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ABSTRACT
A key problem with the automatic detection of semantic
concepts (like ‘interview’ or ‘soccer’) in video streams is the
manual acquisition of adequate training sets. Recently, we
have proposed to use online videos downloaded from portals
like youtube.com for this purpose, whereas tags provided by
users during video upload serve as ground truth annotations.

The problem with such training data is that it is weakly
labeled: Annotations are only provided on video level, and
many shots of a video may be “non-relevant”, i.e. not visu-
ally related to a tag. In this paper, we present a probabilistic
framework for learning from such weakly annotated training
videos in the presence of irrelevant content. Thereby, the rel-
evance of keyframes is modeled as a latent random variable
that is estimated during training.

In quantitative experiments on real-world online videos
and TV news data, we demonstrate that the proposed model
leads to a significantly increased robustness with respect to
irrelevant content, and to a better generalization of the re-
sulting concept detectors.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing

General Terms
Algorithms, Measurement, Experimentation
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1. INTRODUCTION
Content-based video retrieval is drawing more and more

attention as the amount of digital video being stored and
published is growing rapidly. Online video distributed via
portals like youtube.com or blinkx.com has emerged as a
rapidly growing market and as a serious competitor for tra-
ditional TV stations, which again maintain archives con-
taining decades of video broadcast. To grant efficient ac-
cess to such vast databases, most commercial systems rely
on user-generated meta-data that are time-consuming to
acquire, subjective, and can be incomplete or just not at
hand. This is why content-based retrieval tries to comple-
ment traditional meta-data search with statistical models of
the content of a video. In this context, a key task is the
construction of systems that automatically annotate videos
with high-level semantic concepts like objects, locations, or
actions. Such concept detectors can support users with tag-
ging their videos. They also allow a text-based search in
video databases by mining them for concepts like ‘interview’
or ‘US flag’.

A key problem is that concept detectors need to be trained
on annotated video data, i.e. shots manually labeled with
semantic concepts (or “tags”, respectively). Since the distri-
bution of such tags in low-level feature space can be arbitrar-
ily complex, training sets must be large-scale and are thus
difficult to acquire in practice. This is a reason why concept
detection – though drawing strong attention from research
and industry – has not been widely applied in practice.

In previous work [18, 19], we have proposed online videos
as a data source that is both large-scale and easy to ac-
quire. Such videos can be downloaded in large quantities
from portals like youtube.com, and the tags users provide
when uploading content can serve as ground truth annota-
tions. Consequently, systems trained on such data can learn
to tag videos autonomously by automatically downloading
their annotated training sets.
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Figure 1: Frames sampled from a video downloaded
from youtube (the video is tagged ‘basketball’).
While some frames do show basketball (a,b,c), other
“non-relevant” frames are not visually related to the
concept (d,e,f).

On the downside, what makes learning from online videos
difficult is that they are weakly labeled, i.e. tags are only
given on video level. Knowing that a video is tagged with
a concept, however, does not tell us where in the video the
concept appears. Figure 1 illustrates this problem by show-
ing frames from an online video tagged with ‘basketball’.
While the concept is visually present in some of its frames
(a,b,c), others are not visually related to the tag at all, like
(d,e,f). We will refer to such frames as “non-relevant” in the
following. It is obvious that including them in the training
set can have a negative impact on the performance of the
resulting concept detectors.

Our previous work [19] did not explicitly model non-relevant
frames and relied on a voting strategy to reduce their influ-
ence instead. Our results have demonstrated that visual
learning from online videos is possible in general1, and that
fair tagging results can be obtained when using state-of-the-
art visual features and fusion strategies. In this paper, we
try to improve concept detection further using a rigorous
model for the relevance of video content. More precisely,
we describe the relevance of video frames as a latent ran-
dom variable in a probabilistic framework of kernel densi-
ties. During training, these latent variables are estimated in
an EM fashion.

Our key contributions are: (1) a rigorous statistical for-
mulation of the problem of learning from weakly labeled
videos, (2) a probabilistic approach for training concept de-
tectors from weakly labeled videos that explicitly models
the relevance of frames as a latent random variable. To the
best of our knowledge, our framework is the first specifically
targeted at training concept detectors on weakly annotated
videos. (3) We present quantitative experiments on real-
world online and TV video data in which we demonstrate
the general applicability of the proposed approach. Further,
we show that concept detectors can be built which rely less
on non-relevant content and generalize better to different
data sources.

1A demo of our prototype can be found at
http://demo.iupr.org/videotagging/.

