
HASCASL: Integrated Higher-Order

Specification and Program Development

Lutz Schröder and Till Mossakowski 1

DFKI-Lab Bremen and Dept. of Comput. Sci., Universität Bremen

Abstract

We lay out the design of HasCasl, a higher order extension of the algebraic specifi-
cation language Casl that serves both as a wide-spectrum language for the rigorous
specification and development of software, in particular but not exclusively in mod-
ern functional programming languages, and as an expressive standard language for
higher-order logic. Distinctive features of HasCasl include partial higher order
functions, higher order subtyping, shallow polymorphism, and an extensive type-
class mechanism. Moreover, HasCasl provides dedicated specification support for
monad-based functional-imperative programming with generic side effects, includ-
ing a monad-based generic Hoare logic.

Key words: Algebraic specification, functional programming, type classes,
polymorphism, Casl, monads, Hoare logic

Introduction

The rigorous development of software from abstract requirements to exe-
cutable code calls for wide-spectrum languages that are sufficiently powerful
and flexible to support both an expressive specification logic and concepts
appearing in advanced programming languages, including modern functional
languages such as Haskell [58], but also imperative and object-oriented lan-
guages. Here, we discuss the design of such a wide-spectrum language, Has-
Casl. HasCasl is an extension of the standard algebraic specification lan-
guage Casl (Common Algebraic Specification Language) [6,53] developed by
the Common Framework Initiative (CoFI) of IFIP WG 1.3, and as such has
been adopted by IFIP WG 1.3. It arguably constitutes ‘the’ natural higher

1 Research supported by the DFG project HasCASL (KR 1191/7-1/2) and the
BMBF-project FormalSafe (FKZ 01IW07002)

Preprint submitted to Elsevier Science 18 November 2008

order extension of Casl, and is intended, beyond its purpose as a software
specification language, as an expressive standard language for higher order
logic. In particular, HasCasl is presently the most expressive language in
the logic graph underlying the Bremen heterogeneous tool set Hets [50] and
as such serves as a central hub for the interchange of theories between various
formalisms in the tool.

The core of HasCasl is a higher order logic of partial functions built on top
of Moggi’s partial λ-calculus [44]. The semantics and proof theory of this logic
have been developed in a companion paper [71]; essentially, one arrives at an
intuitionistic partial higher order logic without choice principles (even without
unique choice). The full HasCasl logic extends the core logic by subtyping
and type-classed based shallow polymorphism, including higher-order type
constructors and constructor classes; the semantics of the latter is based on
models explicitly incorporating signature extensions [76]. Support for general
recursive functions is bootstrapped in the style of HOLCF [64] by specifying
a theory of fixed point recursion on complete partial orders. Extensive syntac-
tical sugaring of these concepts yields an executable sublanguage which is in
close correspondence with a large subset of Haskell.

Part of the technical difficulties arising in the development of these concepts
stem from the above-mentioned lack of unique choice in the core logic; in par-
ticular, additional effort is required in the construction of inductive datatypes
and in setting up the theory of complete partial orders. We believe that this
effort is justified, as making do without unique choice allows keeping the model
theory more general and forces the use of simpler constructions. A more de-
tailed discussion of this point is found in Sect. 2.

HasCasl is powerful enough to serve as a framework for the definition of
further advanced specification logics. We illustrate this point by developing a
generic Hoare logic for reasoning about functional-imperative programs with
generic side-effects. Following seminal work by Moggi [46], side effects are
encapsulated in functional programming via so-called monads; in particular,
this is one of the central concepts of Haskell [80]. Monads model a wide range
of computational effects: e.g., stateful computations, non-determinism, excep-
tions, input, and output can all be viewed as monadic computations, and so
can various combinations of these concepts such as non-deterministic stateful
computations. Our Hoare logic provides a generic logical environment for rea-
soning about monadic computations. In this way, we generalise the suggestions
of [46], which were aimed purely at a state monad with state interpreted as
global store. We provide both a generic kernel calculus and specialised calculi
that provide additional rules dealing with monad-specific operations such as
assignment. We end up with an environment that offers not only a combina-
tion of functional and imperative programming (as provided in Haskell), but
also a surrounding logic that is rather effortlessly adapted to the specification

2

of both functional and imperative aspects.

The material is organised as follows. We give a brief introduction to Casl
in Sect. 1. We then recall HasCasl’s core logic in Sect. 2. Sections 3–5 deal
with the syntax and semantics of type class oriented shallow polymorphism,
subtyping, and inductive datatypes, respectively. The HOLCF style modelling
of general recursion is treated in Sect. 6. In Sect. 7, we discuss the integra-
tion of HasCasl into the heterogeneous tool set, in particular its connection
with Casl, Isabelle/HOL, and Haskell. Sections 8–11 are concerned with the
monad-based generic Hoare calculus. We give an introduction to monad-based
functional-imperative programming, and then discuss generic notions of purity
and the calculus proper. We illustrate the calculus by means of an extended
example, where Dijkstra’s non-deterministic implementation of Euclid’s algo-
rithm is verified over a generic non-deterministic reference monad.

While we have taken care to keep the presentation self-contained where fea-
sible, this has not always been possible within reasonable space, in particular
where the semantic foundations of HasCasl are concerned. Specifically, the
following sections assume substantial background knowledge of the reader.
Section 2.4 requires familiarity with the categorical semantics of higher or-
der logic, and draws on results from [71]. Readers interested primarily in the
HasCasl language design may safely skip this section; where reference to
models is made later, exact knowledge of their definition is typically not re-
quired. Sections 3.2 and 7 are concerned with institution-theoretic aspects
of HasCasl; while we do recall the definitions involved, we refer to [22,23]
for more detailed explanations and motivation of the general concepts. Both
sections are of interest only to readers with suitable background. Finally, the
development of a version of domain theory in HasCasl’s internal logic in
Sect. 6.1, although technically self-contained, presupposes background knowl-
edge in standard domain theory in terms of motivation. Readers not interested
in the domain-theoretic foundations may safely jump to the description of the
syntax of executable specifications in Sects. 6.2 and 6.3.

A preliminary version of the HasCasl design has appeared in [73]; the sections
on the monad-based generic Hoare logic extend [74].

Related frameworks There are several approaches to tackling the transi-
tion from specifications to programs in the literature. Many of them, including
Larch [25] and VSE-2 [31], keep the level of specifications in the well-studied
realm of first-order logic, while the more problematic features of program-
ming languages are dealt with in intermediate logics (like the dynamic logic of
VSE-2) or in programming language specific interface languages (as in Larch).
Extended ML [34] avoids such mediating languages by building a higher or-
der specification language on top of a programming language; however, SML’s

3

side effects lead to quite complex interactions with the type system and the
logic. A number of such problems is listed in [33]; all these disappear when
one moves to a purely functional language like Haskell. Some specific issues
mentioned in [33], such as polymorphism over unused type variables and rep-
etition of side-effecting expressions, relate to material discussed in Sects. 3
and 9. A specification logic for Haskell, called P-logic [27], is provided by the
Programatica framework [26]. In particular, P-logic resembles our approach
in the way polymorphism and recursion are supported; the latter is based on
an axiomatic treatment of complete partial orders. P-logic differs from our
approach in that it is directly built on top of Haskell (with all its specialities
like lazy pattern-matching), while we provide a general-purpose higher-order
logic that is both a generalisation of classical higher-order logic and can be
used as a specification logic for Haskell programs. In particular, HasCasl
allows loose requirement specifications that are later refined into design speci-
fications and programs, which is not possible with the P-logic approach. More-
over, HasCasl covers type class based overloading and constructor classes in
full generality, whereas P-logic [35] seems to be equipped with specific built-
in rules for one particular constructor class, namely monads. Moreover, for
monads, P-logic only offers equational reasoning, whereas HasCasl offers a
Hoare logic for imperative monad-based programs.

