a question after the ability of the
agent to turn into a given direction.

Ex. 7 shows the semantic sort of the assertion in Ex. 1.

We create a characterization that includes intention and
propositional content so we can determine which modal-
ity we need to try and connect this content to. How this
connected-to modality should then deal with the pro-
vided content is given by the truth-value of the proposi-
tional content. The truth-value states how the content can
be interpreted against the model of the sensorimotoric or
cognitive modality in which the content originates. The
interpretation is dynamic in that we try to update the
model with the propositional content (Muskens et al.,
1997). Instead of using a 2-valued truth system, we use a
multi-valued system to indicate whether the content was
already known in the model (unknown, known), and what
the result of the update is: true if we can update the
model, false if we cannot, and ambiguous if there are mul-
tiple ways in which the propositional content can be un-
derstood relative to content already present in the model.

To mediate between modalities we represent content us-
ing a shared representational formalism, following
(Gurevych et al., 2003). We model content as an ontologi-
cally richly sorted, relational structure, as described
above.

Once we have established the intention, propositional
content, and truth value, we can establish mediation: We
determine to which other modalities we need to establish
relations, between the interpretation of the content in the
originating modality, and interpretations in those other
modalities. Because we determine mediation on the basis
of ontological characterizations of content, rather than on
its realized form in a modality-specific representation, we
speak of ontology-based content mediation.

As we already pointed out, mediation can trigger new
processes, and result in grounding through information
fusion. We keep track of the results of mediation, i.e. the
relations between interpretations of content across mo-
dalities, by creating beliefs that store the handles (identifi-
ers) of the shared representations for the interpretations.
We store beliefs at the mediation level. Beliefs thus pro-
vide a powerful means for cross-modal information fu-
sion, without requiring individual modalities to commit
to more than providing shared representations at the in-
terface to other modalities that enable us to co-index ref-
erences to interpreted content in individual modalities.
For more detail we refer the reader to (Kruijff et al.,
2006a).

4.3 Human-Augmented Mapping

In a typical HAM scenario, a human tutor takes the robot
on a guided tour of the environment (“follow me!”, cf. Ex.
2 and Ex. 6¢). Our robotic system is able to follow its tu-
tor, execute mnear navigation commands (e.g. “turn
around!”, “stop!”, cf. (Severinson-Eklundh et al., 2003)),
and explore its surroundings autonomously (e.g. “explore
the corridor!”, “look around the room!”). These individ-
ual behaviors can be freely combined and may be initi-
ated or stopped at any point in time by the human tutor.
This mixed control strategy — referred to as sliding auton-
omy, (Heger et al., 2005), or adjustable autonomy, (Good-
rich et al., 2005) — combines the robot’s autonomous ca-
pabilities where appropriate with different levels of tele-
control through the human user where needed. However,
the human tutor preserves full control over the robot, as
he can always stop it or give it new commands.

While thus guiding the robot around, he or she then pre-
sents and introduces locations (“this is the office.”, cf. Ex. 1
and Ex. 7) and objects (“this is the coffee machine.”, cf. Ex.
3). The issue here is how we can use this information to
augment the spatial representation.

From language processing, we obtain a representation of
the semantics of an utterance (§4.1). Depending on the
kind of utterance (e.g. question, command, assertion), we
decide in what modalities we need to process this content
further (§4.2). A prototypical utterance in a HAM sce-
nario makes an assertion about the kind of location the
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current area is. In this case, we create a structural descrip-
tion (§4.1, Ex. 4 & 5) from the semantics of the utterance,
and try to update the conceptual map with the informa-
tion it contains. The examples below (Ex. 8-10) illustrate a
HAM guided tour that would lead to the spatial repre-
sentation in Fig. 2.

(8) The robot is standing in the office (i.e. areal). It has no

initial map of its environment. The human tutor starts
a guided tour by asking the robot to accompany him.
H.1 “Come with me!”
R initialize people following;

direct gaze to the tutor;

acknowledge understanding:
R.1 “Yes.”
R start following;

(9) While the user shows the robot around the room, the
robot constructs a metrical map with line features for
SLAM and a navigation graph that covers the traveled
route. The tutor informs the robot about their location.
H.2 “This is the office.”

