
A System that Learns to Tag Videos by
Watching Youtube

Adrian Ulges1,2, Christian Schulze2, Daniel Keysers2, Thomas M. Breuel1,2

1 Department of Computer Science, Technical University of Kaiserslautern
{a_ulges,tmb}@informatik.uni-kl.de

2 Image Understanding and Pattern Recognition Group
German Research Center for Artificial Intelligence (DFKI), Kaiserslautern

{schulze,keysers}@iupr.dfki.de

Abstract. We present a system that automatically tags videos, i.e. de-
tects high-level semantic concepts like objects or actions in them. To
do so, our system does not rely on datasets manually annotated for re-
search purposes. Instead, we propose to use videos from online portals
like youtube.com as a novel source of training data, whereas tags pro-
vided by users during upload serve as ground truth annotations. This
allows our system to learn autonomously by automatically downloading
its training set.

The key contribution of this work is a number of large-scale quantita-
tive experiments on real-world online videos, in which we investigate the
influence of the individual system components, and how well our tagger
generalizes to novel content. Our key results are: (1) Fair tagging results
can be obtained by a late fusion of several kinds of visual features. (2)
Using more than one keyframe per shot is helpful. (3) To generalize to
different video content (e.g., another video portal), the system can be
adapted by expanding its training set.
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1 Introduction

During the last years, online video has evolved as a source of information and
entertainment for users world-wide. For an efficient access to this video data,
most commercial providers rely on text-based search via user-generated tags – an
indexing that requires manual work and is thus time-consuming and incomplete.

In parallel, content-based techniques have been developed that try to use
the content of a video to infer its semantics. To achieve such “tagging”, i.e. an
automatic annotation of videos with high-level concepts like objects, locations,
or actions, systems are usually trained on a set of labeled videos. Acquiring such
ground truth information manually is costly and poses a key limitation for the
practical use of automatic annotation systems.



In this paper, we introduce a system that learns to tag videos from a different
kind of training data, namely by watching video clips downloaded from online
video portals like youtube.com. Thereby, tags provided by users when uploading
content serve as ground truth annotations. Our work is thus targeted at online
video (1) as an application (our system proposes adequate tags for videos and
can thus support users with tagging or keyword search), and (2) as a data source
for visual learning: online videos are publicly available and come in a quantity
that is unmatched by datasets annotated for research purposes. We envision this
data to complement (or even replace) existing training sets.

Despite the enormous diversity of online video content and the fact that it
shows lots of irrelevant scenes (as is illustrated in Figure 1), we present a pro-
totype that shows how visual learning of semantic concepts from online video
is possible (a demo can be found at http://demo.iupr.org/videotagging). Com-
pared to our previous workshop publication [17], we present several novel quanti-
tative experiments with our prototype on large-scale datasets of real-world online
videos. Our key results are the following: (1) A fusion of multiple feature modal-
ities is essential for a successful tagging. (2) Using more than a single keyframe
per shot improves tagging performance. (3) The system adapts well to different
video data if expanding its training set.

2 Related Work

An area strongly related to our work via the use of keyframes is automatic image
annotation, which has been dealt with by modeling latent visual concepts in
images [3] or joint occurrences of local descriptors and tags [10]. Also, multiple
instance learning methods have been used to detect local features associated
with a concept [19]. Image annotation is also performed at a large scale (see
the ‘Automatic Linguistic Indexing of Pictures - Real Time’ [ALIPR] server [6]).
Closest to ours, however, is the work by Fergus et al. [2], who introduced the
idea of learning from low-quality online data for the domain of images.

If dealing with video content, the detection of semantic concepts often follows
a keyframe extraction for efficiency reasons, leading to an image retrieval problem
(e.g., [10, 18]). A valuable source of information beyond such static image content
is motion, which has for example been employed in form of motion descriptors [8].
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Fig. 1: Some sample keyframes extracted from videos with the tag desert. Tagging such
material is made difficult by the visual diversity of the concept (a,b,c), shots not directly
visually linked to to the tag (d), and low production quality (e).



Fig. 2: An overview of our tagging system: a video X is represented by keyframes X1, .., Xn.
Each of them is fed to feature pipelines F1, .., Fk, in which visual features are extracted and
give scores PFj

(Xi) for each keyframe. These posteriors are fused over all keyframes, and
finally over all features, to obtain the result P (t|X).

As far as video annotation is concerned, a lot of related work has been done
as part of TRECVID3, an annual video retrieval contest that hosts quantitative
evaluations on an extensive corpus of news video. In its “high-level features”
task, the automatic tagging of shots is addressed. To boost standardization and
comparability of results, groups share large sets of manual annotations [12], low-
level features, and baseline results [15].