Other approaches such as CaféOBJ [16] and the related tool Maude [12] opt
for making the specification language itself directly executable, however at
the expense of a reduced expressivity of the logic. VDM [32] and Z [78] are
model-oriented specification languages, i.e. a specification typically describes
one single intended input-output behaviour. By contrast, Casl and Has-
Casl allow for loose specifications that abstractly describe whole collections
of behaviours in order to avoid overspecification in the early phases of the
development.

In terms of the logic employed, HasCasl is related in many ways to Is-
abelle/HOL [54] and Isabelle/HOLCF [64], respectively, with the crucial dif-
ference being that HasCasl works with a more flexible logic that does not
impose strong reasoning principles such as excluded middle and choice from
the outset. Like Coq [14], HasCasl allows adding such principles explicitly as
axioms if desired. There is a certain design trade-off here between encapsulat-
ing all reasoning principles to be made available in a strong core logic which
later can only be extended conservatively or in fact definitionally, as done
in Isabelle/HOL, and choosing a weaker core logic but then allowing non-
conservative extensions as in Coq or HasCasl – the latter approach is more
versatile but also in some sense more dangerous. That said, many construc-
tions which are performed in Isabelle/HOL using unique choice, e.g. datatypes
and recursion, are definitional also in HasCasl over comparatively harmless
extensions such as sum types and a type of natural numbers, as discussed in
Sect. 5.

4

In fact, Isabelle/HOL presently forms the core of the reasoning support for
classical HasCasl. The gap to be bridged here stems mainly from the fact
that HasCasl is a specification language aimed at ease of expression, while
the logic of Isabelle/HOL is an input language for a proof tool, and as such
more austere. Features of HasCasl not directly supported in Isabelle include
higher order type constructors and constructor classes (the latter are needed
e.g. for modelling side-effects via monads as explained above), subtyping, par-
tial functions, loose generated types and advanced structured specification
constructs. Similar comments apply to other higher-order theorem provers
such as PVS [56].

Existing dedicated higher-order frameworks for software specification include
Spectrum [8] and RAISE [21]. Spectrum is in some ways a precursor of Has-
Casl, in particular supports higher-order functional programming and offers
a type class system (without constructor classes). It is however designed en-
tirely as a language for complete partial orders; consequently, it has a three-
valued logic admitting undefined truth values and moreover does not include
a proper higher-order specification language (i.e. non-continuous functions are
included for specification purposes, but higher order mechanisms such as λ-
abstraction are limited to continuous functions). The RAISE specification lan-
guage RSL concentrates on direct support for imperative programming and
non-determinism, covered in HasCasl by a monad mechanism. The main dif-
ferences with HasCasl are that RSL has a three-valued logic and does not
support polymorphism.

1 CASL

The specification language Casl (Common Algebraic Specification Language)
has been designed by CoFI, the international Common Framework Initia-
tive for Algebraic Specification and Development [13]. Its features include
first-order logic, partial functions, subsorts, sort generation constraints, and
structured and architectural specifications. For the definition of the language
including a full formal semantics see [53]. An important point here is that
the semantics of structured and architectural specifications is institution-
independent, i.e. independent of the logic employed for basic specifications.
In order to define the envisaged extension of Casl, it is therefore sufficient to
define the underlying logic in the form of an institution [22], i.e. essentially to
fix notions of signature, model, sentence, and satisfaction as done below.

We briefly point out some particularities of the Casl notation that appear
in more or less the same form in HasCasl, but refer to [53,6] for a full
explanation of the concepts involved. The Casl logic is multisorted ; the user
may declare sorts by means of the keyword sort. Sorts appear in the profiles

5

of operations and predicates. The interpretation of sorts, operations etc. is,
by default, loose, i.e. a sort may be interpreted by any set and an operation
may be interpreted by any map of the given profile, as long as the axioms of
the specification are satisfied. The latter, of course, may force an essentially
unique interpretation; this holds in particular for axioms implicit in datatype
declarations. Casl supports partial operations; the fact that an operation is
possibly partial is indicated by a question mark in its profile, i.e. a partial
operation f with argument sorts s1, . . . , sn and target sort t is declared in the
form

op f : s1 × · · · × sn →?t

while for a total operation the profile is written in the form s1 × . . . s1 → t.
There are atomic formulas for definedness: the formula def α asserts that the
term α is defined. Partial functions are strict, i.e. def f(α) always implies
def α. There are two forms of equations between partial terms: a strong equa-
tion α1 = α2 asserts that α1 is defined iff α2 is defined, and in this case both
terms are equal, while an existential equation α1

e
= α2 asserts that α1 and α2

are defined and equal. Predicate applications impose existential interpretation
of their arguments, i.e. they only hold if all arguments are defined. Finally,
Casl distinguishes between local and global variables : the scope of a global
variable, declared using the keyword var, is the entire remaining basic specifi-
cation, while the scope of a local variable, declared using forall, is limited to
the immediately following list of axioms. Both global and local variables are
understood to be universally quantified.

2 The Basic Logic of HASCASL

HasCasl is based on the partial λ-calculus with equality as introduced
in [44,45,65]. The model theory of HasCasl uses results of [71] relating the
categorical semantics given in [44] with a set-theoretic semantics which is
compatible with the existing semantics of Casl.

2.1 The Basic Type System

The (extensible) type system of HasCasl features product types, partial and
total function types, and a unit type. Types are built from user-declared basic
types introduced by the keyword type (for the sake of compatibility with
Casl, the keyword sort may be used alternatively; moreover, most HasCasl
keywords may also be used in their plural forms). E.g. writing

6

types S ,T

declares two basic types S and T . As in Casl, the interpretation of basic types
is, by default, loose (Sect. 1). From these basic types and the unit type Unit ,
the types are inductively generated by taking product types s1 × · · · × sn and
partial and total function types s →?t and s → t, respectively, with s →?t a
type of strict partial functions (Sect. 1).

A type may be abbreviated by means of a synonym, using also the keyword
type, by writing e.g.

type Binary := (S × S)→ T

The type referred to by a type synonym is called its expansion. Although
the same keyword is used, synonyms are not basic types. A synonym may be
defined only once. Recursive synonym definitions are not allowed.

