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Abstract

This report addresses the extraction of a parametric global motion
from a motion field, a task with several applications in video processing.
We present two probabilistic formulations of the problem and carry out
optimization using the RAST algorithm, a geometric matching method
novel to motion estimation in video. RAST uses an exhaustive and adap-
tive search of transformation space and thus gives – in contrast to local
sampling optimization techniques used in the past – a globally optimal
solution. Among other applications, our framework can thus be used to
generate ground truth for benchmarking motion estimation.

Our main contributions are: first, the novel combination of a state-
of-the-art quality criterion for dominant motion estimation with a search
procedure that guarantees global optimality. Second, experimental results
that illustrate the superior performance of our approach on synthetic flow
fields as well as real-world video streams. Third, a significant speedup
of the search achieved by extending a basic model with an additional
smoothness prior.
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1 Introduction

We address the estimation of a dominant parametric motion from a sequence of
video frames. Such dominant motion is usually equated with background mo-
tion, and its precise and robust estimation is required for several applications in
the context of video analysis, like motion-based segmentation or motion com-
pensation (which again serves as a building block in modern video encoders, or
in video mosaicing).

Approaches to solve this problem can be divided into two categories: first,
direct methods, which propose joint formulations for motion estimation and seg-
mentation and usually include difficult, cost-worthy optimization procedures.
Second, indirect methods that first estimate a motion field and then segment
it. Though such indirect approaches are prone to inaccuracies in the motion
estimation step and do not reach the robustness of direct methods, they of-
fer simple, fast, and stable alternatives that are used in many practical video
processing systems.

Our approach belongs to this category of indirect methods, i.e. we estimate
a global parametric motion from a given field of local motion probes – a problem
that is difficult due to measurement noise, inaccuracies of the previous motion
estimation step, and deviant foreground motion. In terms of dominant motion
estimation, such foreground motions are “outliers” that have to be recognized
and discarded during the fitting process.

We view the problem from a parameter estimation perspective and propose
two probabilistic formulations: one formulation that assumes independence of
the single flow samples, and one imposing spatial coherence of motion using a
smoothness prior (similar formulations can be found in the literature [15, 4, 20]).

The resulting optimization problems are solved using the RAST (Recognition
by Adaptive Subdivision of Transformation Space) algorithm [2]. While other
methods are based on a sparse sampling of search space and do not guarantee
optimal solutions, RAST performs an adaptive but exhaustive search and finds
the global optimum.

Our main contributions are: first, a novel dominant motion estimation ap-
proach that gives an optimal solution under a clearly defined statistical criterion.
For example, our approach might be used to benchmark local search techniques
on real-world video data, where motion fields are noisy and ground truth is not
known. Second, experimental results on synthetic data and real-world videos
that proof the superior performance of our framework compared to other local
search procedures. Third, a novel extension to the RAST algorithm including a
smoothness prior that leads to a more efficient search.

The remainder of this report is organized as follows: we first introduce related
work in Section 2 before we present our approach in Section 3. Experimental
results are outlined in Section 4, and finally a discussion is given in Section 5.
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2 Related Work

The problem of dominant motion estimation is strongly related to motion seg-
mentation: while the former estimates the motion with the largest support
region (and the support region associated with it), the latter addresses a com-
plete segmentation of the frame into two or more regions. Thereby, the solution
to one problem inherently leads to a solution for the other: on the one hand, a
complete motion segmentation trivially comes with a dominant motion (the one
associated with the largest region). On the other hand, motion segmentation
can be achieved by iteratively estimating the dominant motion and ignoring its
support region in the following iterations. This process is repeated until the
whole frame is explained [1] (in fact, the optimization procedure we propose
follows a similar strategy within a global optimization process). It is due to this
equivalence that we present related work to solve either of the problems under
the term motion interpretation.

Such motion interpretation has often been called a “chicken-egg” problem:
motion estimation is inaccurate without knowledge of motion boundaries due to
the aperture problem [1], while on the other hand motion segmentation demands
local motion estimates. Methods to solve this problem can be divided into
direct and indirect (or “feature-based” [9]) methods. Approaches from the first
category propose joint formulations for both estimating motion and grouping
it into coherent regions. This usually leads to energy functions containing a
“goodness-of-fit” term and a “smoothness” term. Some direct methods assume
a parametric motion over image regions [1, 10, 19, 4, 15]. Others are non-
parametric and based on piecewise smoothness of the motion field, which leads
to formulations related to Markov Random Fields [14, 20].

Several procedures have been proposed to optimize the resulting energy
terms: EM [20], graduated non-convexity [1], segmentation and grouping [19], or
more recent formulations that alternately estimate motion and readjust the seg-
mentation, using graph cuts [15] or level set methods [4]. All these approaches
have in common that optimizing the associated energy is cost-worthy, prone to
local minima, and sensitive to the chosen parameters.

In contrast to this, indirect methods separate motion estimation and segmen-
tation. While direct approaches are often based on an iterative optimization,
indirect ones are two-step procedures: first, an optical flow field is estimated us-
ing correlation-based techniques [18], feature tracking [17], or optical flow. The
result forms the input to a segmentation step, which must cope with local out-
liers and inaccuracies due to noise in the measurement process, error-prone mo-
tion estimation, and foreground objects in motion. For this, greedy local search
procedures have been used in the past, like robust least squares, RANSAC [5],
least median of squares, or least trimmed squares [12].