2. RELATED WORK
To the best of our knowledge, detectors of high-level se-

mantic concepts (or“taggers”, respectively) have been trained
on strongly annotated video data until now, i.e. training
usually takes place on datasets that have been annotated on
shot or keyframe level. Using such data, researchers have
tackled the problem in the annual TRECVID video retrieval
contest2, which hosts over 50 participating research groups
world-wide and includes evaluations on an large corpus of
news video. In TRECVID’s “High-Level Features” task, the
tagging problem has been addressed, whereas recent trends
are headed towards patch-based descriptions [16] that have
been developed in the computer vision community [10, 11],
towards incorporating multiple features, discriminative clas-
sifiers, and fusion strategies [2], and towards specialized fea-
tures like face detectors [13].

The problem of non-relevant content in training videos
also draws an analogy to visual object recognition in still
images, where modern systems are trained on unsegmented
data labeled with the object name. While segmented train-
ing images are called strongly labeled, unsegmented ones are
referred to as weakly labeled [14]. Like in the case of weakly
labeled videos, the reason why an expert labels a visual doc-
ument (here, an image instead of a video) with a certain tag
is not associated with the whole document, but only with
a part of it. For object recognition, this is the object re-
gion, and research has been targeted at “learning away” the
irrelevant background (or clutter, respectively). For weakly
labeled videos, we draw an analogy to the temporal domain,
where this object region turns into“relevant parts of a video”
that the training of a concept detector should focus on.

Object recognition is an intensively researched problem
that has recently made a step forward due to the introduc-
tion of patch-based methods that view images as collections
of local image parts. Like for video annotation, researchers
have organized an annual contest – the PASCAL Visual
Object Challenge3 – which hosts object category recogni-
tion on very difficult datasets of weakly labeled images.
To learn away clutter, discriminative strategies over local
patches have been proposed, like boosting [12] or maximum
entropy [4]. As generative models, topic models like Prob-
abilistic Latent Semantic Analysis (PLSA) [8] have been
adapted for the image domain to discover visual topics as-
sociated with object presence [6, 15]. Closest to our work
is another approach by Rosenberg [14] that models the rel-
evance of a pixel as a Boolean random variable which is
estimated in an EM fashion. Finally, our setup is also re-
lated to multiple instance learning (MIL) [20], which views
visual documents as bags of local entities (or “instances”)
and tries to detect a single instance that is discriminative
for each category of bags. In previous experiments, however,
we found the assumption of a single discriminative entity too
restrictive given the potentially multimodal distribution of
concepts in low-level feature space.

Other object recognition approaches model the location of
features in an image, like graphical models [7] or discretiza-
tions of the image domain into tiles [9]. For videos, however,
the temporal structure of their content seems less significant
than the image position of the parts of an object. Thus, we
do not model the temporal order of frames here.

2http://www-nlpir.nist.gov/projects/trecvid/
3http://www.pascal-network.org/challenges/VOC/



Figure 2: For a concept like soccer, both relevant
and irrelevant frames are represented in a feature
space, in which distributions of relevant and irrele-
vant content, p(xi|ti) and p(xi|¬ti), are modeled.

3. APPROACH
In the following, a probabilistic framework is described

for learning statistical models of the appearance of seman-
tic concepts. The model achieves robustness to “irrelevant”
training content by explicitly identifying it and “learning it
away”. Once the model has been trained, it can be used as
a concept detector to tag a previously unseen video.

We first introduce some basic notation (which is also sub-
sumed in Table 1). After this, it is described how the distri-
bution of relevant and non-relevant content in feature space
is modeled. Training – which involves estimating the rele-
vance of training content – is outlined afterwards, and finally
it is described how tagging works, i.e. how the trained model
is used to score a video.

3.1 Basic Notation
We assume a semantic concept (or “tag”) is given together

with a video X consisting of n keyframes associated with
feature vectors x1, .., xn. The Boolean random variable T is
true whenever the tag is visible in X (“T = true” will be
abbreviated with “T” and “T = false” with “¬T”). Tag-
ging the video is viewed as a binary classification problem
of estimating the value of T, giving the score P (T |X).

The concept detector is trained on a set of videos Y1, .., Ym.
A training video Yj has keyframes associated with features
yj1, .., yjmj . Like for test videos, we use a random variable
Tj for the presence of the tag in Yj (“Tj = true” is ab-
breviated with “Tj” and “Tj = false” with “¬Tj”). Since
each training video Yj is only weakly annotated, it is known
whether the concept is present somewhere in it (Tj) or it is
not (¬Tj), but it is not clear in which of its frames yjk the
concept is visible. We will denote the presence of the con-
cept in yjk with another random variable tjk with values tjk

(tjk = true) and ¬tjk (tjk = false). tjk is a latent variable,
i.e. its value is unknown.

