
A Framework for Interactive Proof

David Aspinall1, Christoph Lüth2, and Daniel Winterstein1

1 LFCS, School of Informatics, The University of Edinburgh, U.K.
2 Deutsches Forschungszentrum für künstliche Intelligenz (DFKI), Bremen, Germany

Abstract. This paper introduces Proof General Kit, a framework for
software components tailored to interactive proof development. The goal
of the framework is to enable flexible environments for managing formal
proofs across their life-cycle: creation, maintenance and exploitation. The
framework connects together different kinds of component, exchanging
messages using a common communication infrastructure and protocol
called PGIP. The main channel connects provers to displays. Provers are
the back-end interactive proof engines and displays are components for
interacting with the user, allowing browsing or editing of proofs. At the
core of the framework is a broker middleware component which manages
proof-in-progress and mediates between components.

1 Introducing Proof General Kit

The use of interactive machine proof is becoming more widespread, and larger
and more complex formalisations are being undertaken in application areas such
as hardware or software verification, and formalisation of mathematics, even up
to formalising deep proofs of recently established results. Examples of interactive
provers include general purpose provers such as Mizar, HOL, Isabelle, PVS, Coq,
ACL2, or NuPrl, and domain-specific provers such as the Forte system [19]. Of
course, this is to name just a few systems: Freek Wiedijk’s database [26] currently
lists almost 300 systems for doing mathematics on computer! Although many
of these may be classed as small-scale experiments or obsolete, it is natural to
expect researchers to continue investigating new logical foundations, and to build
domain-specific provers for new application areas.

For interactive provers such as those mentioned, the record of instructions of
how to create the proof, or a representation of the proof itself, is kept in a text
file with a programming language style syntax. We call these files proof scripts.
About 100 systems on Wiedijk’s list are based on textual proof script input.
Each system uses its own proof script language, and while there are similarities
across languages, there are crucial differences as well, particularly concerning
the underlying logic. For large proofs, the proof scripts are themselves large: by
now there are individual developments and mathematical libraries which reach
hundreds of thousands of lines of code and represent many person-years of work.

Yet, compared with the facilities available to the modern programmer, the fa-
cilities for developing and maintaining formal proofs are lamentably poor, in gen-
eral.1 Modern software development uses sophisticated Integrated Development
1 We note a few exceptions in a related work section in the conclusions.

M. Kauers et al. (Eds.): MKM/Calculemus 2007, LNCS 4573, pp. 161–175, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

162 D. Aspinall, C. Lüth, and D. Winterstein

Environments (IDEs), which support features such as automatic documentation
lookup, completion of identifiers, and integration with version control and the
build process. Modern knowledgemanagement facilities help further: context-aware
search finds related definitions; content assistance mechanisms insert declarations
and instantiations; advanced software engineering methods like refactoring help
improve design, making large-scale structural changes easy.

One reason why these facilities have not yet been provided for theorem proving
is the fragmentation of the community across so many different systems, which
dilutes the effort available. We believe the community should invest in shared
tools as much as possible, and keep only the underlying logical proof engines as
separate, distinct implementations. Thus, we are arguing not just for exchanging
and relating mathematical knowledge between systems, provided by formats such
as OMDoc, but also for the component-based construction of proof management
environments themselves, using a uniform protocol.2

In this paper we introduce the Proof General Kit (PG Kit for short). This
is a framework for proof management, based on the PGIP protocol. We believe
that PG Kit will provide sophisticated and useful development environments for
a whole class of interactive provers, and also be a vehicle for research into the
foundations of such environments.

Outline. Sect. 2 motivates the PG Kit framework, describing the contribution of
the current Proof General system and the component architecture for the new
framework. Sect. 3 introduces the PGIP protocol, Sect. 4 describes the central
role of the broker component, and Sect. 5 describes several display components.
In Sect. 6 we conclude, mentioning future and related work.

2 Proof General Kit Architecture

The claim that we can provide a uniform framework for interactive proof seems
bold, especially considering that those provers do not just differ in their under-
lying languages, but also in their existing interaction mechanisms as well.

2.1 Proof General and Script Management

The Proof General project [2] provides evidence that at least some of our aims
are feasible. Proof General is a successful generic interface for interactive proof
assistants, where a proof script can be sent line-by-line to the prover with the
prover responding at each step. It has been adapted to a variety of provers and
is in common use for several, most notably Isabelle and Coq.