When dealing with online video content, several characteristics need to be
respected: First, online video comes in a greater diversity, ranging from home
video to commercial TV productions. Second, annotations in TRECVID are
done on shot level, while we are interested in tagging whole videos. To the best
of our knowledge, no prior research with the focus on online video tagging exists.

3 Our Approach

Given a video X and a semantic concept t (in the following referred to as a
“tag”), the problem of automatic annotation is to return a “score” P (t|X), i.e.
the probability that the tag is present in the video.

Figure 2 gives an overview of our system architecture: we represent a video X
by a set of representative keyframes X1, .., Xn. Each keyframe Xi is fed to several
“feature pipelines”F1, .., Fk, each using visual features of a certain type to return
a score PFj (t|Xi). These pieces of evidence are first fused over all keyframes of a
video, obtaining feature-specific scores PFj (t|X). Second, those are again fused
over all feature pipelines in a late-fusion step, obtaining the final score P (t|X).
In the following, the system components are described in the order of processing.

3.1 Keyframe Extraction

A standard way to extract a set of representative keyframes for each video is to
segment the video into shots and use one frame per shot as a keyframe. This
causes considerable information loss for long shots containing strong camera
motion and scene activity, which is why an adaptive approach providing multiple
keyframes per shot seems more adequate for online videos.

3http://www-nlpir.nist.gov/projects/t01v/



We use a divide-and-conquer approach that delivers multiple keyframes per
shot in two steps: first, shot boundary detection is applied, for which reliable
standard techniques exist [7]. Second, for each of the resulting shots, a clus-
tering approach is applied similar to [11]: we extract MPEG-7 color layout de-
scriptors [9] for all frames in a shot and then fit a Gaussian mixture model to
the resulting feature set using k-means. For each mixture component, the frame
next to the center is extracted as a keyframe. The number of components is
determined using the Bayesian Information Criterion (BIC) [13].

3.2 Feature Pipelines

A key aspect of our tagging system is the combination of several visual features.
We organize these in “feature pipelines” F1, .., Fk, each of which represents a
type of visual feature (e.g., color histograms) and gives a feature-specific score
PFj (t|Xi) for a keyframe Xi. We use three feature pipelines outlined in the
following. Note, however, that more pipelines can be integrated easily.

Pipeline 1 - Color and Texture: This feature pipeline uses frame-level de-
scriptors based on color (RGB color histograms with 8× 8× 8 bins) and texture
(Tamura features [16]). Both features are combined by early fusion (i.e. concate-
nated) to obtain a joint feature vector F1(Xi).

As a statistical model, we use nearest neighbor matching as illustrated in
Figure 3: given a training set of tagged keyframes Y , we find the nearest neighbor
x′ := arg miny∈Y ||F1(y) − F1(Xi)||2, and the score for a tag t is a vote for the
tag of this neighbor:

PF1(t|Xi) := δ(t, t(x′)) (1)

Pipeline 2 - Motion: Some semantic concepts (e.g., interview) can be char-
acterized better by a discriminative motion pattern than by color or texture.
To do so, we use a simple compressed domain feature of block motion vectors
extracted by the MPEG-4 codec XViD4 to describe what motion occurs as well
as where in the frames it occurs.

For this purpose, the spatial domain is divided into 4 × 3 regular tiles, and
for each tile a two-dimensional 7 × 7 histogram over the 2D components of all
motion vectors in a shot is stored (vectors are clipped to [−20, 20]× [−20, 20]).
By concatenating all those histograms, a 588-dimensional descriptor is extracted
on shot level, i.e. it is the same for all keyframes in a shot.

Like for color and texture, nearest neighbor matching is used to model the
keyframe score.

Pipeline 3 - Visual Words: Modern recognition systems have been successful
by representing images with collections of local image regions (or “patches”,
respectively). These patch-based techniques achieve excellent robustness with

4www.xvid.org



Fig. 3: Left: In nearest neighbor matching, a test frame (top row) votes for the tag of its
nearest neighbor in the training set (bottom row). Right: The maximum entropy model learns
these sample patches as discriminative for the tag eiffeltower.

respect to partial occlusion, deformations, and clutter, which is why we adapt a
similar approach for our system.

More precisely, we use a “bag-of-visual-words” representation [1, 2, 14]. This
model clusters visual features according to their appearance into patch categories
referred to as “visual words”. Histograms over these visual words indicate the
frequency with which all kinds of features appear in a frame, an analogy to the
“bag-of-words” model from textual information retrieval.