3.2 Distributions of Non-Relevant and
Relevant Frames

Our general approach is to represent video frames as vec-
tors in a feature space, in which the distribution of relevant
and non-relevant content is modeled (see Figure 2 for an il-
lustration). As a model, we use non-parametric kernel den-
sities [5]. Our motivation for this is that the distribution
of concepts in feature space may be arbitrarily complex and

Table 1: Notation used in Section 3.
X test video (to be scored)
T presence of a tag in X. Possible val-

ues: T , ¬T
P (T |X) tag score (to be estimated)
x1, .., xn features for keyframes of X
Y1, .., Ym training videos
Tj presence of concept in Yj (given).

Possible values: Tj , ¬Tj

yj1, .., yjmj features for keyframes of Yj

tjk presence of concept in yjk (unknown).
Possible values: tjk, ¬tjk

p(xi|ti) distribution of relevant frames
p(xi|¬ti) distribution of non-relevant frames
P (tjk|yjk,Tj) “relevance score”: the probability that

a training frame is relevant (un-
known)

P (tjk|Tj) “relevance prior”: fraction of relevant
frames in relevant videos (given)

thus difficult to model with parametric methods. Also, pre-
vious experiments with non-parametric methods have given
positive results [19].

If a keyframe xi is relevant – i.e., it shows the concept
–, its features are assumed to be drawn from the following
density:

p(xi|ti) ∝
mX

j=1

mjX
k=1

P (tjk|yjk,Tj) ·Kh(xi; yjk), (1)

and an equivalent density is defined for non-relevant frames
not showing the concept:

p(xi|¬ti) ∝
mX

j=1

mjX
k=1

[1− P (tjk|yjk,Tj)] ·Kh(xi; yjk). (2)

p(xi|ti) and p(xi|¬ti) are kernel densities over all keyframes
from all training videos, whereas each training sample is
weighted by its probability of showing the concept or of not
showing the concept (P (tjk|yjk,Tj) or 1 − P (tjk|yjk,Tj)).
As a kernel function Kh, the well-known Epanechnikov ker-
nel [5] is used with an empirically determined bandwidth
h:

Kh(x; y) ∝ max (0, 1− d(x, y)2

h2
),

where d(., .) denotes some distance function in feature space.
To estimate the densities p(xi|ti) and p(xi|¬ti), for each

training frame yjk the probability of relevance P (tjk|yjk,Tj)
must be known. The estimation of these relevance scores will
be outlined in the following section.

3.3 Identifying Relevant Frames
We view concept presence in training frames yjk as a hid-

den variable tjk, for which the posterior P (tjk|yjk,Tj) needs
to be estimated.

We distinguish between two cases: if the concept is not
present in a training video, we assume that it does not ap-
pear in any of its keyframes, i.e P (tjk|yjk,¬Tj) = 0 ∀k. On
the other hand, if the video is tagged with the concept, tjk
is unknown, and P (tjk|yjk, Tj) needs to be inferred. For this
purpose, the following iterative procedure is used:



1. set the iteration u = 0 and

P 0(tjk|yjk,Tj) =


P (tjk|Tj), Tj = true

0, else

2. set P u+1(tjk|yjk, Tj) =

pu(yjk|tjk) · P (tjk|Tj)

pu(yjk|tjk) · P (tjk|Tj) + pu(yjk|¬tjk) · (1− P (tjk|Tj))

3. if convergence: exit.

else: set u = u + 1 and goto (2)

The densities pu(yjk|tjk) and pu(yjk|¬tjk) are computed
by plugging P u(tjk|yjk,Tj) into Equations (1) and (2).

The term P (tjk|Tj) models the fraction of keyframes from
videos tagged with the concept that actually do show the
concept. It is referred to as the relevance prior in the follow-
ing and is considered prior expert knowledge that is given or
can be estimated via cross-validation. If we set P (tjk|Tj) =
1, all training frames in relevant videos are considered rel-
evant, i.e. P (tjk|yjk, Tj) = 1 ∀k. In this case, the model
degenerates to a standard kernel density model.