Since local errors in the motion estimation step cannot be undone, indirect
methods theoretically do not reach the robustness of direct ones. Nevertheless,
they offer simple and fast alternatives that are popular in practice, and are
applied to several video processing tasks, like in state-of-the-art video codecs or
video mosaicing [16].
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Our approach belongs to this category of indirect approaches. More pre-
cisely, we assume a motion field is given and focus on the motion interpretation
step. We propose an optimization procedure based on a full, adaptive search of
transformation space. While methods used in the past based their optimization
on a sparse sampling that tends to get caught in local minima, our framework
gives the global optimum.
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3 Statistical Framework

We assume a given motion field D = {(x1, v1), .., (xn, vn)} of 2D positions xi

associated with 2D motion vectors vi, i.e. features at positions xi in the first
frame move to xi + vi in the second one. This data can be a dense optical flow
field, or sparse probes obtained from block matching or tracked point features.
The task is now to extract a parametric motion vθ : R2 → R2 that fits D “well”,
i.e. ∂xi

∂t = vi ≈ vθ(xi).

3.1 Motion Parametrization

In real-world videos, the image motion is a projection of the scene motion and
depends heavily on the 3D structure of the scene. Consequently, the actual
image motion cannot be recovered directly without scene knowledge. However,
approximations can be made to the shape of the scene and the camera projection
model that lead to parametrized motion models. Such parametrized motion has
proven a simple and often sufficiently accurate approximation to projected 3D
scene motion that is widely used in practice. We adopt this parametric approach
and start with listing some typical parametrizations from the literature [9, 16]:

• constant motion - the background moves in a constant shift: v(xi) = v′

• similarity transform the model consists of a rotation by an angle α, a
scaling s (e.g., due to zooming), and a translation (dx, dy)T . This model
corresponds to the camera watching a planar surface that is perpendicular
to the optical axis.

v(xi) =
(

s · cosα −s · sinα
s · sinα s · cosα

)
· xi + (dx, dy)T

• affine - the 6-parameter affine model corresponds to a planar surface under
orthographic camera projection [16] It is probably the most widely applied
motion model, offering a good tradeoff between model complexity and
accuracy:

v(xi) =
(

a b
c d

)
· xi + (dx, dy)T

• 8-parameter - the assumptions underlying the 8-parameter motion model
are a perspective projection (like in most real-world cameras) and a planar
scene. The resulting mapping between successive frames is an 8-parametric
homography:

v(xi) =
1

c1x + c2y + 1

(
a1 a2 a3

b1 b2 b3

)
· (xi, yi, 1)T

• parabolic - the restrictions of the 8-parameter model can be loosened
further by assuming the scene structure by a parabolic surface, obtaining
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the nonlinear parametrization:

v(xi) =
(

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

)
· (x, y, x2, y2, xy)T + (dx, dy)T

From these parametrizations, we choose the similarity transform as a good
balance between model simplicity and accuracy.

3.2 Bayesian Formulation of the Problem

We view motion interpretation as a parameter estimation problem, i.e. the
parameters θ of a dominant motion are to be found that fit D ”well”. The
well-known MAP formulation of this problem is to choose the global motion
θ̂ = (ŝ, α̂, d̂x, d̂y) that maximizes the posterior:

θ̂ = arg max
θ

P (θ|D) ∝ P (D|θ) · P (θ) (1)

In the following, we derive two quality criteria from this generic formula. The
first one assumes a uniform prior over all possible global motions leading to a
maximum likelihood (ML) optimality criterion in which local motion samples
are assumed independent. In contrast to this, the second formulation uses a
prior to impose the constraint of spatial coherence with which motion occurs
in real-world image sequences. Both criteria lead to different quality functions
whose derivation will be described in the following.

3.2.1 Criterion 1: Local Independence

For our first formulation, we assume a uniform prior P (θ) and independent mo-
tion probes drawn from a distribution p(vi|θ). If we also neglected competitive
foreground motion and used isotropic Gaussian noise to model inaccuracies of
motion estimation and of the capturing process, p(vi|θ) would be a Gaussian
with mean vθ(xi) and diagonal covariance σ2I:

p′(vi|θ) = N (vi; vθ(xi), σ2I) (2)

In practical flow fields, however, outliers occur – again, due to inaccuracies of
the motion estimation process, but also due to foreground objects moving into a
different direction. Since we do not have prior knowledge of the motion of such
objects, we assume a uniform distribution p(vi|θ) = c of foreground motion
within a reasonable range. This gives a more realistic scenario, in which an
observation is regarded as an outlier if it deviates too far from the dominant
motion vθ:

p(vi|θ) ∝ max
(
N (vi; vθ(xi), σ2I), c

)
(3)

We plug this term into the overall likelihood and obtain

p(D|θ) =
∏

i

p(vi|θ) (4)
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maximizing which is equivalent to maximizing the log-likelihood, which we again
simplify further:

arg maxθ L(D|θ) = arg max
θ

∑
i

log p(vi|θ)