The central feature is an advanced version of script management. To inter-
actively “run” a script like Fig. 1, we send each line to the prover; thus, each
line corresponds to a prover state, and the prover’s current state always cor-
responds to one particular line of the script called the prover’s focus. Script
management divides a proof script into three consecutive regions: a part which
2 Very roughly: OMDoc is to PGIP as HTML is to HTTP.

A Framework for Interactive Proof 163

lemma fn1: ”(EX x. P (f x)) −→ (EX y. P y)”
proof

assume ”EX x. P (f x)”
thus ”EX y. P y”
proof

fix a
assume ”P (f a)”
show ?thesis ..

qed
qed

Fig. 1. An short example proof script in Isabelle/Isar

has been processed, a part which is currently being processed, and a part which
has not yet been processed. Proof General displays this partitioning to the user
by colouring processed text blue and busy (being-processed) text pink. Editing
is prevented in the coloured region to ensure synchronisation with the prover. A
toolbar provides buttons for navigating within the proof, moving the focus. The
navigation buttons behave identically across numerous different systems, despite
behind-the-scenes using rather different system-specific control commands.

Although successful, there are several drawbacks to the present Proof General.
Users are required to learn Emacs and tolerate its idiosyncratic UI. Developers
must contend with the Emacs Lisp API which is restrictive, often changing,
and inconsistent across the many flavours of Emacs. For configuring provers, the
instantiation mechanism has become fragile and too complex. This is because
Proof General arose by successively generalising a common basis to a growing
number of proof systems, with the design goal not to change the systems them-
selves. But this leaves the interface vulnerable to breakage by even small changes
in the prover output format, and it does not itself offer a clear API, relying on
regular expression matching of the prover output.

2.2 The Framework Architecture

Instead of trying to anticipate a range of slightly different behaviours, we propose
a uniform protocol and model of proof development which captures behaviour
reasonably common to all provers at an abstract level, and ask that each proof
system implements that. We want to generalise away from Emacs and allow
other front-ends, and possibly several at once, so that the proof progress can be
displayed in different ways, or to other users. We also want to allow connecting
to more than one prover at once, to allow easy switching between different de-
velopments and systems. We even want to allow connecting other components
that provide assistance during the proof process (e.g., for recommendation [13]
or proof planning [8]). In the end, what we need is exactly a software framework:
a way of connecting together interacting components customised to the domain.

The PG Kit framework has three main component types: interactive prover
engines, front-end display components, and a central broker component which

164 D. Aspinall, C. Lüth, and D. Winterstein

PGIPD

PGIPD

PGIPD
Prover

Prover

Graphical User
Interface

Text Editor

Eclipse

Broker

File System Theory Store

Prover Components Display Components

PGIP

PGIP

P

P

Fig. 2. PG Kit Framework architecture

orchestrates proofs-in-progress. The architecture is pictured in Fig. 2. The com-
ponents communicate using messages in the PGIP protocol, described in the
next section. The general control flow is that a user’s action causes a command
to be sent from the display to the broker, the broker sends commands to the
prover, which sends responses back to the broker which relays them to the dis-
plays. The format of the messages is defined by an XML schema. Messages are
sent over channels, typically sockets or Unix pipes.

3 A Protocol for Interactive Proof

The protocol for directing proof used by PG Kit is known as PGIP, for Proof
General Interaction Protocol [4]. It arose by examining and clarifying the com-
munications used in the existing Proof General system. As we developed proto-
type systems following the ideas outlined above, the protocol has been revised
and extended to encompass graphical front-ends, a document model markup for
proof scripts, and authoring extensions [3,4,5]. PGIP is an abstraction of the
communication between provers and interfaces. It allows for prover-specific be-
haviour and syntax (e.g. in the proof scripts), but specifies an abstract model of
behaviour which all provers have to follow.

The syntax of PGIP messages is defined by an XML schema written in
RELAX NG [17]. Every message is wrapped in a <pgip> packet which uniquely
identifies its origin and contains a sequence number and possibly a referent iden-
tifier and sequence number. PGIP comprises three sub-protocols, corresponding
to the different types of components from Fig. 2:

– The prover protocol PGIPP defines messages exchanged between provers and
the broker. This includes: commands sent to the prover, which correspond
to the commands in a conventional proof script and may affect the inter-
nal (proof-relevant) state of the prover; messages from the prover in reac-
tion to these commands such as <normalresponse>, <errorresponse> or

A Framework for Interactive Proof 165

Display message
...

...