R derive structural description:
@L1:l0cation)(0ffice & <Del>unique & <Num>sg)
add structural description to conceptual map;
create new instance in ontology:
instance(areal, Office)
acknowledge understanding:

R.2 “Yes.”

If the human makes an assertion about an object, we an-
chor the occurrence of the object and its description at the
different levels of the spatial representation: in the navi-
gation graph (at the node nearest its position) and in the
conceptual map (an instance of the object's type is created
and related to the individual that represents the current
area), as illustrated in Ex. 10. Note that we do not train
the visual object recognizer in a HAM tour. This is done
off-line (cf. §6.1).

(10)While still being in the office, the tutor shows the
robot the bookcase.

H.3 “This is a bookcase.”

R derive structural description:
@rmingi(bookcase & <Del>existential & <Num>sg)
add structural description to conceptual map;
create new instance in ontology:
instance(bookcasel, bookcase)
hasObiject(areal, bookcasel)
acknowledge understanding:

R.3 “Yes.”

(11) The tutor then takes the robot to the next room — a
kitchen. The robot detects a doorway, creates a gate-
way node in the navigation graph, and thus creates a
new area in the topological map. The place classifica-
tion classifies the current area (i.e. area2) as Room. In

the kitchen, the tutor asks the robot to have a look
around. This initiates the automatic vision-based ob-
ject recognition, which detects a coffee machine. The
knowledge about the presence of a Coffeermnachine in a
Room is stored in the conceptual map.
H.4 “Have a look around.”
R initiate autonomous exploration
and turn on visual object recognition;
laser-based place classification classifies area2 as Room:
instance(area2, Room)
vision detects an occurrence of a coffee machine:
@(c1:hingl(coffeemachine)
instance(obj1, Coffeemachine)
hasObject(area2, obj1)
report the recognition of a coffee machine:
R.4 “Aha.Isee a coffee machine.”

4.4 Answering questions about locations and objects

Given the robot's conceptual map, it is always possible to
ask the robot where it thinks it is. If a structural descrip-
tion of the current room has been given before, the robot
retrieves this information from the conceptual map (Ex.
11). If the robot has not explicitly been given a general
name (such as ‘kitchen’, ‘office’, or ‘lab’) for the current
area, the system can try to generate a linguistic expression
to refer to the given room. This mechnism makes use of
the ontological representation of acquired and innate
conceptual knowledge to generate a description (Ex. 12).
The description of the area is then returned to the dia-
logue system, which generates a contextually appropriate
utterance to convey the given information (Kruijff, 2006).
Depending on whether the referring expression has been
retrieved from tutor-asserted information or inferred,
either a definite (i.e. <Delimitation>unique) or an indefi-
nite (i.e. <Delimitation>existential) noun phrase respec-
tively is generated.

(12) The user asks the robot about the locations of the ob-
jects it has encountered in the environment. It re-
trieves the previously asserted information that areal
is “the office” and infers that area2, being a room
with a coffee machine, is “a kitchen”.

H.1 “Where is the bookcase?”

R retrieve structural description for the current area
(areal) from conceptual map:
@L1:l0cation)(0ffice & <Del>unique & <Num>sg)
generate answer with truth value known_true:

R.1 “Itisin the office.”

H.2 “Where is the coffee machine?”

R infer the most specific concept area2 instantiates:
most-specific-instantiators(area2)
returns: Kitchen
generate structural description:
@xo:location)(kitchen & <Del>existential & <Num>sg)
generate answer with truth value known_true:

R.2 “Itisin a kitchen.”
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If the system fails to find an answer to a question, i.e. the
information can neither be retrieved from the conceptual
map nor inferred through ontological reasoning, the ro-
bot generates a negative answer.

(14)H.3 “Where is the laboratory?”
R information unavailable;
generate answer with
truth value unknown_false:
R.3 “Iam sorry. I do not know.”

4.5 Clarification

Existing dialogue-based approaches to HRI usually im-
plement a master/slave model of dialogue: the human
speaks, the robot listens, e.g. (Bos et al., 2003). However,
situations naturally arise in which the robot needs to take
the initiative, e.g. to clarify an issue with the human. This
is one form of mixed-initiative interaction, enabling a
robot to recognize when help is needed from a human,
and learn from this interaction (Bruemmer & Walton,
2003). A situation that may require is for example when
uncertainty arises in automatic area classification: Doors
provide important knowledge about spatial organization,
but are difficult to recognize robustly and reliably. Clari-
fication dialogues can help to improve the quality of the
spatial representation the robot constructs, and to in-
crease the robot's robustness in dealing with uncertain
information.