= arg max
θ

∑
i

max
(

log
1

2πσ2
− 1

2σ2
(vi − vθ(xi))2, log c

)
= arg max

θ

∑
i

max
(

c′ − 1
2σ2

(vi − vθ(xi))2, 0
)

= arg max
θ

∑
i

max
(

1− (vi − vθ(xi))2

ε2
, 0

)
,

Thus, instead of maximizing the likelihood we equivalently maximize the simpler
quality function:

Q1(θ) =
∑

i

max
(

1− (vi − vθ(xi))2

ε2
, 0

)
︸ ︷︷ ︸

q(vi,θ)

. (5)

Q1 consists of local contributions q(vi, θ) from the single flow samples, which
are in the following referred to as the support of a local flow probe vi for a global
motion θ. It is zero exactly if vi deviates further than ε from the model motion
vθ(xi) (or if vi is regarded as an outlier, respectively). Thus, the evaluation of
Q1 provides a segmentation of the motion field into background and foreground.

The only free parameter, ε, depends on the constant c and the expected noise
σ2. It determines the allowed deviation of a background motion sample from
the parametric motion vθ. In practice, this parameter is set manually.

Another fact worth noticing is that, since the overall support of a motion
Q1 is directly related to the likelihood, it can be used as a quality measure for a
global motion θ̂. This fact will be important in the experimental section, where
we judge the performance of several approaches based on the value of Q1 they
achieve.

3.2.2 Criterion 2: Spatial Coherence

The optimality criterion Q1 introduced in Equation (5) is derived from the
likelihood and neglects the spatial coherence with which motion occurs in real-
world videos. Like other researchers before, we use this fact by formulating an
additional prior related to formulations in Markov Random Fields [1, 7, 20].

For this, we first introduce a segmentation as a labeling of the motion vec-
tors L : {x1, .., xn} → {0, 1} such that L(xi) = Li = 1 iff vi belongs to the
background (which is the case exactly if q(vi, θ) > 0). Note that – given such
a labeling – we can automatically compute a motion estimate ˆθ(L) as the least
squares solution over the motion probes in the background region L−1(1). This
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is why – instead of searching for a motion θ – we instead search for an optimal
labeling by maximizing the posterior:

P (L|D) ∝ P (D|L) · P (L)
= P (D|θ(L)) · P (L) (6)

The first term corresponds to the likelihood criterion from Equation (5). For
the prior P (L), we define a neighborhood structure over the motion field sites
{xi} (in this report, we use 4-connectedness on a regular grid of sites xi), which
again induces cliques of neighbor sites (in this report, all pairs of sites (xi, xj)
that are adjacent). Let C denote the set of all such cliques. Then we define
P (L) as:

P (L) ∝
∏

(xi,xj)∈C

p(Li, Lj) (7)

which we rewrite further by replacing

p(Li, Lj) =
{

ĉ1 Li = Lj = 1
ĉ2 else (8)

with ĉ1 > ĉ2 (note that for the prior P (L) to take on its maximum, the whole
screen belongs to the background). By setting c1 = − log ĉ1, c2 = − log ĉ2 (with
c2 > c1), and

U(i, j) =
{

c1 Li = Lj = 1
c2 else (9)

the prior turns out to be:

P (L) ∝
∏

(xi,xj)∈C

e−U(i,j) (10)

This leads to the overall posterior for a labeling L and its associated motion θ:

P (L|D) ∝
∏

i

p(vi|θ) ·
∏

(xi,xj)∈C

e−U(i,j) (11)
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which we can again rewrite to obtain another Bayesian quality function:

P (L|D) ∝
∏

i

p(vi|θ) ·
∏

(xi,xj)∈C

e−U(i,j)

∝
∏

i

max(
1
Z

e−
(vi−vθ(xi))

2

2σ2 , c) ·
∏

(xi,xj)∈C

e−U(i,j)

=̂
∑

i

max(− (vi − vθ(xi))2

2σ2
, c′) +

∑
(xi,xj)∈C

−U(i, j)

=̂
∑

i

max(c′ − (vi − vθ(xi))2

2σ2
, 0) +

∑
(xi,xj)∈C

(c2 − c1) · LiLj

=̂
∑

i

max(1− (vi − vθ(xi))2

ε2
, 0) + α

∑
(xi,xj)∈C

(c2 − c1) · LiLj

=̂
∑

i

max(1− (vi − vθ(xi))2

ε2
, 0) + αβ

∑
(xi,xj)∈C

LiLj

= Q1(θ) + γ
∑

(xi,xj)∈C

LiLj (12)

which gives us an MAP quality function

Q2(θ) = Q1(θ) + γ
∑

(xi,xj)∈C

LiLj (13)

Q1 is the quality criterion from Equation (5). The free parameter γ = αβ with
α = 1./c′ and β = (c2 − c1). γ determines the weight of spatial coherence
relative to the goodness-of-fit term Q1 and is set manually in practice.

3.3 Optimization using RAST

Both quality functions Q1 and Q2 can be highly non-convex for motion fields
in practice, such that techniques based on a sparse sampling of the space of
possible motions {θ} may get caught in local minima. For example, robust least
squares techniques start from a least squares solution θ0 and iteratively refine
the supporting local motions by discarding outliers. This gives a walk θ0, .., θt

through transformation space that might contain the global optimum but is not
guaranteed to.

