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Abstract. Conventional background subtraction techniques that up-
date a background model online have difficulties with correctly segment-
ing foreground objects if sudden brightness changes occur. Other meth-
ods that learn a global scene model offline suffer from projection errors.
To overcome these problems, we present a different approach that is
local and discriminative, i.e. for each pixel a classifier is trained to decide
whether the pixel belongs to the background or foreground. Such a model
requires significantly less tuning effort and shows a better robustness,
as we will demonstrate in quantitative experiments on self-created and
standard benchmarks. Finally, segmentation is improved by 18 % by
integrating the probabilistic evidence provided by the local classifiers
with a graph cut segmentation algorithm.

1 Introduction

Motion-based segmentation in static scenes is targeted at separating moving
foreground objects from a static background given a fixed camera position and
focal length. For this purpose, a number of background subtraction techniques
exist that construct a model of the static scene background and label regions
not fitting this model as foreground regions.

Using these methods, background subtraction systems achieve fair segmenta-
tion results but do not react properly to sudden intensity changes due to camera
gain control, light switches, shadows, weather conditions, etc.. On the one hand,
systems should adapt to such phenomena, while on the other hand reliably de-
tecting foreground objects. Our practical experience has been that an “online”
adaption as it is proposed by most approaches in the literature is error-prone,
that the associated parameters (like feature weights or adaption rates of the
background model) are difficult to tune, and that robustness is hard to achieve.

An alternative is to learn a background model during a separate learning
phase in the absence of foreground objects (i.e., “offline”). In this way, scene
properties can be modeled like weather changes and different light sources as
well as characteristics of the camera like gain correction and noise. While conven-
tional global methods following this strategy fail in the presence of pronounced



foreground objects, we propose a local and discriminative model based on clas-
sifiers deciding whether a pixel belongs to the background or foreground. Our
contributions are: (1) a background subtraction approach that is simple and –
in contrast to conventional methods we tested before – does not require much
tuning, (2) quantitative experiments demonstrating that the local discriminative
approach performs competitive to hand-tuned state-of-the art segmenters, and
(3) it is shown how the probabilistic evidence given by local classifiers can be
fused to an improved segmentation using a graph cut algorithm.

2 Related Work

The majority of background subtraction techniques proposed in the literature
maintain a pixel-wise background model that is adapted online to illumination
changes caused by varying weather conditions, camera gain control, light sources
switched on and off, shadows, and background motion like waving trees (for re-
views, see [9, 6]). Starting with the work by Wren et al. [12], several ways have
been proposed to model the distribution of pixel intensity x given the fact that
the pixel belongs to the background, p(x|b). For this density, parametric ap-
proaches have been proposed using Gaussians [12] and mixtures of Gaussians [15]
as well as non-parametric techniques like kernel densities [10, 11]. p(x|b) is then
used for segmentation by thresholding with the difference between background
model and observation [18], or by integrating it in a Bayesian decision framework
to compute P (b|x) (e.g., [16, 17]).

To adapt to changes of the environment, most systems perform updates of the
background model online, i.e. while segmentation is running. To work robustly,
these heuristic updates must adapt properly to sudden scene changes while at
the same time detecting non-background regions, which makes them error-prone
and difficult to tune. To overcome this problem, it has been suggested to use
features that are robust to illumination changes, like the gradient direction [8],
shadow models [13], and color co-occurrence [7]. Our experience has been that
problems with online updates can be overcome to some degree using proper fea-
tures and careful tuning, but the system is not truly robust. Once segmentation
fails, background models tend to be corrupted by foreground regions. Also, scene
parts covered by the object cannot be updated properly.

To better adapt to scene changes, an alternative is to learn a model of the
scene offline, i.e. during a separate learning phase in the absence of foreground
objects. The most popular method based on this idea are“Eigenbackgrounds”[14]
which view images as vectors of pixel values and perform a global Principal
Component Analysis (PCA) decomposition on image level. While we adapt the
strategy of learning a scene model offline, it will be shown that a global approach
like PCA fails in the presence of large foreground objects. Instead, our model is
based on local discriminative patch classifiers.

Other approaches have followed the idea of local classifiers before. Recently,
Culibkr et al. [3] have proposed a related approach, in which frequently occurring
patterns of pixel features are stored in a Radial Basis Function Network (RBF).

2



Fig. 1: The proposed setup: Each pixel is associated with a receptive field from which
simple features like pixel intensity or gradient strength are extracted. Those form the
input of a neural network classifier, which estimates the background posterior P (b|x).
These values are finally fed to a graph cut algorithm that determines the segmentation
result.

The replacement and update of weights, however, are done using heuristic rules
similar to the ones for standard online approaches [15]. In contrast to this work,
the classifiers proposed here are trained in a discriminative manner by minimizing
classification error.