BrokerDisplay Prover

Display command

Display message

<ready>

Prover command

PGIP PGIPD P

Prover message

Prover message

Fig. 3. Message exchange in the PGIP protocol

<ready>, which reflect the internal state; and configuration messages which
describe some elements of its concrete syntax, preference settings available
to the user, or which icons to use in a graphical interface.

– The display protocol PGIPD defines messages exchanged between displays
and the broker. This includes: display commands sent from the display to
the broker, corresponding to user interaction, such as starting a prover, load-
ing a file <loadparsefile>, or editing <editcmd>; and display messages,
which contain output directed to the user, either relayed from the prover, or
generated from the broker.

– The inter-broker protocol PGIPI defines messages exchanged between differ-
ent brokers, allowing running the prover on a remote machine (see Sec. 4).

The sub-protocols are not disjoint: some prover output (e.g., <normalresponse>
or <errorresponse>) is relayed to the displays, so these messages are part of
both PGIPD and PGIPP. The broker analyses messages from the prover, and keeps
an abstract view of the internal state of the prover which behaves according to a
model described in Sect. 3.2. There is a secondary schema called PGML, for Proof
General Markup Language, used to markup messages from the prover.3

Fig. 3 shows a schematic message exchange. The pattern of exchanges between
the components is more permissive than in simple synchronous RPC mechanisms
like XML RPC or most web services. This is necessary because interactive proof
may diverge (e.g. during proof search); it is essential that feedback can be dis-
played eagerly so the user can take action as soon as possible. The message
exchange between the display and the broker is asynchronous (single request,
non-waiting multiple response): the display sends a command, and the broker
may send several responses later. The message exchange between the broker
and the prover can be asynchronous or synchronous (single request, waiting sin-
gle response). In the default asynchronous message exchange between prover
and broker (corresponding to a command that may cause a proof attempt), the
prover will send several responses, eventually followed by a <ready> message,
which signals availability of the prover to the broker.
3 A standard markup language, e.g., MathML, could be used instead, but PGML is

designed for easy support by existing systems by marking up concrete syntax.

166 D. Aspinall, C. Lüth, and D. Winterstein

<opengoal name=”fn1”>lemma fn1: "(EX x. P (f x)) <sym
name=”longrightarrow”>−−></sym> (EX y. P y)"</opengoal>

<openblock/><proofstep>proof</proofstep>
<proofstep>assume "EX x. P (f x)"</proofstep>
<opengoal>thus "EX y. P y"</opengoal>
<openblock/><proofstep>proof</proofstep>

<proofstep>fix a</proofstep>
<proofstep>assume "P (f a)"</proofstep>
<opengoal>show ?thesis</opengoal><openblock/><closegoal>..</closegoal>

<closeblock/>
<closegoal>qed</closegoal><closeblock/>

<closegoal>qed</closegoal><closeblock/>

Fig. 4. A proof script in Isabelle/Isar, marked up in PGIP

On top of this exchange mechanism, interactive proof proceeds in an edit-
parse-prove cycle. The user enters a command via the display; it gets parsed
and inserted into the proof script as parsed commands; and eventually it is
evaluated, giving a new prover state. Repeating this builds up a sequence of
prover commands inside the broker interactively, which form a proof script.

3.1 Proof Scripts in PGIP

Proof scripts are the central artefact of the system. Provers usually just check
proof scripts to guarantee their correctness, but do not construct them, relying
on external tools (mostly, humans with text editors). The basic principle for
representing them in PGIP is to use the prover’s native language and mark
up the content with PGIP commands which explain the proof script structure.
Fig. 4 shows the PGIP representation of the example proof script from Fig. 1
with the structural markup, including a PGML <sym> symbol element (we
omit other PGML symbols and markup such as <whitespace> for white spaces
for brevity). Notice the named and unnamed <opengoal> elements, and the
indentation structure introduced by <openblock> and <closeblock>.

Proof scripts consist of prover commands, but not all prover commands appear
in a proof script; we distinguish between proper commands which can appear
and improper commands which must not. Proper commands are sent to the
prover in plain text, so the prover can interpret them as it would do ordinarily
when reading a file. The broker does not know how to generate the prover-
specific concrete syntax of proper commands; it is usually written directly by
the user. However, the prover can offer a configuration of prover types and prover
operations for building up commands which then enable interface features to help
the user. The operations are defined by textual substitution. A trivial example for
Isar is an operation taking an identifier id and a term string tm, and produces
the command lemma id : "tm" which opens a goal. For textual interfaces,
these operations allow a template mechanism; for graphical interfaces, they define
operations which can be invoked when the user employs certain gestures.