We present an alternative based on a full search of parameter space. Though
more time-consuming, it is made feasible using an adaptive search strategy. Our
approach is called RAST (Recognition by Adaptive Search of Transformation
space)1. It has been applied before in the domain of geometric matching and
object recognition, where it is used to compute an optimal transformation to

1open source implementation at http://www.iupr.org/˜chl/multirast.tar.gz
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align point features. Our idea is to view each local motion probe as a corre-
spondence between point features in two images (namely, xi and xi + vi) such
that RAST can be used to find an optimal transformation (or global motion,
respectively).

In the following, the main features of the method are briefly outlined. More
detailed descriptions of the algorithm can be found in [3, 2].

RAST is based on a branch-and-bound strategy: starting with the full pa-
rameter space {θ}, a parameter subset θ′ (also refered to as a state) is iteratively
chosen and subdivided into subspaces θ1, θ2 by splitting along one parameter.
We obtain subsequently finer subsets until finishing with a sufficiently small state
whose center is returned as our estimate θ̂. The user can define the accuracy of
the solution via this stopping criterion.

The search is guided into promising regions of parameter space by managing
substates in a priority queue sorted by an upper bound U(θ′) for the quality in
each state θ′.

U(θ′) ≥ max{Q(θ)|θ ∈ θ′}. (14)

All substates are kept in a priority queue sorted by U . In a branch-and-bound
manner, RAST thus focuses on promising areas of transformation space.

The algorithm is subsumed here:

Algorithm 1 RAST
insert the full parameter space {θ} into the queue q
repeat

extract the first element θ′ from q
split θ′ into substates θ1, θ2

compute U(θ1) and U(θ2) and insert θ1, θ2 into q
until θ′ is small enough

We demand two properties of U : first – as just stated – it must be a correct
upper bound. Second, it must converge against the actual quality Q as the size
of |θ′| → 0. Under these conditions, it can be shown that θ̂ returned by RAST
is in fact the global optimum. Note that any function Q can be optimized using
this generic scheme.

The key part of the search is the computation of U , which is performed for
each new subset to be inserted into the priority queue. For Q1, the associated
bound is U1 =

∑
i ui, i.e. for each motion probe we find out (e.g., using interval

arithmetic [3]) if it can contribute to any global motion in the subset. For Q2,
U2 = U1 + γ ·

∑
(i,j)∈C uij with uij = 0 if ui = uj = 0 and uij = 1 otherwise, i.e.

after computing U1, an additional linear sweep through the motion probes is
required to increment the bound for each pair of adjacent potential background
sites.

As already mentioned in Section 2, the problem of dominant motion estima-
tion is strongly related to motion segmentation. Given an approach for dominant
motion estimation, a complete segmentation can be obtained by iteratively esti-
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mating the dominant motion and discarding the motion probes associated with
it.

With our framework, we can follow a similar approach and obtain a com-
plete segmentation of the frame. Therefore, we do not have to start the RAST
estimation multiple times – we simply carry out one global RAST optimization
that does not stop when reaching a first optimum, but keeps searching until the
whole frame has been explained.
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4 Experiments

The most important capability of our approach is its optimality: the combi-
nation of our statistical framework and the RAST optimization guarantees an
optimal solution given a complex statistical model. In a first set of experiments,
we validate this fact on synthetic motion fields. These experiments provide a
controlled framework for evaluation with a well-known ground truth segmenta-
tion and ground truth motion.

The second goal of this section is to point out the applicability of our method
as a generator of ground truth for evaluating other motion estimation methods.
Such an evaluation is a difficult task: visual inspection is not suitable for larger
amounts of data, and ground truth motion and segmentation are usually not
available. Also, the optimal performance is unknown under noisy and error-
prone motion samples. In this situation, we suggest that our framework can
serve as a source of ground truth.

Therefore, we present results on real-world video data. We validate that
the RAST optimization procedure gives superior results to several local search
procedures. For this comparison, we use the support of a global motion estimate
in terms of the quality functions Q1, Q2 (which are directly related to the log-
likelihood). It turns out that the performance of our framework does in fact
provide an upper bound for the performance of other approaches.

Unfortunately, comparing motion support does not give a meaningful com-
parison of our two quality functions Q1, Q2 (trivially, ∀θ : Q2(θ) ≥ Q1(θ)).
Therefore, we also compare motion segmentation results given by our frame-
work for sequences with a known ground-truth segmentation.

4.1 General Setup

All input motion fields – synthetic or extracted from video – are defined at
16 × 16 macroblock positions (though our approach is not restricted to this
setup). For video streams, motion is estimated using the MPEG-4 video codec
XViD2 [18]. Global motion is parametrized using a similarity transform. The
following methods are tested:

1. Our Framework: We test our framework for both quality functions Q1

and Q2 (ε = 2.3, γ = 1). The 4-dimensional similarity transform space
searched by RAST should contain all reasonable motion between adja-
cent video frames. We choose: σ ∈ [0.9, 1.1], α ∈ [−0.1, 0.1], (dx, dy) ∈
[−40, 40]2 . Search is stopped if the evaluated substate has dimensions
smaller than (0.0002)2 × (0.1)2. This means, the solution is determined
with an accuracy of 0.1 pixels for the translation, or 0.0002 for the rotation
and scale.