The proposed iterative procedure resembles the well-known
“Expectation Maximization” (EM) scheme [3], which opti-
mizes a bound on the data likelihood by alternating so-
called “E” steps (in which posteriors for hidden variables
are estimated) and “M” steps (in which the parameters of a
distribution are updated from this knowledge). The situa-
tion, however, is more simple for kernel densities: Since the
underlying distributions are non-parametric and the kernel
bandwidth is fixed, the system is parameter-free and no “M”
step is required.

3.4 Concept Detection
Once the relevance scores of all training keyframes have

been estimated, the densities of relevant and non-relevant
frames (Equations (1) and (2)) can be computed for the
keyframes x1, .., xn of a test video X. Using this informa-
tion, a result score P (T |X) is estimated as described in the
following:

The sum rule is used for fusing weak pieces of evidence
from the keyframes x1, .., xn, an approach which has been
successful in previous experiments [19]:

P (T |X) = P (T |x1, .., xn) ≈ 1

n

nX
i=1

P (T |xi)

By applying Bayes’ rule, we obtain:

P (T |xi) =
p(xi|T ) · P (T )

p(xi|T ) · P (T ) + p(xi|¬T ) · (1− P (T ))
(3)

We further assume that the prior P (T ) of a video being
relevant is known. In this way, the problem of tagging a
video is reduced to estimating p(xi|T ) and p(xi|¬T ) for all
of its keyframes.

Two cases can be distinguished: first, for an irrelevant
video all its keyframes are drawn from the distribution of
irrelevant frames: p(xi|¬T ) = p(xi|¬ti) (Equation 2). The
second case is that a video does show the concept (T ). We
then marginalize over the latent variable of relevance ti:

p(xi|T ) = p(xi, ti|T ) + p(xi,¬ti|T )

≈ p(xi|ti) · P (ti|T ) + p(xi|¬ti) · [1− P (ti|T )],
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Figure 3: Posterior probabilities for each keyframe
of a ‘swimming’ video using different values of the
relevance prior P (tjk|Tj). For sample frames that do
not show the concept, the system estimates a low
relevance score.

where the relevance prior P (ti|T ) is assumed to be given.
By plugging p(xi|ti) (Equation (1)) and p(xi|¬ti) (Equation
(2)) into the aforementioned terms, we can thus compute
the final score P (T |X) .

4. EXPERIMENTS
In quantitative experiments on online videos and TV news

data, we demonstrate that learning from weakly labeled
videos is possible, and that irrelevant content can be suc-
cessfully identified. We also show that such explicit mod-
eling of relevance makes concept detection more robust to
irrelevant content in the training set.

4.1 Experiment 1: Youtube Data
We test our framework on a large-scale dataset of real-

world online videos from the portal youtube.com. The dataset
consists of 2600 videos (about 230 hrs.). It was downloaded
by simulating queries for 22 representative tags including lo-
cations (e.g., ‘desert’ and ‘beach’), actions (e.g., ‘hiking’, ‘in-
terview’), objects (e.g., ‘cat’,‘eiffeltower’), and sports (e.g.,
‘swimming’, ‘soccer’). The full list of tags can be found
in [18].

Our framework was tested for the 4 sports concepts ‘bas-
ketball’, ‘golf’, ‘soccer’, and ‘swimming’. Since fair tagging
results were achieved with simple features in previous exper-
iments [19], these concepts were considered good candidates
to study the influence of relevance modeling.

The dataset was split into a training set (1500 videos, 150
of which were labeled with each of of the 4 sports concept)
and a test set (1100 videos, 50 for each concept).

We use a keyframe extraction based on a shot boundary
detection and intra-shot clustering of frames [1], which gives
about 97.000 keyframes for the whole dataset. For each
keyframe, color histograms and Tamura texture features [17]
were combined in an early fusion (i.e., concatenated) and
used as a feature vector. A concept detector was trained on
this data for each of the 4 sports concepts using the approach



Table 2: Averaged results when learning the rel-
evance prior using 10-fold cross-validation (band-
width 0.00075). It can be seen that the estimated rel-
evance prior is always close to the optimal one (see
the plots in Figure 7). The tagging performance is
improved compared to a system that does not model
relevance, to a baseline using NN matching, and to
our previous system .

concept estim.
rel.
prior

AP
with
rele-
vance
[%]

impr.
over
no rel.
[%]

impr.
over
NN
[%]

impr.
over [19]
[%]

basketball 0.25 79.5 8.9 30.7 7.8
golf 0.75 56.3 3.1 9.5 -1.6

soccer 0.10 83.6 5.0 8.2 3.1
swimming 0.25 82.6 4.5 11.0 3.0

described in Section 3. The kernel bandwidth was varied
between 0.0005 and 0.001. As a distance function, the χ2

distance was used, which is a standard choice for histogram
features [21].