A vocabulary of 500 visual words was learned by sampling patches of size 32×
32 pixels at regular steps of 16 pixels and clustering them using k-means. Patches
are described by low-frequency discrete cosine transform (DCT) coefficients in
YUV space. We extract 36 coefficients for the intensity, and 21 for each chroma
component in a zigzag pattern, obtaining a 78-dimensional patch descriptor.

As a statistical model for the resulting 500-bin histograms, we adapt a dis-
criminative approach based on the maximum-entropy principle, which has suc-
cessfully been applied to object recognition before [1]. The posterior is modeled
in a log-linear fashion:

PF3(t|Xi) ∝ exp

(
αt +

500∑
c=1

λtch
c
i

)
, (2)

where hc
i is entry number c in the visual word histogram for frame Xi. The

parameters {αt, λtc} are estimated from a training set of tagged frames using an
iterative scaling algorithm [1].

3.3 Fusion

From several keyframes of the input video and from several feature pipelines, we
obtain many weak pieces of evidence in form of scores indicating the presence of
semantic concepts. These are fused in two steps to obtain a global score.

Keyframe Fusion: For a fusion over the keyframes X1, .., Xn of a video X,
we use the well-known sum rule from classifier combination:

PFj (t|X) =
1
n

n∑
i=1

PFj
(t|Xi) (3)



Late Fusion: To combine scores obtained from several feature pipelines, sev-
eral standard measures from classifier combination can be applied (like the sum
rule, product rule, etc.). We present a small study in the following experimental
section (Figure 5), in which we evaluate several combination strategies.

4 Experiments

We present quantitative experiments on real-world online videos to study (1) how
the single components of the system influence its overall performance, and (2) how
the system can be adapted to different kinds of video data.

Most of our experiments are done on a database of real-world online videos we
downloaded from the video portal youtube.com. We selected 22 tags manually,
including activities (e.g., riot, sailing), objects (e.g., cat, helicopter), and
locations (e.g., desert, beach). For the complete list of tags, please visit our
website http://demo.iupr.org/videotagging/tagging-description.html.

We used the youtube API to download 100 videos per tag (total database:
2200 videos / 194 hrs.). The whole set was separated into a training set (50
videos per tag), a validation set, and a test set (both 25 videos per tag). To avoid
training on the testing data, the test set was only used for the final evaluation.

A problem for the evaluation are duplicate or slightly edited videos uploaded
multiple times by different users. We identify and remove (near-)duplicates in
two steps: First, exact duplicates are detected automatically using a signature
matching similar to [4]. Second, near-duplicates are removed by a manual check
of videos that gave suspiciously good results in our tagging experiments.

4.1 Feature Modalities

Figure 4 illustrates the influence of several feature pipelines on the performance
on the system (all fusion of features was done using the sum rule): when start-
ing only with color and texture (feature pipeline 1), a mean average precision
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Fig. 4: Left: Experimental results for several feature combinations in terms of mean average
precision (MAP). Right: The recall-precision curves when fusing all features. The average
precision per concept varies between 81% (soccer) and 11% (hiking).
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Fig. 5: Left: Tagging performance when using several combination strategies. Center: The
MAP on the test set plotted against the weights for color+texture and motion. The sum
rule (0.33, 0.33) and the weights learned from the validation set (0.45, 0.2) are both near to the
optimal peak (0.3, 0.2). Right: Comparing our keyframe extraction (adapt) with two baselines.

(MAP) of 25.4% is achieved. Though motion (feature pipeline 2) alone does not
improve performance, it supports the system when combined with color and tex-
ture (MAP 27.1%). An in-depth analysis reveals the strongest improvements for
motion-affine concepts like videoblog (from 17 to 37%) and riot (from 14 to
23%).

Visual words by themselves (feature pipeline 3) give an even better perfor-
mance, particularly for objects like eiffeltower (here, the MAP was improved
from 7.3% to 70.6%). This is because the maximum-entropy model associates
patches with a weight and thus emphasizes discriminative features of an object,
as is illustrated in Figure 3. Finally, a sum rule fusion of all features achieves the
best overall performance.

We also compared the sum rule fusion to several other classifier combination
strategies. (Figure 5, left). The sum rule performs superior to other methods,
which agrees with earlier results [5] that claim good robustness properties against
noise in the weak (in our case, keyframe) estimates. Our results confirm that this
robustness is crucial in our context, since many keyframes may not be visually
related to the true tag and thus give misleading scores.

We also tested a more general approach, namely a weighted sum:

P (t|X) =
3∑

j=1

wjPFj (t|X), (4)

where the feature weights (w1, w2, w3) = (0.45, 0.2, 0.35) are learned from the
validation set (i.e. color and texture are given the highest weight, and motion
the lowest). The left Table in Figure 5 indicates that by learning feature weights
from the validation set, we obtain a slightly better performance with 35.5%.