Also, we add a least squares refinement over the background motion probes
2www.xvid.org
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at the end given a sufficiently small substate θ′:

θ̂ := arg min
θ

∑
vi:∃θ∈θ′:q(vi,θ)))>0

(vi − vθ(xi))
2 (15)

2. Least Squares: A standard method to solve regression problems is given
by least squares techniques. Here, the dominant motion θ is estimated by
minimizing an error function ED using methods from linear algebra [6]:

θ̂ = arg min
θ

ED(θ) =
∑

i

(vi − vθ(xi))
2 (16)

This is equivalent to maximizing a quality function similar to Q1, but with
a pure Gaussian motion vector density instead of a truncated Gaussian
one. Least squares is thus expected to perform poorly when competitive
foreground motion occurs and serves as a baseline.

3. Robust Least Squares: robust least squares methods alternately compute
least squares motion estimates and discard motion samples from D that
deviate further from the solution than an outlier threshold σ. Our im-
plementation generates a sequence of gradually non-convex solutions by
decreasing σ. Its pseudocode is:

Algorithm 2 Robust Least Squares
set k = 0, σ0 = 100, and D0 to D
repeat

set θk = arg minθ EDk
(θ)

set Dk+1 = {xi ∈ Dk|(vi − vθk
(xi))2 < σk}

set σk+1 = 0.95 · σk

set k = k + 1
until (σk < ε)
return θk

4. RANSAC: Random Sample Consensus (RANSAC) [5] is a popular Monte
Carlo procedure with excellent robustness to outliers and noise. The
method is popular for parameter estimation in stereo vision [8] and track-
ing [13]. RANSAC is a stochastic algorithm: the solution is obtained by
iteratively sampling a random subset Dk ⊂ D consisting of k samples
(since we estimate 4 parameters, two points are sufficient), estimating a
least squares solution

θk := arg min
θ

EDk(θ) (17)

on this subset (which corresponds to the assumption that Dk contains no
outliers), and evaluating the quality of θk on the whole motion field D.
This process is repeated K times, and the best estimate is returned. The
probability of failure decreases with the number of iterations K, but never
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(a) (b)

Figure 1: (a) A synthetic motion field with three blobs each moving in a different
direction. (b) A segmentation result. Red vectors are assigned to the background,
green ones to the foreground. Red blocks are segmentation errors that occur due to
motion outliers.

reaches 0 – in contrast to our framework, optimality is not guaranteed.
RANSAC is tested for both Q1 and Q2.

5. XViD Dominant Motion Estimation: the dominant motion estimation
component that the XViD codec uses for compression purposes. The
implementation is comparable to robust least squares, but with a more
greedy outlier rejection strategy by thresholding with a residual.

4.2 Synthetic Flow Fields

In a first experiment, our purpose is to simulate the real-world phenomena of
noise and spatial coherence of motion in a controlled setup. Therefore, we use
synthetic flow fields of blob regions moving in front of a background moving as
well.

Like the example illustrated in Figure 1(a) all motion fields are derived from
a dominant motion and three foreground motions. The background motion is
randomly drawn from [−0.05, 0.05] × [0.95, 1.05] × [10, 10]2. Also, three blobs
are initialized with a random motion from {0} × {1} × [−16, 16]2. All blobs
are of the same size such that they – when non-overlapping – occupy a certain
fraction of the screen f ∈ {0.4, 0.6, 0.7, 0.8}. This fraction is varied throughout
the experiment – the higher f , the more difficult the estimation of the correct
dominant motion. Also, isotropic Gaussian noise with standard deviation σ ∈
{1.0, 1.3, 1.6, 2.0, 2.3} is added to each motion vector. We generate five blob
motion field sequences of 10 frames each for all combinations of noise levels σ
and screen fractions f , obtaining a total of 1000 motion fields.

We run all test methods except the XViD codec (which we apply to real-
world videos only) and least squares (which performed much worse than all
other methods) on all motion fields. A typical result is given in Figure 1(b):
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(a) (b)

Figure 2: Motion estimation results on synthetic blob data. (a) shows the average
segmentation error (depending on the fraction of the screen occupied by competitive
foreground motion), (b) shows the squared error of the estimated x translation relative
to the ground truth.

vectors assigned to the background are red, vectors assigned to the foreground
green. Also, blocks are colored depending on whether the segmentation result
equals the ground truth information: for white (black) blocks, both assign the
block to the foreground (background). For gray blocks (which are marked red
additionally), they disagree, and a segmentation error occurs (in the illustration,
such outliers are due to strong noise added to the local motion probes).

Numerical results are given in Figure 2. In Figure 2(a), the average seg-
mentation error is plotted against the fraction f occupied by the foreground,
reaching from 0.4 to 0.7. Note that some intrinsic segmentation error results
from outliers due to noise. The rate of such outliers – and thus the segmentation
error – constantly drops with f . As can be seen, our framework gives lower seg-
mentation error rates than all other methods. The robust least squares method
tends to break at high foreground fractions. Between RAST and RANSAC (100
iterations), a difference of about 1 % in segmentation error can be observed.