A Framework for Interactive Proof 167

OpenFile

OpenTheory
TheoryStep

ProofStep
UndoProofStep

OpenProof

CloseTheory
CloseFile

CloseProof
PostponeProof
GiveUpProof
AbortProof

Top Level

File Open

Theory Open

Proof Open

UndoTheoryStep

Proper vs commands.improper

Fig. 5. Proof states during development

Improper commands are only used for controlling the prover’s state, and do
not appear in the proof script being developed; examples are the three italicised
undo commands appearing in Fig. 5. Improper commands are not treated as
markup, so the prover must interpret these directly.

3.2 The Prover Protocol: Modelling the Prover State

PG Kit has an abstract model of incremental interactive proof development,
where we suppose there are four fundamental states occupied by the prover,
with transitions between the states triggered by both proper and improper prover
commands. Fig. 5 shows the states, and the commands to change between them.
The four states illustrated are:

1. the top level state where nothing is open yet;
2. the file open state where a file is currently being processed;
3. the theory open state where a theory is being built;
4. the proof open state where a proof is currently in progress.

These fundamental states give rise to a hierarchy of named items: The top
level may contain a number of files. A file contains a proof script, structured into
theories. Theories in turn may contain theory items (declarations etc.) and proofs
consisting of proofsteps. Within the fourth state, we allow arbitrary nesting (e.g.,
a proof that contains sub-lemmas).

The reason for distinguishing the states is that the undo behaviour is different
in each state, and that different commands are available in each state. In the
theory state, for example, we may issue theory steps which extend the theory,
or we may undo the additions. In the proof state, we can issue proof steps and
undo these steps, or finish the current proof attempt in a number of ways. After
finishing a proof, the history is forgotten, and we can only undo the whole proof.

This model is based on abstracting the common behaviour of many interactive
proof systems, acting as a clearly specified virtual layer that must be emulated
in each prover to cooperate properly with the broker.

168 D. Aspinall, C. Lüth, and D. Winterstein

Unparsed

Outdated Outdate request

Processed

Normal response

response

Send to prover

Parsed

Being processed

proof
ReplayErrorParse

command

Edit command

Fig. 6. Command state transitions

3.3 The Display Protocol and the Edit-Parse-Prove Cycle

The markup on a proof script makes the structure of the proof script explicit,
and splits the source code into non-overlapping text spans each containing a
prover command (see Fig. 4). Each text span has a status ranging over five
main4 possible values, shown in Fig. 6. A text starts off as unparsed, and after
parsing becomes one (or more) freshly parsed prover commands. Actual proving
consists of sending the command to the prover. While waiting for a response from
the prover, the command is being processed. Once the prover has sent a positive
answer, the command becomes processed ; on the other hand, if the prover sends
an error, the command reverts to parsed. To successfully process a command all
commands it is depending on will have to been processed first. Similarly, when
we outdate a command, all commands depending on it are outdated as well;
the difference between outdated and parsed is that outdated regions have been
successfully processed before. To edit a processed command, we have to outdate
it first. Displays can either make the outdate step explicit, requiring the user first
to outdate the text range manually, or they can perform the outdate tacitly.

The transitions between the commands refine the current script management
in Proof General. By controlling the state of text spans independently, we can
exploit a more fine-grained dependency analysis (if the prover reports the nec-
essary dependency information): to process a command we only need to process
those commands which are really needed. The broker handles all this depen-
dency analysis behind the scenes. If the prover does not provide dependency
information, the broker automatically assumes linear dependency, where every
line potentially depends on all lines that come before.

To demonstrate the edit-parse-prove cycle in action, we consider the message
exchange in a typical situation: the user requests a file to be loaded, then edits a
part of the text, and finally runs the proof. Fig. 7 shows the resulting messages
being sent between display, broker and prover. Note that the proof is “run”
by requesting a command be processed (<setcmdstatus>), which causes a lot
of other commands to be processed first. If an error occurs at some point in
this scenario, the prover sends an <errorresponse> and the broker flushes all
outstanding requests. If the error occurs during the parsing, it will insert the
4 To be precise, there are other transient states besides Being processed but they are

not distinguished to the user, so omit them from Fig. 6.

A Framework for Interactive Proof 169

...

...

...

...