Closest to our work are systems that truly train patch classifiers based on
local information: Criminisi et al. proposed to integrate multiple cues such as
motion and color in a Conditional Random Field (CRF) framework using tree-
based classifiers [4]. Grabner et al. [5] use an online boosting framework. The
key problem with such approaches is the lack of non-background samples for
training. While Criminisi’s prototype is trained in a fully supervised manner,
i.e. ground truth sequences with full segmentations are demanded, Grabner’s
framework assumes uniform distributions for foreground features. In contrast to
both, we propose a third alternative, namely to synthesize virtual foreground
samples for training.

3 Our Approach

Most background subtraction systems construct a generative model p(x|b) for
the value of a pixel x given the the fact that it belongs to the background. This
can then be integrated in a Bayesian framework to obtain the posterior P (b|x).

In contrast to this, we follow a discriminative strategy, i.e. P (b|x) is directly
estimated using a local classifier for each pixel x. Since training is carried out
in the absence of foreground objects, “virtual” non-background samples are ob-
tained by synthesizing them. Finally, it is demonstrated how the local posteriors
P (b|x) can be fused to a global segmentation using a smoothness prior and a
graph cut algorithm for optimization.

System Setup: To estimate the background probability P (b|x), a neural
network classifier is used for each pixel x, which is associated with a squared
receptive field in the surrounding of x (also referred to as a patch). From this
receptive field, simple features are extracted, which can be (1) pixel gray values or
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Fig. 2: Left: Two images of a static scene from the Office dataset with a highlighted
patch (red). Right: Background and foreground Samples of the highlighted patch for
training the associated classifier. Virtual foreground Samples have been synthesized by
covering background samples with random synthetic texture.

color values, (2) gradient strength, or (3) the chroma components in Y UV space,
a description that has proven robust to illumination changes. These features
form the input of a Multilayer Perceptron (MLP) with 1 hidden layer, which
estimates P (b|x) [2]. These posteriors can be used for a local, pixel-wise decision
by thresholding them, or they can be integrated with a Gibbs prior to obtain
smooth region boundaries. See Figure 1 for an illustration of the proposed system
architecture.

Training: Most conventional background subtraction systems only maintain
a model for the background, which is “trained” by heuristic update rules in a
fully unsupervised manner. Our hypothesis is that a better distinction between
foreground and background can be achieved if modelling both classes in a dis-
criminative fashion. While background samples can be acquired during an offline
learning phase, for the foreground uniform distributions have been assumed [5],
or systems have been trained on fully segmented images [4].

We propose a third alternative, namely to synthesize virtual training samples
for the foreground. In this paper, these training samples are constructed by sim-
ply covering the receptive field of a pixel partially or fully with non-background
texture (for this, a random color was chosen and Gaussian noise with standard
deviation 10 was added). Both background and foreground samples of a train-
ing patch are illustrated in Figure 2. Given such samples, the MLP training is
carried out using plain backpropagation [2], whereas a fixed learning rate (0.2)
and number of epochs (50) are used.

Integration with Graph Cut: Since the scores given by the local MLP
classifiers have a probabilistic interpretation as P (b|x), they can be integrated
with a smoothness prior as described in the following. For background subtrac-
tion, a similar formulation has been proposed before in [4] and combined with
so-called “background attenuation” (e.g., [16]).

For an image with pixels x1, .., xn, the Boolean background variables b1, .., bn

are determined according to a MAP formulation:

(b̂1, .., b̂n) = arg max
b1,..,bn

P (b1, .., bn|x1, .., xn)

∝ arg max
b1,..,bn

∏
i

(
P (bi|xi)
P (bi)

)
· P (b1, .., bn)
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(a) (b) (c) (d) (e)

Fig. 3: A sample result on the Office dataset. The Eigenbackgrounds method projects
the input image (a) to a too dark background image (b), and thresholding the difference
(c) between the observation (a) and background image (b) obviously leads to segmen-
tation errors. In contrast, the posterior P (b|x) returned by our approach (d) gives a
good segmentation (e) if integrated with a graph cut technique.

Further, it is assumed that the prior P (b1, .., bn) is a Gibbs distribution: If de-
noting all pairs of 8-connected neighbor pixels with C, we define:

P (b1, .., bn) ∝
∏

(xi,xj)∈C

e−U(i,j) (1)

with clique potentials U(i, j) = 0 (if bi = bj) and U(i, j) = ν (else), i.e. the length
of the foreground object boundary is penalized with a constant bias. Note that
it follows that P (b1) = ... = P (bn) = 1

2 . If taking the logarithm, the MAP
solution thus minimizes an energy function consisting of a “data fit” term and a
“smoothness term”:

(b̂1, .., b̂n) = arg min
b1,..,bn

−
∑

i

log P (bi|x)︸ ︷︷ ︸
“datafit′′

+ ν ·
∑

(xi,xj)∈C

(1 − δ(bi, bj))︸ ︷︷ ︸
“smoothness′′

(2)

Via the“smoothness parameter”ν, both constraints are weighted relative to each
other. Minimization is carried out efficiently using a graph cut algorithm [1]. The
effect of this additional smoothness constraint is illustrated in Figure 3: While
the local posteriors give a noisy result with some local misclassifications (d),
these are overruled by the smoothness constraint (e).