In Figure 2(b), we plot the average error of the estimated motion (more
precisely, for the x-translation parameter) for the noise level σ = 2.0 against the
foreground fraction f . Again, our framework shows the best performance. The
average mean squared error remains below 0.2 pixels. RANSAC gives an average
error in the order of 1 pixel. For the robust least squares method, however, the
error increases strongly with f . This corresponds to the high segmentation
error in Figure 2(a). Also, it can be observed that Q1 and Q2 give a similar
performance regardless of the optimization procedure.

4.3 Test Sequence “Hand”

In a first test for real-world video data, a Firewire webcam3 with a resolution
of 320 × 240 pixels was used capturing a static scene. A hand was moved

3UniBrain Fire-I
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(a) (b)

Figure 3: (a) A frame from a test sequence, with MPEG motion vectors plotted.
Outliers are white, points contributing to the global motion are red. (b) The motion
support for several test methods, plotted over the frames of the sequence.

at a distance of 35cm from the camera. See Figure 3(a) for a typical frame
with results given by our approach: red vectors correspond to the global motion
estimated, white ones to outlier motion. Obviously, the zero background motion
was estimated correctly, though some outliers in the motion field occur due to
error-prone motion estimation.

The support Q1 for several test methods (distance = 35cm) is plotted against
the frame number in Figure 3(b). Besides least squares, the XViD motion
estimation shows the most breakdowns. Also, robust least squares fails at critical
frames where the dominant motion is weak (as is indicated by a low support for
all methods). RANSAC (100 iterations) performs comparable to RAST, which
is to be expected as noise in this example is completely absent (due to specifics
of the encoding process, background motion vectors tend to be exactly zero).

4.4 Test Sequence “Mobile”

In a scenario similar to the one in the last section, we apply our framework to
MPEG-4 motion vectors derived from the “mobile and calendar” test sequence4.
The sequence shows a textured background behind three foreground objects,
each moving in a different direction approximately perpendicular to the opti-
cal axis. During the sequence, the camera zooms out and pans such that the
dominance of the background motion increases gradually. We subsampled the
sequence at 1 fps obtaining 11 frames with 22× 18 macroblocks each.

One frame is shown in Figure 4 together with its motion estimates for XViD
(Figure 4(b)) and RAST (Figure 4(c)). The motion visualization is layed over
a difference image that is obtained by compensating with the estimated global
motion and then subtracting the subsequent frame. For a perfect result, the
difference should be zero (assuming constant pixel color) except for foreground
regions. This is approximately the case for the RAST result. For XViD, on the

4http://www.m4if.org/resources.php
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Figure 4: (a) A frame from the mobile sequence. Also: motion segmentation (red
vectors belong to the background, white ones to the foreground) and difference between
motion-compensated frames for XViD (b) and RAST (c). For XViD, a wrong estimate
leads to a poor motion compensation on the upper left part of the frame.

other hand, it can be seen that parts of the background (on the upper left) have
been classified as foreground and have thus been poorly compensated for.

Figure 5(a) illustrates the motion support Q1 for several test methods, plot-
ted over the frames of the mobile test sequence. The support (and thus the
dominance of the global motion) tends to be lower in the first frames of the
test sequence, which corresponds to the pan operation towards the background
wallpaper.

It can be seen that the RAST result serves as an upper bound for the per-
formance of all other search procedures. Robust least squares gives comparable
results except for the first two frames. RANSAC performs identical to RAST.

We also compared the average processing time of the two RAST methods for
both criteria Q1 (2.85 sec./frame) and Q2 (1.07 sec./frame). Interestingly, the
spatial prior – though demanding an extra sweep through all motion samples for
the evaluation of a substate – leads to a significant speedup (62 %) that can be
observed throughout all of our experiments. Obviously, spatial coherence helps
to discard bad motion hypotheses early that are scattered over the frame, and
guide search into promising regions of transformation space. This insight might
be interesting in the geometric matching domain where RAST was developed.

As already mentioned before, the evaluation of dominant motion estimation
is a difficult task for real-world video. The extracted motion fields may be
error-prone and noisy such that it is unclear whether a performance measured
in terms of motion support is a good performance given a motion field. In this
context, our framework (which guarantees an optimal solution) can generate
ground truth data to benchmark local search procedures. Here, we illustrate a
simple sample experiment in which our framework is used to tune the number
of iterative restarts K for the RANSAC algorithm. Theoretical considerations
exist for this parameter given known outlier rates, where it is possible to esti-
mate the number of iterations necessary to reduce the probability of error to a
certain level. For real-world video data, however, noise and outliers make the
situation less predictable. Instead, it is more practical to empirically estimate
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(a)

Figure 5: (a) Motion support results for the frames of the subsampled mobile test
sequence (11 frames (b) RANSAC results for the mobile sequence using different num-
bers of iterations. The quality of the estimate increase with the number of iterations,
reaching its optimum at 20 iterations.