Figure 3 gives a first impression of whether the system
identifies the correct content as relevant. For a training
video tagged ‘swimming’, the estimated relevance of all key-
frames is plotted against the keyframe number. It can be
seen how relevance learning behaves for several relevance
priors: with decreasing relevance prior P (tjk|Tj), the over-
all relevance of training keyframes decreases, while the order
of the keyframes is mostly preserved. Also, it can be seen
from sample frames that content with a high relevance value
is in fact visually related to the concept.

Instead of studying a single video, a similar check can be
done for the whole dataset. For each concept, the frames
from the training set that were assigned the highest rel-
evance scores P (tjk|yjk, Tj) are visualized, as well as the
frames for which the relevance score is the lowest. The re-
sults are illustrated in Figure 7: it can be seen that the sys-
tem correctly identifies relevant content (for example, the
frames with high relevance scores from basketball videos do
in fact show basketball scenes), and also classifies the major-
ity of irrelevant content correctly (for basketball, there are
some frames showing soccer action. These appear in videos
labeled basketball, but have been identified as irrelevant by
our model). Only few false negatives can be found that are
visually related to the topic, like an untypical swimming or
golf scenes that the system labels irrelevant.

While these results demonstrate that the proposed ap-
proach seems to identify non-relevant content well, the key
question is whether the robustness of tagging is improved by
modeling the relevance of frames. Therefore, for each con-
cept a plot is given in Figure 7, showing the performance
of the system (measured by the average precision) for the
bandwidths 0.0005, 0.00075, and 0.001, plotted against the
relevance prior P (tjk|Tj). This parameter models the frac-
tion of relevant frames in relevant videos. If it is set to 1, the
framework degenerates to a standard kernel density case in
which all frames from positive training videos are assumed
to be relevant. This setup can thus be used as a baseline
for a system that models the relevance of frames. It corre-
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Figure 4: The average precision plotted against the
relevance prior when generalizing taggers trained on
youtube to a dataset of TV news. Relevance de-
tection can improve tagging performance by 36 %
for the concept ‘soccer’ (left). For ‘interview’, rel-
evance modelling does not improve tagging signifi-
cantly, which corresponds to the observations in Fig-
ure 6.

sponds to the rightmost data point in all plots, and is also
indicated by dotted horizontal lines.

All 4 plots indicate that the tagging performance can be
improved compared to the baseline system that assumes all
training frames to be relevant. This improvement varies
between concepts and bandwidths: it is strongest (up to 20
%) when using a low bandwidth of 0.0005 together with a
low relevance prior. For the highest bandwidth of 0.001,
the improvements are not as strong (for the concept ‘golf’,
modelling relevance even has a negative impact).

The best result for all concepts is achieved with the mod-
erate bandwidth of 0.00075. For all concepts, improvements
between 4 % (‘golf’) and 8 % (‘basketball’) are achieved by
modelling the relevance of frames. Thereby, the optimal
choice of the relevance prior differs between the concepts:
for basketball, the best choice is about 0.25, while for golf a
higher relevance prior is optimal. Obviously, an interesting
question is how to set this parameter automatically.

We demonstrate in another experiment that cross-validation
is suitable for this purpose. 10-fold cross-validation is used
on the test set (the bandwidth of 0.00075 was used, which
gave the best overall results). Table 2 gives the estimated
values of the relevance prior together with the achieved av-
erage precision. It can be seen that the relevance prior de-
termined from cross-validation is close to the one giving the
peak performance (see Figure 7). Correspondingly, perfor-
mance improvements between 3.1 % and 8.9 % can be ob-
served relative to the system that does not model relevance.

We also compared our system to a simple baseline that
does nearest neighbor (1-NN) matching in the same feature
space (color and Tamura histograms), revealing strong im-
provements between 8.2 % (‘soccer’) and 30.7 % (‘basket-
ball’). Finally, the proposed approach is also compared to
the system we introduced in [19]. This prototype makes
use of several additional features, including motion informa-
tion and a discriminative patch-based approach. Our results
demonstrate that by modelling the relevance of content, a
system that uses much simpler features can achieve compa-
rable (‘golf’) or even better results (all other concepts).