4 Experiments

In the following experiments, we first analyze the influence of several internal pa-
rameters of our system on a self-created dataset. Second, comparisons with other
state-of-the-art methods on both self-generated and public benchmarks are pre-
sented that demonstrate the competitive performance of the local discriminative
approach.

4.1 Experiments on Office Dataset

The following evaluations have been done on the self-created Office dataset3. This
benchmark consists of 497 training images taken over several days that show a

3The dataset is publicly available at http://www.iupr.org/downloads/data
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Fig. 4: Experimenting with internal parameters of the system: a saturation of the
performance is found for about (a) 300 virtual foreground samples and (b) 5 hidden
units.

complex scene in an office environment with several light sources, shadows, and
slight background motion of a plant (see Figure 2 for two sample pictures).
For testing, objects were presented to the camera in 6 short sequences taken
at about 1 fps.. These test sequences represent difficult situations with shadows
cast by the objects, abrupt light switches, and objects in varying distance to
the camera. For 90 randomly sampled frames, ground truth segmentations were
provided manually.

A Sample Result: We start with a first qualitative result that compares
the local discriminative approach with the global Eigenbackgrounds approach
(quantitative results will be given later in Figure 5). Given a test frame with
an object held close to the camera (Figure 3, the Eigenbackgrounds approach
projects the input image to a low-dimensional Eigenspace and thresholds the
distance between the observation and the projection. Due to the influence of
the large foreground object, the input (a) is projected to a too dark background
image (b), and thresholding with the resulting distance (c) obviously gives a
poor segmentation. In contrast, since the proposed pixel classifiers are local,
the foreground region has negligible influence on the rest of the image, and
the resulting posterior P (b|x) (d) allows for a proper segmentation (e) when
integrated with a graph cut as outlined in Section 3.

Number of Synthesized Foreground Samples: A core idea of the pro-
posed approach is to synthesize samples for the non-background class. In this
experiment, we tested how many such samples are needed per patch. The system
was trained and tested on the data described above, whereas images were scaled
to a width of 80 pixels. Note that the local discriminative approach scales lin-
early with the number of image and patch pixels - since the proposed approach
proved robust to downscaling in our experiments, it was decided to use subsam-
pled images such that the system runs in near-realtime at 5 fps. on a 2.4 GHz
Opteron processor.

As features, chroma components in Y UV color space were used with a patch
width of 7 and an MLP with 5 hidden units.
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Fig. 5: Left: When using graph cut segmentation with a proper smoothness parameter
ν, the segmentation quality (Li’s measure) can be improved significantly from 71 %
(best pixel-wise thresholding) to 84 %. Right: Overall results for baseline methods and
our system with different feature types on the Office dataset.

For the assessment of segmentation quality, two different measures were used:

1. the equal error rate (EER) for foreground and background pixels
2. the quality measure used by Li et al. [17]: If the foreground regions in the

result and ground truth mask are denoted with At and B, the segmenta-
tion quality is defined as S(At.B) := At∩B

At∪B . Note that the result At can be
obtained by a graph cut algorithm or by locally thresholding the posterior
P (b|x). In the latter case, we choose the threshold t that maximizes S on
the test set.

Figure 4 plots both segmentation quality measures against the number of
synthesized samples. As expected, the segmentation quality increases with the
number of samples, but it converges against an optimum approximately reached
at 300 samples (this number will be used in the following experiments).

Number of Hidden Units: A similar experiment was done for the number
of hidden units, whereas the setup from the last experiment was copied and the
number of foreground samples per patch was set to 300. Our results illustrated
in Figure 4 show that the overall performance of the system depends less on the
number of hidden units than it does on the number of training samples. Also,
we find the optimal performance for about 5 hidden units (when increasing this
number further, the performance drops slightly due to overfitting).