Text is successfully

Text is successfully
User requests
file to be loaded.

parsed.

BrokerDisplay Prover

<parsescript>

<parseresult>

<loadparsefile>

<parsescript>
Users edits
a text region.

commands are
successfully
executed.

<parseresult>

Old text is
deleted,

edited text is
inserted.

User request

<newcmd>

<ready>

<ready>

prover command

prover command

parsed.

<newcmd>

<editcmd>

<delcmd>

<newcmd>

<setcmdstatus>

<cmdstatus>

<cmdstatus>

Broker creates new
prover commands.

command to
be processed.

Several prover

Fig. 7. The edit-parse-prove cycle in a typical situation

corresponding text as an unparsed element into the proof script, to allow the
user to edit (and correct) it later.

4 Brokering Electronic Proof

The broker is the central middleware component of the PG Kit framework. It
gathers input from the displays, sends prover commands to the provers, han-
dles the responses and does the house-keeping, keeping track of the files and the
commands, their respective status and the dependencies between them as pro-
vided by the prover. Using this dependency information, it can translate abstract
display commands such as <setcmdstatus> into a series of prover commands.

Provers and displays are handled uniformly as components, but they differ in
their communication pattern: prover commands are sent to one specific prover,
whereas display messages are broadcast to all connected displays. For each prover
the broker models its state according to the abstract state model from Sect. 3.2.
It keeps a queue of all pending prover commands, sending the next one only
once it has received a <ready> message from the prover. If the prover sends an
<errorreponse>, the queue of pending messages is cleared, as it makes little
sense to continue. On the other hand, displays have no internal notion of the
prover state, but need to keep track of the displayed text and its state.

The broker sends parsing requests to the prover, and extracts the new com-
mands from the answer, checking that the parsing result returned by the prover

170 D. Aspinall, C. Lüth, and D. Winterstein

satisfies the invariant that when we strip the markup, we get back the original
proof script; if the result fails this invariant, it inserts the dropped text. As long
as only white spaces are dropped, this does not affect the proof.

Particular attention needs be paid to the ability to interrupt a running prover.
When a prover diverges, it may not respond to messages anymore (including the
PGIP <interruptprover> message), so when running a prover as subprocess,
we send a Posix signal instead. This is not possible over a socket, so to run a
prover remotely, the broker connects to another instance of itself on the remote
machine called a proxy, using the PGIPI inter-broker sub-protocol to communi-
cate. This is also useful as broker and prover have to use the same filesystem.

The broker is implemented in Haskell (7k lines of code in 20 modules), us-
ing HaXml [25] for a well-typed embedding of the RELAX NG schema. This
smoothly extends the schema typing into the Haskell implementation, making it
impossible to send messages containing invalid XML.

5 Display Components

The display components provide the front-ends with which the user interacts.
Currently, an Emacs display and an Eclipse plugin are available.

5.1 Emacs Proof General Revisited

The Emacs display for PG Kit will eventually replace the present Proof General.
By moving complex functionality into the broker, the Elisp in Emacs can be
greatly simplified. The Emacs display may be somewhat limited in facilities, but
it has the advantage of portability, including functioning in a plain terminal.

Emacs has a built-in notion of text region which can have special properties
attached, called “spans”. Spans are used to directly capture the commands de-
scribed by the broker. Emacs keeps a record of which spans have been altered,
and automatically sends requests to the broker to re-parse them, either when
the file is saved, or during editor idle time. Additionally each span provides a
context sensitive menu to adjust its state according to the diagram in Fig. 6.
Spans which are in the “being processed” state cannot be edited, and there is
customisable protection against editing those which are in the “processed” state.
Compared with the present Emacs interface, this now allows non-sequential de-
pendencies within proof scripts, under control of the broker. However, the same
toolbar and navigation metaphor for processing the next step is still available.

5.2 Eclipse Proof General

Eclipse [20,22] is an open-source IDE and tool integration platform written in
Java. Most prominently it provides a powerful and attractive IDE for Java,
but its plugins and extension points mechanism allows great adaptability. Many
plugins are now available, supporting different programming languages, profiling
and testing tools, graphical modelling, etc.

A Framework for Interactive Proof 171

Fig. 8. Eclipse Proof General Display

Eclipse Proof General is a truly powerful IDE for formal proof which, we
hope, will enable a dramatic improvement in usability and productivity for proof
development. Graphical views are possible [23], but the primary mode of working
remains the editing and scripting management of proof script files.