We have extended an approach to processing clarification
questions in multi-modal dialogue systems. For space
reasons, we refer the reader to (Kruijff et al.,, 2006b) for
technical details. The basic idea is to allow for any modal-
ity to raise an issue. An issue is essentially a query for
information, which is sent into the architecture. Different
modalities, e.g. vision or dialogue, can then respond with
a statement that they can handle the query. Once an an-
swer to the query is found, it is then returned to the mo-
dality that raised the issue. For example, when mapping
is unsure about the presence of a door in a given location,
an issue is raised, which is then addressed through inter-
action with the human. The robot can take the initiative in
the dialogue, and phrase a (clarification) question about
objects (**What is this thing near me?") or about the truth
of a proposition ("'Is there a door here?"). Once the dia-
logue system obtains an answer to the clarification ques-
tion, both answer and question are provided to the map-
ping subsystem to resolve the outstanding issue.

4.6 Carrying out tasks

Guiding the robot around an environment is only one
step in working with a service robot. The main purpose of
a service robot, and of most domestic robots, is to carry
out tasks. The multi-level represention of the environ-
ment we build up provides an important basis for that.
Eventually, we can combine knowledge about what ob-
jects are needed to perform particular actions, with the
knowledge of where they are. The simplest action to be

performed by a mobile robot is the go-fo task. The next
step in terms of complexity is the fetch-and-carry task of
locating a specific object or place, going there, possibly
fetching the desired object or doing some manipulation
with the object in question, and returning.

The current system can be instructed to go to a particular
place or object. If the robot knows the location it is sent to,
it will just go there. If it has never been shown a place
with the respective general name before, it will employ
reasoning mechanisms to determine possible locations. If
it is sent to an object it has neither been shown nor visu-
ally recognized by itself, it will make use of its innate
(ontological) knowledge to determine areas that are likely
to contain such an object. There, the robot can make use
of its autonomous exploration facilities to visually search
the area for the desired object.

The current model, however, does not contain functional
knowledge about how manipulating and combining ob-
jects result in new objects (such as preparing a coffee by
placing a cup under a coffee machine and then pressing
the start button). As our robot is not equipped with any
manipulators (e.g. a gripper or a robotic arm), the physi-
cal actions involved in fetching a simple object can only
be simulated or replaced by verbally asking for help (Wil-
ske and Kruijff, 2006).

5. Implementation
We have implemented the approach of §3 and §4 in a

distributed different
sensorimotor and cognitive modalities. The architecture

architecture that integrates
enables a mobile robot to move about in an indoor
environment, and have a situated dialogue with a human
about various aspects of the environment.
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Wireless ethernet
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Balance caster wheel

Drive wheels (left/right)
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Fig. 5. The robotic platform
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Fig. 5 shows the ActivMedia Pioneer 3 PeopleBot used in
the experimental runs at the DFKI language technology
lab. It is equipped with a SICK LMS200 series laser scan-
ner, which is the main navigation sensor and is used for
building the metric map, performing obstacle detection,
tracking people, etc. On top of the robot, there is a Di-
rected Perception pan-tilt unit with a stereo-vision system
from Videre Design on it. Bumpers in the front and back
are used to detect contact with the environment. The ro-
bot hardware is interfaced with using the Player/Stage
software. Speech recognition, natural language process-
ing, conceptual spatial reasoning, and people tracking are
performed off-board and communicate via wireless
Ethernet with the on-board computer.

Fig. 6 shows the relevant aspects of the architecture, with
subsystems for situated dialogue, spatial localization and
mapping, and visual processing. A BDI-mediator (Belief,
Desire, Intention) is used to mediate between subsystems.
By this we mean that beliefs provide a common ground
between different modalities, rather than being a layer on
top of these. Beliefs provide a means for cross-modal in-
formation fusion, in its minimal form by co-indexing ref-
erences to information in individual modalities. The BDI
mediator decides what modalities should further process
linguistically conveyed information, and how to handle
requests for clarifying issues that have arisen. We de-
scribe each of these components in more detail below.