Terms are formed along with their types; we will introduce the term formation
rules informally below. The judgement that a term α has type s is written α : s.
In fact, term formation depends also on a context Γ = (x1 : t1, . . . , xn : tn)
of typed variables xi : ti which may include local variables introduced by
quantifiers or λ-bindings as well as global variables (introduced by the keyword
var), so that the complete form of a typing judgement is Γ � α : s (term α
has type s in context Γ); we will largely omit this aspect here. Terms are
built from variables and user-declared constants. A constant (or operation) f
of type s is declared by writing

op f : s ;

(with the same mechanisms for declaring several constants at once as in Casl).
Instead of op, the keyword fun may be used (op and fun differ w.r.t. their
behaviour under subtyping; see Sect. 4). Since s may be a function type,
this provides also a way to declare operations with arguments. As in Casl,
constants may be overloaded, i.e. a constant f : s is made up of its name
f and its type s, and the same name may appear in different constants of
different types. In fully statically analysed formulas, all constants are explicitly
annotated with their types, while they are usually referred to by just their
name in the input syntax if the context information suffices for disambiguation.
There is a built-in overloaded constant

e
=, called internal equality, of type

s × s →?Unit for each s, which has a fixed interpretation as equality (due
to strictness necessarily existential), exploiting an identification of predicates
and partial functions into Unit (Sect. 2.2).

7

The built-in type constructors come with associated term formation rules.
Terms of type s1 × · · · × sn may be constructed as tuples (α1, . . . , αn), where
αi is a term of type si for i = 1, . . . , n. The empty tuple () is a term of type
Unit . Application of a term α : s→?t or α : s→ t to a term β : s is denoted
by juxtaposition in the form (αβ) (where application associates to the left,
i.e. ((αβ) γ) may be written as αβ γ). Given a term α in a context containing
an additional variable x : s, the partial function that takes x to the term
α is denoted by λx : s • α. If α is defined for all possible values of x, then
λx : s •!α denotes the corresponding total function of type s→ t; otherwise,
the term λx : s •!α is still well-formed, but fails to denote a defined value —
contrastingly, the term λx : s • α is always defined.

Equational deduction systems for the partial λ-calculus (sound and complete
w.r.t. a semantics discussed in Sect. 2.4) are given in [44,71]. These systems
are easily extended (e.g. using the results of [71]) to encompass product types
and total function types as featured in HasCasl. The rules include partial
versions of (β), (η), and (ξ), where attention has to be paid to definedness
issues (e.g. the strong equation (λx • α) β = α[β/x] holds only when β is
defined).

Definition 1 A basic HasCasl signature consists of sets of basic types, type
synonyms, and constants, together with a map associating to each type syn-
onym its expansion as defined above. A morphism of basic signatures consists
of three maps taking constants to constants, type synonyms to type synonyms,
and basic types to basic types or type synonyms, respectively; these maps are
required to be compatible in the expected sense with types of operations and
expansions of type synonyms. (They are not required to preserve name equal-
ity of constants; cf. however Defn. 38.)

Remark 2 From the user’s point of view, the relevance of the notion of sig-
nature morphism is mainly that it determines which argument fittings are
admissible in instantiations of parametrised specifications [53] and in refine-
ments between specifications [51]. Since the above definition explicitly allows
signature morphisms to map basic types to type synonyms, basic types can be
instantiated with composite types, albeit at the cost of having to define a type
synonym first (allowing basic types to be mapped directly to composite types
would strongly increase the number of signature morphisms matching a so-
called raw symbol map [53] and thus make symbol maps harder to write and
parse). A consequence is that the signature category fails to be cocomplete
(while its non-full subcategory consisting of the signature morphisms that
map basic types to basic types is cocomplete, being essentially the category
of models of a Horn theory). However, the pushouts required for instantiating
parametrised specifications do exist, which is all that is needed for HasCasl
structured specifications.

8

Another, related use of signature morphisms is for unions of specifications. The
semantics of specification unions in [53] is defined in terms of a notion of sig-
nature union, that is, a binary partial function on signatures that (if defined)
delivers the union of the two signatures, together with the inclusion signature
morphisms. Indeed, in [53], also instantiations of parameterised specifications
are defined using signature unions that then are also required to be pushouts.
Unions of basic HasCasl signatures are defined if they agree on their type
synonyms, and in this case, they are formed by uniting their components.

HasCasl provides the following further term forming operations as conve-
nient syntactic sugar:

Let-terms Local bindings are written let x = α in β, abbreviating
(λx • β)α. Equivalently, the form β where x = α may be used. Consec-
utive bindings may be gathered in the form let x1 = α1; . . . ;xn = αn in β.

Iterated abstraction Consecutive λ-abstractions may be combined in the
form λx1 x2 . . . xn • α, abbreviating λx1 •!λx2 •! . . . λ xn • α. Abstraction
over an unused variable of type Unit may be written in the form λ • α.

Patterns Variables may be bound within patterns in the same way as in
(strict) functional programming. In the language introduced so far, this
means that variables may be bound to components of tuples; e.g. in the
term let (x, y) = α in β, where α : s× t, x is bound to the first component
of α and y to the second component. In the full language, patterns may
also contain datatype constructors; see Sect. 5. Patterns may be arbitrarily
nested. HasCasl does not include built-in projection functions for product
types; these can either be user-defined or replaced by pattern matching. In
the meta-theory, we do use fst and snd to denote the projections for a binary
product type.

Restriction Given terms α : s, β : t, the term α res β abbreviates the term
let (x, y) = (α, β) in x. That is, α res β is defined iff α and β are defined,
and in this case equals α. As a special case, β may be a formula (Sect. 2.2);
in this case, α res β is defined iff α is defined and β holds.

Typed terms Again as in Casl, terms as well as patterns may be annotated
with their intended type in the form α : s. This affects only the static
analysis of the term in that fewer typing possibilities have to be considered.

Further extensions by abbreviation of both the type system and the term
formation rules are discussed in Sect. 2.2 and 2.3.

2.2 The Internal Logic

Partial functions into Unit can be regarded as predicates, with definedness
corresponding to satisfaction; an example is the equality operator

e
= mentioned

9

above. The type Pred s is a built-in synonym for s→?Unit (the Casl notation
pred p : t is retained as an alternative to op p : Pred t for the sake of
compatibility). The type Unit →?Unit serves as a type of truth values, with
built-in synonym Logical . Using the equality operator, one can define a full-
blown intuitionistic higher order logic, in which formulas are partial terms of
type Unit and logical operators and quantified formulas are just abbreviations,
as follows [70,71] (we use notation from Sect. 2.1).

> := ()

p ∧ q := p res q

p⇒ q := ((λ • p)
e
= λ • (p ∧ q))

p⇔ q := (p⇒ q) ∧ (q ⇒ p)

∀y : t • p := ((λy : t • p)
e
= λy : t • >)

⊥ := ∀a : Logical • a ()

¬p := p⇒ ⊥
p ∨ q := ∀a : Logical • ((p⇒ a ()) ∧ (q ⇒ a ()))⇒ a ()

∃y : t • p := ∀a : Logical • (∀y : t • p⇒ a ())⇒ a ().