A screenshot in Fig. 8 shows it in action. The main editor window displays the
proof script PER.thy; a tool-tip hover shows a definition under the mouse. The
Prover Output view below shows the latest subgoal message. The Problems view
(obscured) in the tab behind lists outstanding problems, such as syntax errors
or unfinished proofs. To the left of the editor window is an Outline View of the
proof script showing its structure; above that, the Proof Explorer shows proof
scripts in the present folder and indicates their status in the prover with coloured
decorators. The colouring metaphor (blue means completed, pink means busy)
is used in both of these views as well as the editor window. Above the editor,
the toolbar buttons trigger proof or undo steps by sending appropriate PGIP
instructions. On the right hand panel, the Proof Objects view allows browsing the
theories and theorems currently loaded in the running session. In the tab behind,
the standard Synchronize view (obscured) allows synchronising the development
with a version control system (e.g., CVS).

Further features include code folding to hide parts of the text (a sub-proof
in the PER.thy file is folded in), integrated Javadoc-style help, and hyperlinked
indexes for quick access to theorems, definitions and unfinished proofs. Comple-
tion is available for identifiers both found in proof script files and given in PGIP
messages from the prover containing identifier tables. Completion also provides

172 D. Aspinall, C. Lüth, and D. Winterstein

support for templates and mathematical symbols which are encoded by PGML
symbols (or ASCII sequences). Two configurations are provided for symbols.
One maps character sequences into Unicode sequences for display in the text
editor (supporting provers whose syntax is restricted to poorer character sets).
The other configuration is a stylesheet which maps PGML markup into HTML
for fully-flexible output display used e.g. in the Prover Output view.

Like the revised Emacs interface described above, the Eclipse editor window
must deal with managing information gleaned from the structure of the script,
while allowing free form text edits — which can wreak arbitrary changes to the
structure. This is solved by dividing parsing into two phases. In the first phase, a
fast lexer is used to perform syntax highlighting and to break scripts into smaller
partitions as the user is typing. The fast lexer is configured for each prover
by a PGIP configuration command called <proverinfo>. This configuration
command informs the display about the keywords in the prover’s language, and
can also provides tool-tip help for commands (for example, to remind the user
of the command syntax). In the second parsing phase, we call the broker with
<editcmd> messages to obtain the PGIP mark-up structure. This can either
happen in a low-priority background thread, or with specific user commands
(such as evaluating a script).

The Eclipse PG plugin is implemented in Java (40k lines of code, 250 classes).
Support for a new language in Eclipse is not as straightforward as one might
hope, as much of the advanced functionality is still specific to Java. But, paral-
leling our own development of PGIP, the Eclipse platform is rapidly evolving to
migrate Java functionality to platform-level generic mechanisms.

5.3 Other Displays

A different kind of display is the lightweight “theorem proving desktop” provid-
ing a more abstract, less syntax-oriented interface based on direct manipulation
and supported by the visual metaphor of a notepad [10]. All objects of interest,
such as proofs, theorems, tactics, sets of rewriting rules, etc., are visualised by
icons on the notepad, and manipulated using mouse gestures. The icon is given by
the type of the object, which determines the available operations. PGIP supports
this style of GUI with the <operationsconfig> specification, which describes
prover types and operations as mentioned in Sect. 3.1, and can also include icons
and hints for selecting operations. We have implemented a prototypical graphical
display called PGWin for an earlier version of PGIP [3], where display commands
and messages were not represented in XML. It is currently being adapted to the
revised architecture, and made into a separate PGIP component.

Another display currently in development is a web-based display, which will
allow users to connect to a running broker with a web-browser, and view the
proof scripts as they are being developed. This is an example of a read-only
display, which does not provide editing facilities.

A Framework for Interactive Proof 173

6 Conclusions

The Proof General Kit is a framework for connecting interactive proof systems
to interface tools and other components. This paper has provided an overview;
elsewhere we provide full details including the RELAX NG schemas and protocol
descriptions [4]. Ultimately, we hope that implementers of existing proof systems
will have a compelling reason to add PGIP support to their systems to access
powerful front-ends, and we hope that implementers of new systems will now
have a clear model to follow to gain interface support with minimal effort.

At the time of writing, the broker component, the Emacs display and the
Eclipse plugin are available as beta releases. These have been developed for
the upcoming 2007 version of Isabelle, to which support for PGIP has been
added by the first author. While straightforward in principle, supporting PGIP
in Isabelle turned out to be harder than expected because of difficulties with
parsing proof scripts independently of their execution: the Isabelle code uses
functional combinators to build combined parse-execute functions that are hard
to unravel. We expect that this will usually be easier to do in other systems.