5.1 The communication subsystem

The communication subsystem consists of several com-
ponents for the analysis and production of natural utter-
ances in situated dialogue. The purpose of this system is

twofold. Firstly, to take an audio-signal as input, recog-
nize what is being said, and then produce a representa-
tion of the contextually appropriate meaning of the utter-
ance. As mentioned before, this then enables combining
the conveyed meaning with further inferencing over on-
tological knowledge. Secondly, to take a representation of
meaning to be conveyed as input, produce a plan of how
the robot can communicate that meaning, and carry out
that plan.

The communication subsystem has been implemented as
a distributed architecture using the Open Agent Architec-
ture (Cheyer & Martin, 2001). On the analysis side, we
use the Nuance speech recognition engine with a domain-
specific speech grammar (http://www.nuance.com). The
string-based output of Nuance is then parsed with an
OpenCCG parser. OpenCCG (http://openccg.sf.net) uses
a combinatory categorial grammar (Baldridge & Kruijff,
2003) to yield a representation of the linguistic meaning
for the recognized string/utterance (Baldridge & Kruijff,
2002). These representations are in the same framework
used to mediate content between modalities. This enables
us to combine linguistically conveyed meaning with fur-
ther inferences over ontologies.

To produce flexible, contextually appropriate interaction,
we use several levels of dialogue planning. Based on a
need to communicate, arising from the current dialogue
flow or from another modality, the dialogue planner es-
tablishes a communicative goal. We then plan the content
to express this goal, possibly in a multi-modal way using
non-verbal (pose, head moves) and verbal means. During
planning, we can inquire the models of the situated con-
text (e.g. dialogue context, visually scene) to ensure the
plan is contextually appropriate (Kruijff, 2006). The sys-
tem realizes verbal content using the OpenCCG realizer.
OpenCCG takes logical forms representing meaning as
input, and then generates a string for the utterance using
the same grammar as we use for parsing utterances
(White, 2006). Finally, we synthesize the resulting string
using the Mary (http://mary.dfki.de) text-to-speech sys-
tem.

5.2 Conceptual Spatial Localization & Mapping
Our method of multi-layered conceptual spatial mapping
is handled in two separate modules of our architecture.

5.2.1 The CURE/navserver module for SLAM

The navserver module for SLAM (Simultaneous Localiza-
tion And Mapping) and robot control is based on the
same components that were used in (Jensfelt et al., 2005)
and (Folkesson at al, 2005) and is part of the
CURE/toolbox software (http://www.cas.kth.se/CURE). It
creates a metric map that uses lines extracted from the
laser-range data as map primitives. The basis for integrat-
ing the feature observations is the extended Kalman filter
(EKF).

It is also in the navserver module that the navigation
graph is constructed and maintained. In the current im-
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plementation, the robot adds a new node to the naviga-
tion graph when it has moved 1m assuming that there is
no old node close by. It builds the topological map auto-
matically from the navigation graph by labeling the
nodes with different area identifiers and thus partitions
the navigation graph into sets of nodes that correspond to
distinct areas in the environment. Our strategy rests on
the simple observation that the robot passes a door to
move between areas. Whenever the robot passes a door, a
node marked as a door is added to the navigation graph
and consecutive nodes are given a new area identifier.
Currently, door detection is simply based on detecting
when the robot passes through a narrow opening. The
fact that the robot has to pass through an opening re-
moves many false doors that would result from simply
looking for narrow openings that appear as valleys in the
laser scans. However, this alone will still lead to some
false doors in cluttered rooms. A loop closing algorithm is
used to spot inconsistencies (Kruijff et al., 2006b) arising
from falsely recognized doors, and then trigger a clarifi-
cation dialogue (§4.5).