(In the seemingly asymmetric definition of conjunction, note that for formulas
p, q, i.e. partial terms p, q : Unit , one actually has a strong equality fst(p, q) =
snd(p, q).) Atoms are either predicate applications, existential equations

e
=,

definedness assertions def α abbreviating α
e
= α, or strong equations α = β,

defined as

(α = β) := (def α⇒ α
e
= β) ∧ (def β ⇒ def α)

Satisfaction of a formula is just definedness of the corresponding term. One
thus obtains an extension of the Casl formula syntax. Syntactical differences
stem primarily from HasCasl’s richer type and term system; in particular,
higher order variables can be used in quantifications. The definition of the
logic can be written as a HasCasl specification [73]. We refer to this logic as
the internal logic (the initial design of HasCasl [73] comprised an alternative
external logic).

To illustrate some features of the basic logic, we give a pedestrian specifi-
cation of an abstract while operator as a least fixed point (a more concise
specification using a built-in notion of general recursion is given in Fig. 10) in
Fig. 1; the specification imports a two-valued type of Booleans contained in
the specification Sums shown further below (Fig. 3).

As mentioned above, the internal logic is intuitionistic: for p : Logical , p∨¬p is
not provable (this fact is unsurprising in view of the fact that the base calculus
is essentially just a λ-calculus, and can easily be seen model-theoretically; cf.
Sect. 2.4). If desired, the user may impose classical logic by importing the
specification

10

spec While = Sums with Bool , if then else then
type s
ops while : (s→ Bool)→ (s→? s)→ s→? s;

v : Pred ((s→? s)× (s→? s))
vars b : s→ Bool ; p : s→? s; x : s

• v = λ(q, r) : (s→? s)× (s→? s) •
∀y : s • (r y) res (q y) = q y

• let F = λq : s→? s; x : s • if b x then x else q (p x);
w = while b p in

F w = w ∧ ∀q : s→? s • F q = q ⇒ w v q

Fig. 1. Specification of an abstract while operator

spec Classical =
var p : Logical

• p ∨ ¬p

Remark 3 While for many purposes, e.g. inheriting mechanised proof sup-
port from Isabelle/HOL, one will often need to work with classical HasCasl
(i.e. import the above specification Classical), keeping the base logic in-
tuitionistic opens up a number of possibilities that are not fully available in
classical frameworks. E.g., intuitionistic logics offer better facilities for pro-
gram extraction than classical ones [40,4,42]. Moreover, many useful theories
and principles are consistent with intuitionistic but not with classical log-
ics; this includes e.g. set-theoretic parametric polymorphism [63] or an axiom
stating that all functions are recursive [60].

A further property of the internal logic is that it distinguishes between func-
tions, i.e. inhabitants of function types a →?b, and functional relations, i.e.
right-definite predicates on a × b (see [71] for details). In other words, the
internal logic does not in general have a unique choice operator ι that, given
a formula x : a � φ, returns the unique element ι x : a • φ of type a satis-
fying φ if a unique such element exists (and is defined iff this is the case).
Types a for which such an operator does exist are called coarse. Generally,
every type of the form Pred a, including Logical , is coarse (as one can put
ι p : Pred a • φ = (λx : a • ∀p : Pred a • φ ⇒ p(x)) res ∃! p : Pred a • φ,
where ∃! is unique existential quantification, defined by abbreviation as usual),
and coarse types are stable under products, function spaces, and subtypes;
moreover, every type a has an underlying coarse type, the type of singleton
subsets of a.

Remark 4 It will become apparent below (in particular in Sect. 5 and 6) that
a certain amount of additional effort is required to make standard concepts
and constructions work in the absence of unique choice. The motivation jus-
tifying this effort is partly to admit certain useful models; this is discussed in

11

detail in Rem. 11 below. Moreover, a discipline of avoiding unique choice leads
to constructions which may be easier to handle in machine proofs than ones
containing unique description operators; see e.g. the explicit warning in [54],
Sect. 5.10. That said, the user may impose unique choice globally or for se-
lected types: a type a is equipped with unique choice by the specification

op choose : (Pred a) →? a
var p : Pred a; x : a

• choose p = x⇔ (∀y : a • p y ⇔ x = y)

which be may either imposed on the individual type a or made polymorphic
over some class of types (Sect. 3). The terms ι x : a • φ mentioned above can
then be written in the form choose λx : a • φ.

Remark 5 A much stronger choice operator is Hilbert’s ε; it corresponds to
the Axiom of Choice and implies classicality. It is specified as follows:

op epsilon : (Pred a) → a
var p : Pred a; x : a

• (∃x : a • p x)⇒ p (epsilon p)

The term ε x : a • φ can then be written in the form epsilon λx : a • φ.

Definition 6 A basic HasCasl theory is a basic signature together with a
set of formulas.

For later use, we fix notions concerning subtypes determined by formulas.

Definition 7 A generalised type is a pair (t. φ) consisting of a type t and a
predicate φ : Pred t (in the terminology of [71], the generalised types are the
objects of the classifying category), to be understood as the subtype of all
elements x : t satisfying φx.

Remark 8 Products and (partial or total) function spaces of generalised
types can again be described as generalised types [71].

2.3 Non-Strict Functions

In HasCasl, as in the partial λ-calculus, function application is strict, i.e.
defined values are obtained only from defined arguments. This is in keep-
ing with the semantics of both Casl and ML, but not with the semantics
of Haskell, where functions are allowed to leave arguments unevaluated and
thus yield defined results on undefined arguments. It is well-known that non-

12

strict functions may be emulated in a strict setting by moving to function
types Unit →?a as argument types. In order to facilitate the specification
of programs in non-strict languages, we include non-strict function types in
HasCasl as syntactic sugar:

For a type s, ?s abbreviates the type Unit →?s. Thus, we obtain non-strict
function types such as ?s →?t. There are two typing rules for application of
non-strict functions and application of strict functions to non-strict values:

• If α is a term of type ?s→?t or ?s→ t and β is a term of type s, then αβ
is a term of type t, in which β is implicitly replaced by λ • β.
• If α is a term of type s →?t or s → t and β is a term of type ?s, then αβ

is a term of type t, in which β is implicitly replaced by β ().

Corresponding generalised rules apply to functions with several arguments.
As a simple example, consider the following specification of a non-strict con-
junction on the type Bool of Booleans (see Fig. 3 below):

op And : Bool → (?Bool)→ Bool
var x : ?Bool

• And False x = False
• And True x = x
• And False True = False % implied

Here, the last occurrence of x :?Bool is implicitly replaced by x(), while the
occurrence of True in the last formula (which, as indicated by the Casl an-
notation %implied, is implied by the others) is replaced by λ • True.

2.4 Model Semantics

We now recall the model-theoretic semantics of HasCasl as developed in [71].
Readers without a background in the semantics of higher-order logics may
safely skip this section for most purposes.

The semantics of HasCasl extends the set-theoretic semantics of first order
Casl; that is, types are interpreted as sets, and constants are interpreted as
elements of these sets. The principal issue is then the interpretation of function
types; common options include the following.