4.2 Experiment 2: Generalization to TV Data
In a second experiment, we evaluate the generalization

properties of concept detectors when applied to a different



(a)

(b)

Figure 5: The 10 shots with the highest ‘soccer’ score
on the TV news dataset: when modelling relevance
(a), significantly better results can be achieved than
if not (b).

data source (here: TV news video). Again, the focus is on
how tagging is influenced by relevance modeling.

Our framework is trained on the weakly annotated youtube
database that has been used in Experiment 1 (Section 4.1).
For testing, a dataset of 5.5 hrs. of German news TV is
used (which corresponds to 7200 shots). Tests are run for
the two concepts ‘soccer’ and ‘interview’, which were ex-
pected to appear frequently in the TV dataset. The test
set was manually assessed in a bootstrap manner by label-
ing top results given by several visual features and fusion
strategies. For ‘soccer’, 17 % of the dataset were assessed,
whereas 150 ‘soccer’ shots were found. For the concept ‘in-
terview’, significantly more positive shots were found (1300)
by assessing 36 % of the dataset.

For the ‘soccer’ detector, the best setup from Experiment
1 was used (color and Tamura features, χ2 distance, band-
width 0.00075). For the ‘interview’ tagger a motion-based
descriptor of tiled histograms was used that showed a supe-
rior performance compared to color and Tamura features in
previous experiments [19] (χ2 distance, bandwidth 0.00075).

We obtain very different results when testing the proposed
relevance modelling for both concepts. For ‘soccer’, Figure
4 (left) shows a significant improvement by 36 % when mod-
elling relevance. Figure 5 illustrates this improvement: the
10 shots with the highest ‘soccer’ score on the TV news
dataset are plotted if using relevance (a) and if not (b).
While the baseline system (relevance prior 1) gives 6 false
positives, the proposed approach (relevance prior 0.1) yields
a perfect result.

The situation is different for the ‘interview’ concept, where
relevance modelling has a negative impact on tagging per-
formance. An in-depth analysis of the filtered content (as
shown in Figure 6) reveals that relevant content is not prop-
erly separated from non-relevant one. Obviously, the con-
cept ‘interview’ – which belongs to the difficult tags in our
youtube dataset – is not captured well by the motion fea-
tures used, and relevance modelling “throws away” a signif-
icant fraction of valuable information. The conclusion we
draw from this is that for relevance modelling to work, the
underlying features must be discriminative for the concept.

(a)

(b)

Figure 6: Frames classified as relevant (a) and irrele-
vant (b) for the concept ‘interview’. A high fraction
of frames judged as non-relevant shows false nega-
tives.

5. DISCUSSION
In this paper, the challenge of training concept detectors

on videos downloaded from online portals was addressed.
The benefit of this data source is that training can take place
without human supervision by learning from automatically
downloaded online videos, involving no manual extra anno-
tation work.

A key problem when learning from online videos is that
they are weakly labeled: Videos are not tagged on shot level
and may contain a significant fraction of non-relevant mate-
rial, i.e. shots not visually related to the semantic concept.
We have presented a rigorous formulation of the problem
as well as a probabilistic approach for training concept de-
tectors in the presence of non-relevant content, whereas the
relevance of a training keyframe is modelled as a latent ran-
dom variable.

In quantitative experiments with sports tags on online
videos and TV news data, we have demonstrated that learn-
ing such relevance is possible, and that by doing so the per-
formance of concept detectors can be improved significantly.
An experiment with the visually complex tag ‘interview’ re-
vealed further that the performance of relevance detection
is bound to the suitability of the underlying features used.
Otherwise, information can be lost which is valuable for tag-
ging.

While this paper gives a proof of concept with experiments
on a limited number of tags, we plan to investigate the appli-



cability of the proposed approach further in the future. This
includes evaluations on a broader range of tags. Of particu-
lar interest for this might be standard datasets like the ones
used in the TRECVID video evaluation campaign. These
provide manually annotated ground truth of high quality
and at a large scale. Long-term, we hope this work will
arouse more research interest in learning from weakly la-
beled video data.
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Figure 7: Results of relevance modelling for the 4 concepts ‘basketball’,‘golf ’,‘soccer’, and ‘swimming’ (each
concept corresponds to a row). Left column: the frames our approach estimates to be most relevant for the
concept. Center column: frames our approach classifies as irrelevant. Right column: the tagging performance
(average precision) for several kernel bandwidths, plotted against the relevance prior (the fraction of relevant
frames in relevant videos). A relevance prior of 1 corresponds to a baseline system that assumes all training
frames to be relevant (dotted horizontal lines).
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