5.2.2 Ontological Reasoning

The conceptual layer and its links to the lower levels of
our map are maintained in the CoSM module. It also pro-
vides the link to the communication subsystem by aug-
menting the topological map with a humanlike concep-
tual representation of the spatial organization of the ro-
bot’s environment in an ontology. Ontological reasoning
is used to fuse knowledge about types and instances of
types in the world. We have built a commonsense ontol-
ogy of an indoor (office) environment (Fig. 3) as an OWL
ontology, having concepts, instances (individuals belonging
to concepts) and relations (binary relations between indi-
viduals). The ontology covers types of locations and typi-
cal objects. A priori, as the robot has not yet learnt any-
thing, the ontology does not contain any instances. The
robot creates instances as the it discovers its environment
(§4.3). For each new area, a new instance of concept Area
is created. A further distinction between Rooms and Corri-
dors is provided by the place classification module de-
scribed in (Martinez Mozos et al., 2005), which is con-
nected to the navserver module. When the robot is in a
room, and is shown or visually detects an object, we cre-
ate a new instance of the corresponding Object subccon-
cept, and relate the object's instance and the room's in-
stance using the hasObject relation.

We use RACER (http://www.racer-systems.com) to rea-
son over TBoxes (terminological knowledge / concepts in
our ontology) and ABoxes (assertional knowledge / in-
stances). We use assertions about instances and relations
to represent knowledge that the robot learns as it discov-
ers the world. This includes explicit introductions by the
tutor or autonomously acquired information. We do not
change the TBox at runtime.

If the conceptual map does not contain a structural de-
scription that is relevant for the current task (cf. §4.4 and

§4.6), we try to infer the missing information. We use
ABox retrieval functions as a first reasoning attempt. The
reasoner checks if it can infer that an instance is consistent
with the given description. If so, this instance is taken.
Else, we use TBox reasoning as a second attempt to re-
solve uncertainties, e.g. when the robot has not been
shown explicitly the occurrence of a relevant object. The
robot can thus make use of its a priori knowledge about
typical occurrences of objects and use this as a basis for
autonomous planning.

Fig. 2 has already briefly sketched how partial informa-
tion can be fused to infer new concept instantiations.

5.3 Vision

The vision subsystem uses an implementation of SIFT
(Scale Invariant Feature Transform) features (Lowe, 2004)
for recognizing typical objects in the environment like
television sets, coffee machines or bookcases. The system
recognizes instances of objects, as opposed to categories,
that have previously been shown to the robot and learnt
by the visual detection module. The object detection
works in an on-line fashion while the robot is moving
around. It is turned off, however, as long as the robot is
following its human user, who is typically occluding a
considerable part of the field of view. When the robot is
told to autonomously explore its surroundings, the cam-
era input is used to recognize objects.

5.4 Interactive people following

In order to follow the tutor, we use a laser range based
people tracking software (Schulz et al., 2003) that uses a
Bayesian filtering algorithm. The people tracker derives
robust tracking information of dynamic objects within the
robot's perceptual range. Given the tracking data, the
people following module calculates appropriate motion
commands that are sent to the robot control system to
follow the tutor's trajectory, while preserving a socially
appropriate distance to the tutor when standing still. The
system is interactive in that it actively gives the tutor feed-
back about its state. A pan-tilt-unit with a stereo vision
device is moved to always point to the tutor, thus convey-
ing the robot’s user awareness. Note that the cameras are
not used to track the user, but serve only the purpose of
providing gaze feedback.

5.5 Situational and functional awareness

We currently investigate how the information encoded in
the multi-layered conceptual spatial representation can be
used for a smarter, human- and situation-aware behavior.
As one aspect of this, the robot should exploit its knowl-
edge about objects in the environment to move in a way
that allows for successful interaction with these objects.
For instance, when following a person, the robot should
make use of its knowledge about doors in the environ-
ment, such that it recognizes when the person wants to
perform an action with the door. As actions that are per-
formed in a doorway or with the door itself potentially
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require a wide space, e.g. for swinging or sliding open the
door, for letting people pass, or for stepping past the door
opening to grab the door handle, it is crucial that the ro-
bot adjusts its actions accordingly. A failure to under-
stand such a situation could, for example, lead the robot
to a position where it traps the user in the doorway that
he or she was trying to close.

In the current implementation, we opt for the robot to
increase the distance it keeps to the user when it detects
that the user approaches a door and to decrease it again
when it detects that the user left the area. In this way, as
the robot does not stop tracking and following the per-
son, the people following behavior stays smooth and in-
tuitive for the user.