Influence of Graph Cut: As outlined in Section 3, one key feature of the
proposed framework is the probabilistic integration of posteriors with a graph
cut optimization. In this experiment, we study quantitatively whether this op-
timization actually improves the overall performance of the system (the setup
from the previous experiment was kept). In Figure 5, Li’s quality measure is
plotted against the smoothness parameter ν from Equation (2). The top perfor-
mance can be observed at ν = 10. More interesting, however, is that the overall
segmentation performance is improved to 84 %, i.e. by 18 % relative to the best
pixel-wise thresholding with the posterior (ca. 71 %, as can be seen in Figure 4).
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CamouflageWav.Trees Campus Fountain WaterSurf.Curtain

Fig. 6: Sample results on public datasets as reported in [17, 18]. Row 1 shows test
frames, row 2 variance images that illustrate where motion occurs. Ground truth masks
are given in row 3, and the bottom row shows the posterior given by our approach.

Comparison with other Methods: Finally, we compare the proposed
framework with two other methods, namely Eigenbackgrounds [14] (“PCA”) and
a thoroughly tuned implementation of a state-of-the-art online background sub-
traction approach (“ONLINE”). This method weighs two background models,
namely a shadow model [13] and histograms of gradient directions [8], and in-
tegrates them with a background attenuation and graph cut optimization as in
Sun’s Background Cut [16].

Quantitative results for both methods as well as for the proposed approach
tested with several features are illustrated in Figure 5 (the same setup was
used as in the experiments before). Our approach gives a statistically signifi-
cant improvement compared to PCA, which is revealed by a paired t-test and
corresponds to the observations made in Figure 3.

The online algorithm performs comparably to our system when using gray
pixel values (“gray”) – it has particular problems with light switches and strong
gain control (note that test sequences were taken at only 1 fps., which simulates
sudden light changes and stresses the online system).

The local discriminative approach does even better when using more ro-
bust features like gradient strength (“grad”), chroma information (“uv”), or both
(“grad+uv”). Finally, the top performance is achieved when integrating the pos-
teriors with a graph cut optimization.

4.2 Experiments on Other Datasets

In this experiment, the proposed framework is tested on publicly available bench-
mark sequences from the literature representing difficult situations with motion
in the background, like waving trees, flickering monitor sequences, and water
surfaces. We demonstrate that our approach is capable of learning an adequate
background model in such situations and show competitive results.
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Table 1: Quantitative results on public datasets from [18, 17]

Error Rate (from [18])

sequence our approach best res. in [18]

Camoufl. 5.41 9.54

W.Trees 5.31 5.02

Li’s quality (from [17])

sequence our approach Li’s system MOG

Campus 60.01 68.3 48.0

Fountain 54.87 67.4 66.3

W.Surf. 72.66 85.1 53.6

Curtain 40.51 91.1 44.5

From [18] we use the “WavingTress” and “Camouflage” Sequences, and from
[17] “Campus”, “Fountain”, “WaterSurface”, and “Curtain”. Other sequences are
available, but do not satisfy our need for a background-only training phase show-
ing all lighting conditions that occur in testing.

The system was run by using a pixel-wise thresholding of the posterior, i.e.
without graph cut integration. “uv” features were used with a patch radius of 3,
5 hidden units and 300 training samples. Images were scaled to a resolution of
width 160 (for “Campus” and “Fountain”, which show very small objects) or 80
(for all others). 200 training frames in the beginning of each sequence were used.

Some sample results are illustrated in Figure 6, and quantitative performance
measures are given in Table 1, whereas we stick with the error measures from the
corresponding publications. For [18], this is the rate of pixel errors (we use the
equal error rate threshold). Our approach performs comparably (“WavingTrees”)
or significantly better (“Camouflage”) than the best results reported in [18].

For the sequences from [17], we choose the threshold that optimizes Li’s
quality. Here, the local discriminative approach is outperformed by Li’s for all
sequences. Compared to a standard mixture-of-Gaussians (MOG) system, it per-
forms better for “Campus” and “WaterSurface”, comparable on “Curtain”, and
does worse for “Fountain”. An in-depth analysis revealed that for the “Fountain”
Sequence, our system reacts sensitive to a small camera shake during the test
phase of the sequence.

5 Discussion

In this paper, we have presented a background subtraction approach based on
training local discriminative classifiers that assign pixels to foreground and back-
ground. A competitive performance on self-created and standard benchmarks has
been demonstrated. Further, our experience has been that the system is more
robust and easier to tune than online algorithms implemented previously.

While segmentation with our prototype can be done near-realtime (for an
image width of 80 pixels, an unoptimized implementation runs at 5 fps.), training
takes significantly longer (about 1 sec. per pixel) and is thus not really suitable
for online updates such as the system in [5]. Note, however, that our prototype
can be parallelized by treating pixels separately.

An interesting open question is the influence of more realistic samples for the
“foreground model” of the system. So far, a very simple sampling strategy has
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been used (random colors with additive noise). It might be interesting to test
whether our approach can do better with samples from real images, or even from
foreground objects that are known to occur in the scene4.
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