(a) (b) (c)

Figure 6: (a) A frame from the Snooker Sequence (b) its motion estimate (c) quality
of several methods in terms of motion support for the snooker sequence (90 frames).

a “good” number of iterations for real-world video sequences. Therefore, we run
our framework once before tuning starts, and tuning can be stopped as soon as
RANSAC has reached the optimal performance. Our evaluation for RANSAC
measures the average support Q2 obtained over 10 random restarts and com-
pared to the RAST support. Figure 4.4 shows the support plotted against the
frame number for several values of K. The quality of the RANSAC estimates
gradually increases with K, and has reached the RAST level at 20 iterations.

4.5 Test Sequence “Snooker”

Comparable results can be observed for a 640×480 test sequence called“snooker”
captured from a TV sports broadcast. A snooker player is tracked by a camera
with a strong translation. We test all methods on 90 frames (for RANSAC, 20
iterations were used). A sample frame is illustrated in Figure 6, with a RAST
motion estimation result on the right visualized using a motion-compensated
frame differencing as for the mobile sequence in Figure 4. It can be seen how
motion compensation covers the background region, while differences for player
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(a) (b) (c)

Figure 7: (a) Self-generated test data: two hands moving in front of the static
background, with the camera performing zoom and pan operations. (b) Ground truth
segmentation mask based on a skin color detector. (c) a segmentation result. Blue
blocks are ignored, red blocks are misclassified.

and queue in the foreground occur.
The support Q1 for the sequence is plotted in Figure 6(c). Again, XViD and

least squares give relatively poor results. RANSAC and robust least squares
perform comparable to our method, but fail occasionally. It can be seen how
the support for our approach serves as an upper bound for other methods.

4.6 Test Sequence “Green Curtain”

In our last two experiments, we test whether our approach can be used for a
motion-based segmentation of scenes. Therefore, we run tests on video sequences
with a known ground truth segmentation. In our first segmentation experiment,
we use self-generated video sequences as illustrated in Figure 7. Two hands move
independently in front of a static green curtain. During the shots, the camera
performed pan and zoom operations. Six sequences were generated of 125 frames
each.

Ground truth segmentation masks were based on color using a histogram-
based skin color model [11]. The resulting segmentation masks are not perfect,
but sufficient for our purposes. We fuse them to block-level masks and ignore
blocks that contain more than 5 % of both foreground and background pixels.
All test methods were run on the 750 frames using both quality functions Q1,
Q2 for RANSAC and RAST.

A segmentation result for a sample frame is presented in Figure 7(c). There
are many “unsure” blocks (blue) partially overlapped by the hand, and some
error blocks highlighted in red. Two main reasons for intrinsic errors could be
made out: first, error-prone motion estimation (this can be observed in Figure
7(c), where error blocks in red correspond to outlier motion vectors). Second,
errors occur for frames in which the object stands still for a moment.

The numerical results in terms of segmentation error rates are given in Table
1 and correspond to the performance observed in the previous test sequences,
with our framework providing the optimal performance. A new insight is that
the segmentation allows us to directly compare the performance of our quality
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(a) (b)

Figure 8: (a) a frame from the foreman sequence, and (b) a typical segmentation
result evaluated using MPEG-4 ground truth segmentation masks. Blue blocks are
ignored, red blocks are misclassified.

criteria Q1 and Q2, where a slight increase in performance can be made out by
including a spatial prior. This holds for both RAST and RANSAC.

4.7 Test Sequence “Foreman”

In the second segmentation experiment, we test the performance of our approach
for motion segmentation in a real-world video. We use a subsampled version
of the MPEG-4 test video sequence “foreman” (80 frames) that comes with a
ground truth segmentation mask. The sequence shows strong, chaotic camera
motion and a highly non-planar background.

Again, we tested several methods. For RAST and RANSAC (100 iterations)
the spatial prior was included (Q2). Segmentation results are compared to the
ground truth on block basis (mixed blocks showing more than 5 % of both
foreground and background pixels are ignored). The resulting error rates are
given in Table 1. Our method gives the best results, followed by RANSAC
and robust least squares. For both quality measures, no significant difference in
performance can be observed.

A sample segmentation is illustrated in Figure 8. By visual inspection of
these results, a high intrinsic error rate was found due to two reasons (besides
inaccuracies in the motion estimation step): first, the object stands still in some
frames and is missed by motion segmentation. Second, the 4D motion model
implicitly assumes a planar background surface perpendicular to the optical
axis. Since this assumption is heavily violated in the foreman sequence, the
optimal motion fit cannot be determined in some frames.
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5 Discussion

We have presented a framework for the indirect estimation of a global motion
from a given motion field. Our method is based on two alternative probabilis-
tic formulations of the problem: an ML criterion assuming independence of
local motion samples, and an extension with a spatial coherence prior enforcing
piecewise-smooth motion. The optimization of the resulting quality functions is
done using RAST, an algorithm novel to dominant motion estimation in video.

The most important capability of our framework is that our method – in
contrast to local search procedures used in the past – guarantees an optimal
solution in terms of a clearly defined statistical criterion. We demonstrate this
superior performance on synthetic motion data showing blobs moving in front
of a noisy background motion, as well as on several real-world video sequences.
Though greedy search procedures may be fast, attractive solutions for online
processing, they do not guarantee global optimality. In this context, our frame-
work can provide ground truth for benchmarking global motion estimation in
video.