• In standard models, function types s → t and s →?t, respectively, are
interpreted by the full set of (partial) functions from the interpretation of
s to that of t.
• In extensional Henkin models [29], function types are interpreted by subsets

13

of the full set of functions in such a way that all λ-terms can be interpreted;
the latter property is called comprehension. (In the model theory of the
total λ-calculus, similar models are called λ-models).
• In intensional Henkin models (similar to λ-algebras), function types are

interpreted by arbitrary sets equipped with an application operation. Com-
prehension is still required; however, the way λ-terms are interpreted is now
part of the structure of the model rather than just an existence axiom.
Intensionality is discussed e.g. in [43,44].

The notion chosen for HasCasl is that of intensional Henkin models. Inten-
sional models behave well w.r.t. existence of initial models (unlike extensional
models [3]) and, unlike standard models, admit a complete deduction system
(completeness for extensional models is at least difficult [44]). Moreover, they
are the natural models for intuitionistic higher order logic; see Rem. 3 for
a brief discussion of the relevance of intuitionistic logic in computer science.
(That said, the logic can be specified to be classical by the user if desired; see
Sect. 2.2.) We do however introduce variants of HasCasl with extensional
and even standard models in order to facilitate the embedding of Casl into
HasCasl (Sect. 7).

A peculiarity of the intensional approach is that the definition of model re-
quires an equational deduction system. As indicated in Sect. 2, we assume
given an obvious extension of the deduction system presented in [71] with
product types and total function types.

Definition 9 An (intensional Henkin) model of a given HasCasl signature
is an assignment of a set Ms to each type s, in such a way that Unit is
interpreted as a singleton set and product types are interpreted as cartesian
products, together with an assignment of a partial interpretation function

Ms1 × · · · ×Msn →?Mt

to each term of type t in context (x1 : s1, . . . , xn : sn). These interpretation
functions are required to respect deducible equality of terms. Moreover, sub-
stitution must be modelled as composition of partial functions, and terms of
the form x1 : s1, . . . , xn : sn � xi : si must be interpreted by the appropriate
product projections. (It follows that tuple terms are interpreted by tupling of
functions, and that all total functions that live in the partial function type
are represented in the total function type; the latter is proved using total
λ-abstraction.)

A model morphism between two such models is a family of functions hs, where
s ranges over all types, that satisfies the usual (weak) homomorphism condi-
tion w.r.t. all terms. For details, we refer to [71].

By the results of [71], Henkin models are equivalent to models in partial carte-

14

sian closed categories (pccc’s) with equality as defined in [44]; typical examples
of pccc’s with equality are quasitoposes [82]. Indeed giving a pccc model is of-
ten the easiest way to construct a Henkin model: given a pccc C with equality,
a Henkin model of a signature may be defined by interpreting sorts as objects
in C, and constants by (global) elements of the arising interpretations of the
corresponding types; such a model is called a model over C.

The intuitionistic character of the internal logic corresponds precisely to the
intensional character of models. Indeed, in an extensional model, the type
Logical = Unit →?Unit contains just the two set-theoretic partial functions
from Unit to itself, corresponding to the truth values true and false, i.e. the
logic becomes classical. In intensional models, on the other hand, Logical may
have more than one element; in general, the elements of Logical form a Heyting
algebra. Under the axiom of excluded middle (see Sect. 2.2), this Heyting
algebra becomes a Boolean algebra, which however still may have more than
two elements; in other words, the axiom of excluded middle does not imply
extensionality of function types, including Logical . One should keep in mind
that intensionality also has a bearing on the definition of satisfaction. E.g.,
satisfaction of ∀x : s • φ in a model M is not the same as satisfaction of φ
by all elements of Ms (rather, it amounts to satisfaction of an equation in an
intensional function type; see Sect. 2.2).

The above considerations relate strongly to the well-known observation that
toposes are models of intuitionistic set theory (see e.g. [36]). The crucial dis-
tinction between general pccc models and topos models is that in models over
a topos, all types are coarse, i.e. toposes satisfy unique choice (see Sect. 2.2);
conversely, any pccc model with unique choice is a topos [71].

Example 10 The model theory of intuitionistic set theory in toposes, i.e. of
HasCasl models with unique choice, is well-established. Well-known toposes
are e.g. the category of sets, categories of sheaves and presheaves, Hyland’s
effective topos (see e.g. [60]), and the category of nominal sets [20], also known
as the Schanuel topos.

Simple examples of models with a classical internal logic but without unique
choice are obtained as models over set-based quasitoposes, such as the cat-
egories of pseudotopological spaces or (reflexive, symmetric) relations [2]. In
such models, the coarse types are precisely those that are interpreted as in-
discrete objects, where an object is indiscrete if all identity maps into it are
morphisms. E.g. in the quasitopos of (reflexive, symmetric) relations, a type
a is coarse iff its interpretation is a set X equipped with the indiscrete binary
relation, i.e. the full relation X×X. Indeed one easily checks that all predicate
types, and therefore also their subtypes of singleton sets, carry the indiscrete
relation, and therefore the selection map that assigns to each singleton {x}
its unique element x is relation-preserving iff X also carries the indiscrete

15

relation. It should be noted that in such models, initial datatypes (Sect. 5)
typically fail to be coarse; e.g. the natural numbers object carries the discrete
rather than the indiscrete structure (in the case of reflexive binary relations,
the discrete structure is the equality relation).

Remark 11 We continue to discuss the motivation for omitting the unique
choice axiom in the HasCasl base logic (see Rem. 4). As indicated above, im-
posing unique choice would amount to limiting the semantics to models over
toposes, rather than over the more general quasitoposes. Typical examples
of quasitoposes, besides the ones mentioned above, are categories of exten-
sional presheaves, including e.g. the category of reflexive logical relations, and
categories of assemblies, both appearing in the context of realisability mod-
els [60,66]. In particular, the category of ω-sets is a quasitopos but not a topos;
it is embedded as a full subcategory into the effective topos, whose objects
however have a much more involved description than ω-sets [60]. Quasitoposes
also play a role in the semantics of parametric polymorphism [7]. It thus seems
worthwhile to admit quasitopos models.

3 Type Class Polymorphism

On top of the basic HasCasl logic, we now introduce a form of syntax-
oriented shallow type class polymorphism. That is, we allow types and oper-
ations to depend on type variables, including type constructor variables, and
axioms to be universally quantified over types at the outermost level. Type
variables are understood syntactically, i.e. as ranging over all types express-
ible in the signature. Similarly as in Haskell [58] and Isabelle [54], the range
of a type variable may be restricted to a given type class, understood as a
subset of the syntactical universe of all types. This naive approach, explained
in Sect. 3.1, leads to the problem that the institutional satisfaction condition
(see Defn. 23 below) fails; this condition essentially requires that satisfaction is
invariant under change of notation, i.e. under signature morphisms. We there-
fore introduce a second level of the semantics, where this defect is repaired by
moving to so-called extended models; this is laid out in detail in Sect. 3.2.

3.1 Syntactic Type Class Polymorphism

The class system of HasCasl, like that of Haskell and unlike that of Isabelle,
goes beyond simple type classes in that it caters also for type constructors of
arbitrary rank. We therefore begin by introducing a suitable kind universe:

Definition 12 From a given set C of classes, which includes a class Type, the

16

set K of kinds is formed by the grammar

K ::= C | K → K.