PG Kit is unique in proposing a generic framework customised for interactive
proof, although there is related work in different settings. Efforts to publish for-
malised mathematical content on the web include HELM [1] and MoWGLI [15].
The MathWeb project [12] provides a standardised interface using OMDoc [9] as
an exchange language. OMDoc elaborates the semantical content of documents,
which goes beyond the scope of PG Kit. Other systems such as MONET [14],
the MathBroker [18] and MathServe [27] have an architecture similar to ours,
but integrate fully automated provers (Otter, Spass etc.) wrapped up as web
services, with a broker orchestrating proofs between different provers with little
user interaction during the actual proof. In contrast, PG Kit is geared towards
connecting interactive theorem provers to user interfaces.

Other frameworks in theorem proving include Prosper [7], which connects
several automatic provers to an LCF core to ensure logical consistency. The
Prosper Integration Interface (PII) is similar to the low-level aspects of PG Kit,
in particular in the way in which interrupts to running components are routed.

Other interfaces similar in spirit to ours include Alcor [6], which extends the
Mizar system [24] with knowledge management services such as searching and
authoring assistance, and Plato [11], which uses TeXmacs as authoring tool for
the Omega system [21]. The architecture is somewhat similar to ours, with a
middleware component mediating between prover and interface. Unlike PG Kit,
both Alcor and Plato are geared to a specific prover.

There are many possible lines for future development. Foremost among them,
we want to use the framework to investigate foundations for Proof Engineering,
exploring an analogy with software engineering to study useful ways to support
the construction, maintenance and understanding of large proof developments.
Analogues of code browsing, refactoring, and model driven development would
all be intriguing to investigate. Because proofs (in practice) are quite different
beasts from programs, and their development is a rather different process, this
is a significant research programme.

174 D. Aspinall, C. Lüth, and D. Winterstein

Another promising direction lies in pushing the generic aspects of the frame-
work, by providing extra language layers or enhancements which work for dif-
ferent systems. For example, we have already designed a generate literate style
markup or a document-driven development methodology [5]. We can also use the
broker to control proof construction and search: PGIP contains almost enough
functionality to support a tactic language at a generic level.

We welcome contact from researchers interested in working with us on future
directions or in connecting their systems to PG Kit. Please contact either of the
first two authors directly, or visit the Proof General web pages [16] for more
information and software downloads.

Acknowledgments. We would like to acknowledge contributions over the years
made to the Proof General project by its many users and past developers; not
just bug reports, but useful suggestions for improvements, some of which have
influenced work described here. Contributors to the Eclipse front-end have in-
cluded Graham Dutton, Ahsan Fayyaz and Alex Heneveld. The Isabelle develop-
ers, particularly Makarius Wenzel, have provided essential help with supporting
PGIP. DA benefited from support of the TYPES project (Types for Proofs and
Programs, EU IST-2004-510996) and EPSRC platform grant GR/S01771 (The
Integration and Interaction of Multiple Mathematical Reasoning Processes). DW
was supported by a 2004 Eclipse Innovation Grant awarded by IBM to work on
Eclipse Proof General.

References

1. Asperti, A., Padovani, L., Coen, C.S., Schena, I.: HELM and the semantic math-
web. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp.
59–74. Springer, Heidelberg (2001)

2. Aspinall, D.: Proof General: A generic tool for proof development. In:
Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS,
vol. 1785, pp. 38–42. Springer, Heidelberg (2000)

3. Aspinall, D., Lüth, C.: Proof General meets IsaWin. In: Aspinall, D., Lüth,C. (eds.)
User Interfaces for Theorem Provers UITP’03, Electronic Notes in Theoretical
Computer Science, vol. 103 (2003)

4. Aspinall, D., Lüth, C.: Commentary on PGIP (2003-7) Available from
http://proofgeneral.inf.ed.ac.uk/kit/

5. Aspinall, D., Lüth, C., Wolff, B.: Assisted proof document authoring. In: Kohlhase,
M. (ed.) MKM 2005. LNCS (LNAI), vol. 3863, pp. 65–80. Springer, Heidelberg
(2006)