6. Case studies

We have carried out several experimental runs of the
complete integrated system in the DFKI language tech-
nology lab and at the 7" floor of the CAS building at
KTH. The system used for the experiments at KTH differs
from the system used at DFKI (cf. §5) in that it features a
Canon VC-C4 pan-tilt-zoom camera instead of a stereo
camera. The length of the studies ranges between several
minutes and more than half an hour. The robot was oper-
ated by one tutor at a time using verbal commands only.
No telecontrol or Wizard-of-Oz techniques were used. In
the runs, the robot was guided through several situations
visiting several rooms. The tutors, lab employees familiar
with the system, were equipped with a Bluetooth headset
connected to the automatic speech recognition software.
The software modules of our integrated system were
running in real-time on several laptops that were inter-
connected via a wireless network. The onboard computer
of the robot, which is also equipped with a wireless
adapter, was running the hardware abstraction drivers.
The laptop running the speech recognizer was placed on
the bottom deck of the robot platform to ensure a reliable
Bluetooth connection to the headset.

Fig. 7. The tutor activating the robot

Fig. 8. The tutor interacting with the robot. The trashbin
close to the table, which created the illusionary doorway
can be seen.

There were no specific tasks defined for the experimental
runs. They were rather used to test and evaluate the
overall functionality of the integrated system. The proc-
essing of typical human-robot dialogues of the sample
runs at DFKI has been illustrated by examples in the pre-
vious sections. The following paragraphs illustrate the
behavior of the robot during the experimental runs at
KTH. Videos illustrating sample runs with our system are
available at http://www.dfki.de/cosy/www/media.

6.1 Training phase

We had collected the training data for the laser-range
bases place classifier beforehand and trained the classifier
off-line. The SIFT-based object recognition had also been
trained off-line on different objects that were later used in
the experimental runs. These objects included among
others a TV set, a couch, and a bookcase. The acquisition
of the training data was not part of the experimental runs,
but the results were part of the innate knowledge that the
robot had in the beginning of the runs.

6.2 Activating the robot

In the beginning of the test runs (Fig. 7) the robot was
standing in the corridor close to a wall-mounted charging
station. The speech recognition software was running, but
operating in a quiet mode. In this mode, the robot does
not react to any verbal command except for the explicit
command to “wake up” and listen to the tutor. This way,
the dialogue system is not forced to process interaction
between the tutor and the other experimenters, which
would lead to many falsely recognized utterances and an
erratic behavior of the robot. By uttering “partner, wake
up” the tutor activates the full speech processing facilities
of the robot, which is thus ready to follow the tutor.

6.3 Following the tutor
Next, the tutor commanded the robot to follow him.
While following the tutor from the corridor to a room, the
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navserver reliably detected the doorway when it was
passed through. The place classifier reliably classified the
corridor correctly. Due to the tutor’s presence at a close
distance to the laser sensor, the scans obtained in the
room were sometimes misclassified as corridor. Espe-
cially when there were long laser beams that reached be-
yond open doors to the side of the robot and very short
beams reflected by the tutor’s legs in front of the robot,
the resulting scan profiles resembled the ones typically
encountered in corridors.

6.4 Clarification dialogues

By placing a trash bin at a distance of about 80 cm from a
table and guiding the robot through this narrow opening,
we created an illusionary doorway in the middle of the
room (cf. Fig. 8). After passing through it, the robot as-
signed the subsequent new navigation nodes a new area
identifier. The robot then reached a previously visited
node with a different area identifier. This inconsistency
reliably triggered the clarification dialogue as presented
in (Kruijff et al., 2006b). The robot asked the user “is there
a door here?”. Using the online viewing software (cf. Fig.
1), the tutor was able to understand the robot’s question.
Upon the user’s denial of the question, the map of the
robot was corrected by relabeling the false doorway and
merging the two areas.

6.5 Inferring new concepts

So far, the visual object recognition had been turned off.
When the user commanded the robot to “have a look
around,” the visual recognition was turned on and sub-
sequently detected the couch and the television set (Fig.
9). Combining this acquired knowledge from vision with
the acquired knowledge that the current area is of type
Room, the inference mechanisms of the conceptual spatial
mapping subsystem yielded the information that the cur-
rent area can be categorized as a Livingroom. This was
verified in the experiments by the user asking the robot
where it is twice, once before turning on vision and once
after. In the former case, the robot replied “I am in a
room,” reflecting that it only had acquired type informa-
tion and no tutor-asserted knowledge about how to refer
to the current area. In the second case, the robot correctly
answered “I am in a living room,” which showed that the
conceptual reasoning worked as intended.