Kinds of the form Kd1 → Kd2 are called constructor kinds. A kind is called
raw if it mentions no classes other than Type (e.g. (Type → Type)→ Type)).
A subclass relation is a relation ≤C between classes and kinds, subject to the
following condition. Let S denote the congruence (w.r.t. →) generated by ≤C
on the set of kinds; then the S-equivalence class of each class Cl is required
to contain a unique raw kind, denoted raw(Cl) and called the raw kind of Cl .
It follows that each kind Kd is S-equivalent to a unique raw kind raw(Kd),
obtained by replacing all classes in Kd with their raw kinds.

Intuitively, Type is the syntactical universe of all types, constructor kinds are
universes of type constructors, and classes are subsets of these universes as
prescribed by ≤C .

Example 13 The subclass relation is not required to be well-founded; e.g.
Cl1 ≤C Cl2, Cl2 ≤C Cl1, Cl2 ≤C Type is legal, and both Cl1 and Cl2

have raw kind Type. However, a subclass relation Cl1 ≤C Type → Cl2,
Cl2 ≤C Type → Cl1 is illegal, since Cl1 and Cl2 do not have a raw kind.
Similarly, Cl1 ≤C Type → Cl2, Cl2 ≤K Type, Cl1 ≤C Type is illegal, since
Type and Type → Type compete as raw kinds of Cl1. Finally, a subclass rela-
tion Container ≤C Type → Type, Container ≤C Ord → Ord , Ord ≤C Type
is legal, with raw(Container) = Type → Type (note that according to the sub-
kinding rules introduced below, Ord → Ord is not a subkind of Type → Type).

A class Cl is declared as a subclass of a given kind Kd by writing
class Cl < Kd . Subclasses of constructor kinds are called constructor classes.
A class may be declared to be a subclass of several kinds, which however all
have to be of the same raw kind due to the requirements of Defn. 12. Classes
declared without explicit superkinds are subclasses of Type. For instance,

classes BoundedOrd < Ord ;
Functor < Type → Type

declares two classes BoundedOrd and Ord such that BoundedOrd ≤C Ord ≤C
Type, and a constructor class Functor.

The subclass relation, which we denote in the meta-theory by ≤C , is extended
to a subkind relation ≤K on K by the rules given in Fig. 2. (These rules will
be extended in Sect. 4; a syntax-directed version of the entire system is given
in Appendix C.) By induction over derivations, one shows that Kd1 ≤K Kd2

implies that Kd1 and Kd2 have the same raw kind.

17

Cl ≤C Kd in Σ

Cl ≤K Kd

Kd1 ≤K Kd2 Kd3 ≤K Kd4

Kd2 → Kd3 ≤K Kd1 → Kd4

Kd ≤K Kd

Kd1 ≤K Kd2 Kd2 ≤K Kd3

Kd1 ≤K Kd3

.

Fig. 2. Subkinding rules

Type variables are declared along with their kind either by means of the key-
word var or in local universal quantifications at the outermost level (we will
use mostly the former style here). Type variables may then be used in place of
types or type constructors, thus making the entity (type, operation, or axiom)
where they appear polymorphic over the given kind. For a type, this means
that one obtains a type constructor ; i.e by writing

type t a1 . . . an : Kd

where a1, . . . , an are type variables of kinds Kd1, . . . ,Kdn, respectively, one
declares a type constructor t of kind Kd1 → · · · → Kdn → Kd (in particular
of kind Kd when n = 0). Polymorphic operations are assigned type schemes
in the usual sense of shallow polymorphism, i.e. types that are quantified
over type variables at the outermost level — HasCasl does not admit nested
type quantification as in System F. Finally, polymorphic axioms are implicitly
universally quantified over their free type variables.

A simple example is a specification of sum types, shown in Fig. 3. It declares
a type constructor Sum of kind Type → Type → Type, as well as polymor-
phic operations inl , inr , and sumcase, governed by polymorphic axioms. We
immediately obtain the type Bool of Booleans as Sum Unit Unit , with the
if-then-else construct arising as a special case of the case construct. Moreover,
the specification declares a universal undefined constant bot , which has the
effect of making the generalised type (Unit , λ • false) an initial object in the
model category. Using bot , one can define partial extraction functions outl ,
outr for sums as shown in the specification. Actually, this extension of the
specification is definitional (indicated by the annotation %def), meaning that
each model of the smaller specification can uniquely be extended to a model
of the extended specification.

Instances of polymorphic operations may be formed explicitly using square
brackets; e.g. given basic types S and T , we have an instance sumcase[S, S, T]
of type (S →?T)→ (S →?T)→ (Sum S S)→?T (the order of the type argu-
ments is determined by the order of declaration of type variables). However,
types of instances may also be automatically inferred, so that instances can
be referred to by just the name of operation, as done in the above specifica-
tion. Note that instances may involve types containing type variables, as in

18

spec Sums =
vars a, b, c : Type
type Sum a b
ops inl : a→ Sum a b;

inr : b→ Sum a b;
sumcase : (a→? c)→ (b→? c)→ Sum a b→? c
bot : ?a

vars f : a→? c; g : b→? c; h : Sum a b→? c
• h =sumcase f g ⇔

(∀x : a; y : b • h (inl x) = f x ∧ h (inr y) = g y)
• ¬def bot : a
• sumcase inl inr = λz : Sum a b • z % implied

then %def
vars a, b : Type
ops outl : Sum a b→? a;

outr : Sum a b→? b
• outl = sumcase (λx : a • x) (λy : b • bot)
• outr = sumcase (λx : a • bot) (λy : b • y)

type Bool := Sum Unit Unit
var p : Bool ; x,w : a
ops True,False : Bool ;

if then else : Bool × a× a→ a
• True = inl ()
• False = inr ()
• if p then x else w = sumcase (λ • x) (λ • w) p

Fig. 3. A specification of sum types and an implicit initial object

the %implied formula in Fig. 3, where the instance of sumcase is for a, b,
Sum a b.

Remark 14 Since polymorphic overloading is permitted, explicit instantia-
tions as explained above may be ambiguous in case the given arguments fit
more than one polymorphic profile. In this case, the use of the operation is
disambiguated by its own expected type (cf. Rem. 21); if necessary, explicit
type annotations must be given. Partial explicit instantiation, e.g. by writing
sumcase[S, S] in the above example, is not allowed.

Product and function types are regarded as applications of built-in type con-
structors ×,→,→? of kind Type → Type → Type, and the unit type as a type
‘constructor’ of kind Type; all other type constructors are called user-declared.
Type constructors are distinguished from parametrised type synonyms; e.g.

var a : Type
type DList a := List (List a)

19

defines a parametrised type synonym DList of kind Type → Type. In closed
form, the expansion of DList is the pseudotype

λ a : Type • List (List a).

In order not to overtax the user with yet another kind of λ-abstraction, such
λ-types are not included directly in the syntax of HasCasl. They do however
play a role for the range of type constructor variables; see Sect. 3.2.