6. Cairns, P., Gow, J.: Integrating searching and authoring in Mizar. To appear in
Journal of Automated Reasoning

7. Dennis, L.A., Collins, G., Norrish, M., Boulton, R.J., Slind, K., Melham, T.F.: The
Prosper toolkit. International Journal on Software Tools for Technology Trans-
fer 4(2), 189–210 (2003)

8. Dixon, L., Fleuriot, J.D.: Higher order rippling in IsaPlanner. In: Slind, K., Bunker,
A., Gopalakrishnan, G.C. (eds.) TPHOLs 2004. LNCS, vol. 3223, pp. 83–98.
Springer, Heidelberg (2004)

http://proofgeneral.inf.ed.ac.uk/kit/

A Framework for Interactive Proof 175

9. Kohlhase, M.: OMDoc – An Open Markup Format for Mathematical Documents
[version 1.2]. LNCS (LNAI), vol. 4180. Springer, Heidelberg (2006)

10. Lüth, C., Wolff, B.: Functional design and implementation of graphical user in-
terfaces for theorem provers. Journal of Functional Programming 9(2), 167–189
(1999)

11. Marc Wagner, C.B., Autexier, S.: PLATO: A mediator between text-editors and
proof assistance systems. In: Benzmüller, C., Autexier, S. (eds.) 7th Workshop on
User Interfaces for Theorem Provers (UITP’06) (August 2006)

12. Mathweb homepage. http://www.mathweb.org/
13. Mercer, A., Bundy, A., Duncan, H., Aspinall, D.: PG Tips, a recommender system

for an interactive prover. Presented at MathUI workshop (2006)
14. MONET — mathematics on the web. Home page at http://monet.nag.co.uk/
15. MoWGLI.: mathematics on the web: Get it right by logics and interfaces.

http://www.mowgli.cs.unibo.it/
16. Proof General Kit home page. http://proofgeneral.inf.ed.ac.uk/kit/
17. RELAX NG XML schema language (2003). Home page at

http://www.relaxng.org/
18. Schreiner, W., Caprotti, O., Baraka, R.: The Math-

Broker project Johannes-Kepler-Universität Linz (2002)
http://www.risc.uni-linz.ac.at/projects/basic/mathbroker/

19. Seger, C.-J.H., Jones, R.B., O’Leary, J.W., Melham, T., Aagaard, M.D., Barrett,
C., Syme, D.: An industrially effective environment for formal hardware verifica-
tion. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 24(9), 1381–1405 (2005)

20. Shavor, S., D’Anjou, J., Fairborther, S., Kehn, D., Kellerman, J., McCarthy, P.:
The Java Developer’s Guide to Eclipse. Addison-Wesley, New York (2003)

21. Siekmann, J., Benzmüller, C., Autexier, S.: Computer supported mathematics with
OMEGA. Journal of Applied Logic, special issue on Mathematics Assistance Sys-
tems 4(4) (December 2006)

22. The Eclipse Foundation. Project web site. http://www.eclipse.org
23. Timiriassova, E.: Tracking and visualizing dependency information within theories.

Master’s thesis, School of Informatics, University of Edinburgh (2005)
24. Trybulec, A., et al.: The Mizar project University of Bialystok, Poland (1973)

http://mizar.org
25. Wallace, M., Runciman, C.: Haskell and XML: Generic combinators or type-based

translation? In: International Conference on Functional Programming ICFP’99,
pp. 148–159. ACM Press, New York (1999)

26. Wiedijk, F.: Digital math: systems implementing mathematics in the computer,
http://www.cs.ru.nl/∼freek/digimath/

27. Zimmer, J., Autexier, S.: The MathServe system for semantic web reasoning ser-
vices. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130,
pp. 140–144. Springer, Heidelberg (2006)

http://www.mathweb.org/
http://monet.nag.co.uk/
http://www.mowgli.cs.unibo.it/
http://proofgeneral.inf.ed.ac.uk/kit/
http://www.relaxng.org/
http://www.risc.uni-linz.ac.at/projects/basic/mathbroker/
http://www.eclipse.org
http://mizar.org
http://www.cs.ru.nl/ ~ freek/digimath/

	Introducing Proof General Kit
	Proof General Kit Architecture
	Proof General and Script Management
	The Framework Architecture

	A Protocol for Interactive Proof
	Proof Scripts in PGIP
	The Prover Protocol: Modelling the Prover State
	The Display Protocol and the Edit-Parse-Prove Cycle

	Brokering Electronic Proof
	Display Components
	Emacs Proof General Revisited
	Eclipse Proof General
	Other Displays

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