An in-depth view of the performance for all 22 tags is given in form of recall-
precision curves in Figure 4. Obviously, a successful tagging strongly depends
on the concept: Sports like soccer and swimming are easy to tag due to their
restricted color layout and low diversity in appearance, while concepts with a
high visual diversity are difficult, like explosion or dancing.



Fig. 6: Shots from a TV news dataset for which our system returns the highest scores, for the
concepts interview(top), swimming(center), and riot(bottom). True positives are highlighted
in green, false positives in red.

4.2 Keyframe Extraction

In this experiment, we compare our keyframe extraction (Section 3.1) with two
baseline methods to investigate whether our adaptive approach is in fact essential
for a successful tagging. The first baseline named first uses only the first frame
of a shot as a keyframe (which is often done in practice). It generates only 56%
keyframes compared to ours (ca. 97.000). The right table in Figure 5 shows that
the use of additional keyframes leads to performance increases between 2 and
9% – i.e., tagging is improved by using multiple keyframes per shot.

Note that our clustering approach adapts to the activity of a shot, i.e. it
produces more keyframes if the content of a shot varies. To answer whether this
adaptivity is essential for tagging, we compare our approach to a second baseline
(regular) that regularly samples keyframes at an interval of about 7 seconds.
This baseline generates more keyframes than our approach (8.2%), and does not
adapt to the content of a shot. The table shows about the same performance as
for our adaptive method. This result indicates that the use of adaptive keyframes
plays a negligible role.

4.3 Generalization to Different Video Data

Obviously, our system makes use of redundancy in youtube videos, which may
occur due to duplicate shots or series sharing common production styles and
locations. While we explicitly eliminate the former, our system still implicitly
uses the latter, weaker type as is illustrated by the rightmost match in Figure 3
(left). While this helps the system to tag videos from the online portal trained
on, it is unclear how the system generalizes to different content. This is why we
tested our system trained on youtube on two other data sources.

TV News Data: This test set contains 5.5 hours of unlabeled German
news video (ca. 4.000 keyframes). Given a tag, our system (all three feature
pipelines, sum rule fusion) returns the TV shots sorted by their scores. In Figure
6, we illustrate the shots with top scores for three tags we expect to occur in
news video. For interview, the system gives a near-perfect result (only 2 false
positives). For swimming, many false positives can be observed, since the system
is attracted by blue background that has not been present in the training set.
Finally, we obtain four hits for the concept riot.
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Fig. 7: Left: Sample frames for the concept crash from youtube (top) and revver (bottom).
While youtube videos show mostly car and motorbike crashes, revver contains also skiing and
biking accidents. Right: Our results show that a joint tagger for multiple video portals (here,
youtube and revver) can be successful if trained on all data sources.

Though – due to the lack of ground truth – no quantitative results can be
presented. , this result generally indicates that tagging of TV data can be learned
from online video data.

Revver Video Portal: For this experiment, we use videos from the portal
revver.com. We created a dataset similar to the youtube one. Two concepts were
left out, and for four other concepts less than 100 videos were found. We used the
system setup that gave the best results on the youtube data (all features, sum
rule fusion). Since no further parameter tuning was done, we split the revver
data into a 2

3 training set and 1
3 test set.

Figure 7 illustrates that the system generalizes poorly if trained on one portal
and applied to the other. An explanation for this is illustrated in Figure 7 for
the example of the concept crash: youtube videos (top row) contain lots of TV
material showing car and motorbike races, while revver videos show significantly
more home video content (here, skiing or biking). Obviously, a system that is
not trained on this novel content cannot correctly tag such data.

Therefore, we studied if a generalized tagger can be created by training the
system on both data sources. We obtain a system that performs comparable
(about 4% worse) to the specialized systems trained for the single portals. This
demonstrates how a general tagger can be created by adapting the training set.

5 Conclusions

In this paper, we have introduced a system that learns to detect semantic con-
cepts in videos by watching content from online video portals. Our experimental
results show that fair tagging results can be obtained when combining several
visual feature modalities, namely color, texture, motion, and a patch-based ap-
proach.

However, two key aspects of learning from online videos have been neglected
so far: (1) Can training be adapted better for certain concept types (e.g., objects
vs. locations)? (2) Can the system be made robust to shots in a video that
are irrelevant for a concept? So far, our answer to both questions has been the
integration of multiple feature modalities using a robust sum rule fusion. We
expect a better tagging by addressing these problems using explicit models, and
therefore envision our system to be a baseline for future work.
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