Another novelty we present is the combination of RAST optimization with
a spatial prior formulation. In our experiments, we measured both a slightly
better performance and a significant speed-up using this extension. Obviously,
this approach helps to guide the adaptive RAST search into more promising
regions of parameter space – an insight that might be interesting for traditional
RAST applications in the area of geometric matching and object recognition.

Table 1: Average segmentation error rates for 700 frames of self-generated video using
skin color ground truth (left) and for the “foreman” sequence (right). Blocks showing
parts of both foreground and background were ignored.

method segmentation er-
ror“green curtain”
(%)

segmentation error
“foreman” (%)

RAST, Q1 7.7 24.2
RAST, Q2 7.5 24.2
RANSAC, Q1 7.7 24.9
RANSAC, Q2 7.7 25.0
Robust Least Squares 7.8 25.5
XViD 11.7 33.1
Least Squares 40.6 41.4

Our experimental results on real-world scenes also point out how motion-
based segmentation is possible using indirect motion estimation. However, the
inherent limitations of the approach should be stated clearly: first, the mo-
tion estimates depends on the accuracy of local motion probes, which can be
error-prone due to lack of texture, local optima in optimization and motion dis-
continuities. Second, the performance is poor if the motion does not fit the 4D
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similarity transform model used, which happens for example with highly non-
planar backgrounds near to the camera. Using higher-order motion models as
outlined in Section 3.1 is generally possible with our framework, but is expected
to come with higher cost, since a larger parameter space needs to be searched.

21



References

[1] M. J. Black and P. Anandan. The Robust Estimation of Multiple Mo-
tions: Parametric and Piecewise-Smooth Flow Fields. Comput. Vis. Image
Underst., 63(1):75–104, 1996.

[2] T. M. Breuel. Fast Recognition using Adaptive Subdivisions of Transfor-
mation Space. In CVPR 92, pages 445–51, 1992.

[3] T. M. Breuel. On the Use of Interval Arithmetic in Geometric Branch and
Bound Algorithms. Pattern Recogn. Lett., 24(9-10):1375–1384, 2003.

[4] D. Cremers and S. Soatto. Motion Competition: A Variational Approach
to Piecewise Parametric Motion Segmentation. Int. J. Comput. Vision,
62(3):249–265, 2005.

[5] M. A. Fischler and R. C. Bolles. Random Sample Consensus: A Paradigm
for Model Fitting with Applications to Image Analysis and Automated
Cartography. Communications of the ACM, 24(6):381–395, 1981.

[6] D. A. Forsyth and J. Ponce. Computer Vision: A Modern Approach. Pren-
tice Hall Professional Technical Reference, 2002.

[7] D. Geman. Stochastic Model for Boundary Detection. Image Vision Com-
put., 5(2):61–65, 1987.

[8] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.
Cambridge University Press, New York, NY, USA, 2003.

[9] M. Irani and P. Anandan. About Direct Methods. In ICCV ’99: Intern.
Workshop on Vision Algorithms, pages 267–277, London, UK, 2000.

[10] A. Jepson and M. J. Black. Mixture Models for Optical Flow Computation.
In CVPR 93, pages 760–761, 1993.

[11] M. J. Jones and J. M. Rehg. Statistical Color Models with Application
to Skin Detection. International Journal of Computer Vision, 46(1):81–96,
2002.

[12] G. Kühne. Motion-based Segmentation and Classification of Video Objects.
PhD thesis, University of Mannheim, 2002.

[13] V. Lepetit and P. Fua. Monocular Model-Based 3D Tracking of Rigid
Objects: A Survey. Foundations and Trends in Computer Graphics and
Vision, 1(1), 2005.

[14] D. W. Murray and B. F. Buxton. Scene Segmentation from Visual Mo-
tion using Global Optimization. IEEE Trans. Pattern Anal. Mach. Intell.,
9(2):220–228, 1987.

22



[15] T. Schoenemann and D. Cremers. Near Real-time Motion Segmentation
using Graph Cuts. In Pattern Recognition (Proc. DAGM), volume 4174,
pages 455–464, Berlin, Germany, 2006.

[16] A. Smolic. Globale Bewegungsbeschreibung und Video Mosaiking unter Ver-
wendung parametrischer 2-D Modelle, Schätzverfahren und Anwendungen.
PhD thesis, RWTH Aachen, 2001.

[17] C. Tomasi and T. Kanade. Detection and Tracking of Point Features.
Technical Report CMU-CS-91-132, CMU, 1991.

[18] A. M. Tourapis. Enhanced Predictive Zonal Search for Single and Multiple
Frame Motion Estimation. In Proc. SPIE Conf. Visual Communications
and Image Processing, pages 1069–1079, Lugano, Switzerland, 2002.

[19] J. Y. A. Wang and E. H. Adelson. Layered Representation for Motion
Analysis. In CVPR 93, pages 361–366, 1993.

[20] Y. Weiss. Smoothness in Layers: Motion Segmentation using Nonparamet-
ric Mixture Estimation. In CVPR 97, pages 520–526, San Juan, Puerto
Rico, 1997.

23