Kinds are essentially purely syntactic entities: a kind Kd does not have a
semantics beyond the set of instances derivable for it, i.e. the set of types or
pseudotypes of kind Kd . The instances are governed by two mechanisms: the
kinds assigned to type constructors, and the subclass relation. E.g.

var a : Ord
type List a,Nat : Ord

declares the type Nat to be of class Ord and the type constructor List to be
of kind Ord → Ord . The latter statement means that List t is of class Ord
whenever t is of class Ord . A type constructor may be given any number of
kinds, which however are required to have the same raw kind.

To a class, one can attach both operations and axioms by using appropriate
type variables. E.g. the standard operations and axioms for the two classes of
orders declared above are specified by

vars a : Ord ; b : BoundedOrd
ops ≤ : Pred (a ∗ a);

bottom, top : b
vars x, y, z : a; v : b

• x ≤ x
• x ≤ y ∧ y ≤ z ⇒ x ≤ z
• x ≤ y ∧ y ≤ x⇒ x = y
• bottom ≤ v
• v ≤ top

Then e.g. the comparison operator ≤ has instances only for types of class Ord
— e.g. given the type declarations above, for Nat , List Nat , List (List Nat)
etc. — and also the order axioms hold only at these types. Note that, given
the declarations so far, the class BoundedOrd has no instances at all, so that
no type has operations bottom and top (however, types of class BoundedOrd
may be declared later); more about this point in Sect. 3.2.

Unlike in Isabelle and Haskell, axioms and operations, respectively, do not as
such form part of the definition of a class in HasCasl. The effect of Isabelle’s

20

axiomatic type classes can however be emulated as follows. To a class decla-
ration, operations and axioms may be attached in a block marked by curly
brackets {. . . }, thus declaring the interface of the class. E.g. the above dec-
laration of operations and axioms for partial orders could be tied to the class
declaration by writing

class Ord {
vars a : Ord ; x : a
op ≤ : Pred (a× a)

• x ≤ x . . .}

Then, declarations of subclasses of Ord and declarations of type constructors
with result class Ord can be marked with the keyword instance, thus gener-
ating a proof obligation similar to Casl’s %implied annotation which states
that the interface axioms of the class follow from the axioms for the type or the
subclass, respectively, together with the axioms of the local environment in-
cluding the class axioms for type arguments. Here, ‘follow’ refers to the notion
of semantic consequence on the second level of the semantics as introduced
in Sect. 3.2 below; this notion of consequence is however just the intuitively
expected one (and also the one employed in proof systems such as Isabelle).
E.g., given the class interface for Ord , we can declare a generic instance for
product types by

vars a, b : Ord
type instance (a× b) : Ord
var x, y : a; v, w : b

• (x, v) ≤ (y, w)⇔ x ≤ y ∧ v ≤ w

which gives rise to the proof obligation that reflexivity, transitivity, and anti-
symmetry of ≤ on a × b follow from the corresponding laws on a and b and
the definition of ≤ on a× b. Similarly, proof obligations may be generated for
subclasses. E.g.,

class instance DiscreteOrd < Ord
vars a : DiscreteOrd ; x, y : a

• x ≤ y ⇔ x = y

expresses that the order axioms follow from the definition of ≤ for discrete
orders.

As indicated above, HasCasl supports polymorphism over higher kinds. As
an example involving constructor classes and type constructors of higher rank,
a specification of the classes of monads and monad transformers as used in the

21

spec Functor =
class Functor < Type → Type {
vars F : Functor ; a, b, c : Type
op map : (a→ b)→ F a→ F b
vars x : F a; f : a→ b; g : b→ c

• map (λy : a •! y) x = x
• map (λy : a •! g (f y)) x = (map g) (map f x)
}

Fig. 4. The constructor class of functors

Haskell libraries [58] is shown in Fig. 5. The specification of monads slightly
modifies the usual definition (see Sect. 8); the axiomatisation of monad trans-
formers follows [38]. The class instance mechanism is illustrated by declaring

spec Monad = Functor then
class Monad < Type → Type {
vars m : Monad ; a, b, c : Type
ops >>= : m a× (a→?m b)→?m b;

>>= : m a× (a→ m b)→ m b;
ret : a→ m a

vars x, y : a; p : m a; q : a→?m b; r : b→?m c; f : a→? b
• def (q x)⇒ ((ret x) >>= q) = q x
• p >>= (λx : a • ret (f x) >>= r) =

p >>= (λx : a • r (f x))
• (p >>= ret) = p
• ((p >>= q) >>= r) = (p >>= (λx : a • q x >>= r))
• ((ret x) : m a) = ret y ⇒ x = y
}

class instance Monad < Functor
vars m : Monad ; a, b : Type; f : a→ b; x : m a;

• map f x = x >>= λy : a • ret (f y)

spec MonadTransformer = Monad then
class MonadT < Monad → Monad {
vars t : MonadT ; m : Monad ; a : Type;
op lift : m a→ t m a
vars x : a; p : m a; b : Type; q : a→?m b

• lift (ret x) = (ret x) : t m a
• lift (p >>= q) = (lift p) >>= λy : a • ((lift (q y)) : t m a)
}

Fig. 5. The classes of monads and monad transformers

Monad to be an instance of the constructor class Functor , whose definition is
shown in Fig. 4.

22

Remark 15 One should note that every declaration of a polymorphic type,
operation, or axiom is separately implicitly quantified over all presently de-
clared free type variables. E.g. in Fig. 4, the operation map is immediately
made polymorphic over a and b, so that instances of it can be used in the
following axioms at types other than just a and b – such as map[a, a] in the
first axiom, and map[a, c], map[b, c] in the second axiom.

Formally, the syntax of polymorphism is captured as follows.

Definition 16 A polymorphic HasCasl signature Σ consists of a set of
classes with a subclass relation according to Defn. 12, kinded type construc-
tors, type synonyms with given expansions, and typed polymorphic operations
as described above (basic types are regarded as type constructors without type
arguments, similarly for non-polymorphic operations). Kinds of type construc-
tors are subject to the above-mentioned restriction to coincident raw kinds.

A morphism of polymorphic signatures consists of maps taking classes to
classes, operations to operations, type synonyms to type synonyms, and type
constructors to type constructors or type synonyms, respectively. These maps
are required to preserve the subclass relation and the kinding of type construc-
tors in the sense that declared subclass relations and kind assignments for type
constructors are mapped to derivable subkinding and kinding judgements,
respectively, in the target signature, and to be compatible in the expected
sense with expansions of type synonyms and types of constants. Moreover,
morphisms must preserve polymorphic overloading: if the source signature
contains constants f : t and f : s, where t and s are unifiable polymorphic
profiles, then the images of f : s and f : t must have the same name in the
target signature.

Instances of classes are determined by a kinding system for pseudotypes. Kind-
ing takes place in a type context Θ of type variables with assigned kinds accord-
ing to the (syntax-directed) rules shown in Fig. 6 (to be extended in Sect. 4).
A judgement of the form Θ � t : Kd is to be read ‘t is a type constructor
of kind Kd in context Θ’. In the rules, s and t range over pseudotypes and
F over basic type constructors; the premise F : Kd1 in Σ means that Kd1 is
an explicitly assigned kind of F . The introduction rule for type constructors
applies also to the built-in type constructors ×, →, →?, Unit . A type in the
polymorphic language is a pseudotype of kind Type.