7. Experience

Our main experience with the implemented system is that
there are a couple of principal behaviors needed for
HAM. If we want a human to guide a robot around an
environment, then the robot must be able to (a) follow the
human, (b) use information it gets from the human to
augment its map, (c) take the initiative to ask the human
for clarification; and (d) we need to be able to verify, and
correct, what the robot has (not) understood. Where is the
system successful, and where is it not?

Fig. 9."‘Ahé. I see a television.”

a) Although people tracking and following works fairly
smoothly, the robot tends to loose track when the human
e.g. passes around a corner. We are now studying how to
predict the path where a tracked human is going, to over-
come this problem and to reduce misclassifications of
static objects as dynamic (due to laser data noise). We
have also found that having a notion of what human be-
havior to expect is important: when a human moves to
open a door, the robot should not follow the human be-
hind the door, but go through it. The robot needs to rea-
son over functionality of regions and objects in the envi-
ronment to raise such expectations. We are currently in-
vestigating how we can make use of the knowledge that
the robot has about its environment to allow for a smarter
behavior in situations like mentioned before.

b) The question here is not just whether the robot can use
information from the human - there is also the issue of
how easy or difficult it is for the human to convey that
information to the robot in the first place. In our gram-
mar, we have lexical families that specify different types of
syntactic structures and the meaning they convey, and
lexical entries specifying how words belong to specific
lexical families. This way we can specify many ways in
which one can convey the same information (synonymy).
Dialogue can thus be more flexible, as there is less need
for the human to know and give the precise formulation
(controlled language).

¢) Clarification often concerns aspects of the environment
which need to be explicitly referred to, e.g. “Is there a
door here?” The difficulty lies in generating deictic refer-
ences with a robot with a limited morphology. Although
we can generate spatial referring expressions, non-verbal
means would be preferable. However, body- and head-
pose may not be distinctive enough. We may thus have to
drive to a place (the “HERE”) to make the deictic refer-
ence explicit, while avoiding disturbing the interaction.

d) Because we have reliable speech recognition (recogni-
tion rate is >90%), misunderstanding is primarily a se-
mantic issue. This raises two main questions. First, how
does the human understand that the robot understood
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what was said, without asking the robot? Various sys-
tems have the robot repeat what it has just heard. We
have not done this; the robot only indicates whether it has
understood (“yes”/”okay”/’no”). We have not experi-
enced problems with this, but we are investigating now
more explicit non-verbal cues for grounding feedback
(e.g. gaze). Second, we need to study what types of mis-
understanding may occur in HRI for HAM, and to what
extent they may have a relevant effect on the robot's be-
havior. This is an issue we now investigate.

e) The fact that the reasoner in the current implementa-
tion of the system works in a strictly monotonic way
makes it impossible to clarify overgeneralizations of the
robot’s inferences. If, for instance, an office worker keeps
a teamaker for personal use in his or her office and the
robot detects this with its object recognition software, it
will infer that this office can also be referred to as
“kitchen”. We currently investigate how such overgener-
alizations can be ruled out in clarification dialogues and
how the reasoning mechanisms have to be adapted to
prevent negative statements like “no, this is not a
kitchen” from making the A-Box knowledge inconsistent.
f) When the user presents the robot with new objects, e.g.
“this is the coffee machine,” the robot should follow the
gaze of the person or look for pointing gestures in order
to be able to acquire a visual model of the objects referred
to. A related interesting question here is how the robot
can make sure that it in fact is the right object that it has
found without using a monitor to interact with its tutor.

8. Conclusions

We presented an HRI architecture for human-augmented
mapping and situated dialogue with a human partner
about the environment they share. We discussed the
multi-level representations we build of the environment,
including spatial organization and functional aspects
(based on salient objects present in areas). The system
uses autonomous mapping, visual processing, human-
robot interaction, and ontological reasoning to construct
structural descriptions with which the multi-level repre-
sentations are annotated. The approach has been fully
implemented, and helps bridging the gap between robot
and human conceptions of space. We showed its func-
tionality, inspired by independently performed Wizard-
of-Oz studies, on several running examples. For future
research we want to study more detailed spatial organi-
zations of regions and objects within rooms, to create 3-
dimensional representations.
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