By induction over the type structure, one shows that all kinds derivable for a
pseudotype t are of the same raw kind, the raw kind of t.

Remark 17 Using the subkinding rules of Appendix C, one shows by induc-
tion over the type structure that the kinds derivable for a pseudotype are
upwards closed w.r.t the subkind relation (which is why we can require an ex-
act fit in the application rule). Moreover, kinding obeys a substitution lemma

23

F : Kd1 in Σ
Kd1 ≤K Kd2

Θ � F : Kd2

a : Kd1 in Θ
Kd1 ≤K Kd2

Θ � a : Kd2

Θ � t : Kd1

Θ � s : Kd1 → Kd2

Θ � s t : Kd2

Θ, a : Kd1 � t : Kd2

Kd3 ≤K Kd1

Θ � λ a : Kd1 • t : Kd3 → Kd2

Fig. 6. Kinding rules for type constructors

and hence is invariant under β-equality (but not under η-equality, which is
therefore not imposed on type constructors).

The first level of the semantics of polymorphism is defined by reduction to
the basic language of Sect. 2 as follows.

Definition 18 The generalised pseudotypes of a polymorphic HasCasl sig-
nature Σ are formed by the rules of Fig. 6 and an additional rule stating
that generalised types (Defn. 7) are generalised pseudotypes of kind Type. A
type instance is a closed generalised pseudotype. The point here is that gen-
eralised types may appear as arguments of user-declared type constructors —
by Rem. 8, we may assume that type instances do not contain applications of
the built-in type constructors ×, →, →? to generalised types. A loose type is
a type instance of kind Type which is an application of a user-declared type
constructor.

From Σ, we construct a basic theory B(Σ). The sorts of B(Σ) are the loose
types of Σ. Operations are translated as follows. Let f have the type scheme
∀a1 : Kd1, . . . , an : Kdn • t, and let s1 : Kd1, . . . , sn : Kdn be type instances.
By Rem. 8, the type instance t[s1/a1, . . . , sn/an] can be interpreted as a gener-
alised type v = (us1,...,sn . φs1,...,sn) in B(Σ). The operation f is then translated
into a collection of operations fv : us1,...,sn , where s1, . . . , sn range over all type
instances, together with axioms φs1,...,sn fv. Given this construction, it is clear
that every morphism σ : Σ1 → Σ2 of polymorphic signatures induces a theory
morphism B(σ) : B(Σ1)→ B(Σ2).

The first level of the semantics is then given as follows. The models and model
morphisms of Σ are those of B(Σ). Let ∀a1 : Kd1, . . . , an : Kdn • φ be a Σ-
formula, where φ does not contain further quantification over types. Given
type instances s1, . . . , sn, the formula φ[s1/a1, . . . , sn/an] is translated into
a formula φs1,...,sn over B(Σ) by replacing polymorphic operations with the
appropriate instances and by eliminating generalised types from quantifiers,
i.e. by replacing ∀x : (t. ψ) • χ with ∀x : t • ψ x ⇒ χ, similarly for ∃. A Σ-
model M satisfies ∀a1 : Kd1, . . . , an : Kdn • φ if M , regarded as a model of
B(Σ), satisfies φs1,...,sn for all type instances s1, . . . , sn.

24

Remark 19 The polymorphism introduced above is essentially shallow poly-
morphism. The discourse in [15] may create the impression that the combina-
tion of shallow polymorphism and higher order logic is inconsistent. However,
this is not the case: as demonstrated above, shallow polymorphism can be
coded out by just replacing polymorphic operations and axioms by all their
instances. The derivation of Girard’s paradox in [15], Sect. 5, is based on the
assumption that terms of the language are identified up to untyped β-equality
in the absence of type annotations; such an equality is obviously unsound w.r.t.
the usual notions of model, and the paradox shows that a language with such
an equality is inconsistent. When, as in the usual versions of shallow polymor-
phism, instantiations of polymorphic constants are internally annotated with
their types, the contradiction disappears (i.e. its derivation just produces a
type error).

Remark 20 In Sect. 2.1, the semantics of let-terms is given using λ-
abstraction. This base definition precludes ML-style polymorphism, that is,
polymorphic type variables that are universally quantified locally to the let-
term. However, this type of non-recursive ML-style polymorphism can be
coded out by using a separate λ-variable for each instance that is used in
the body of the let-term. The same works also for letrec-terms that do not use
true polymorphic recursion, which becomes relevant in program blocks (see
Sect. 6.3).

Remark 21 Notice that in the above definition, instances of operations are
distinguished by their own types, not by the involved type arguments. This
means in particular that polymorphic operations declared with identical names
but different profiles agree where their profiles overlap. This is to been seen
independently of the fact that for the sake of syntactic convenience, explicit
instantiation of polymorphic operations is via their type arguments, which are
usually simpler than the type of the operation itself.

For instance, one may write

classes Ord ,Num
vars a : Ord ; b : Num
ops min : a× a→? a;

min : b× b→? b

thus giving the functionmin the two polymorphic profiles ∀a : Ord • a×a→?a
and ∀a : Num • a × a →?a. By Defn. 18, instances for these two profiles at
types belonging to both Ord and Num agree. Similarly, overlapping instances
of unifiable profiles agree. E.g. one might sensibly first define a polymorphic
extension ordering on partial function spaces, and then declare this ordering
to be an instance of the class Ord :

25

vars a, b : Type
op ≤ : Pred ((a→? b)× (a→? b))

. . .%% Definition of the extension ordering
type instance a→? b : Ord

One then has two explicit profiles for ≤, namely ∀a : Ord • Pred (a× a) and
∀a, b : Type • Pred ((a →?b) × (a →?b)), and the instances of the two opera-
tions at the types Pred ((a→?b)× (a→?b)) are identical.

Remark 22 We recall that polymorphic definitions may introduce inconsis-
tencies if the entity to be defined depends on fewer type variables than the
defining entity (see also [33]). E.g. extending the specification

var a : Type
type Flag a
ops mkf : Logical → Flag a; getl : Flag a→ Logical
vars x : Flag a; b : Logical

• mkf (getl x) = x
• getl (mkf b : Flag a) = b

op sg : Flag a = mkf (∀x, y : a • x = y)

with the ‘definition’

op c : Logical = getl (sg : Flag a)

is obviously inconsistent. For this reason, such definitions are excluded e.g. as
constdefs in Isabelle, although the same formulas are admissible as axioms.
We allow them in HasCasl, in keeping with a general philosophy of analysing
only a posteriori which axioms are definitions (and the above axiom would not
be classified as a definition by such an analysis).

3.2 The Extended Model Semantics

As mentioned above, the first level of the semantics of polymorphic HasCasl
as defined in the preceding section fails to constitute an institution. We now
briefly recall the notion of institution, and discuss the failure of the satisfaction
condition at the first level of the semantics. We then go on to define a second
level of the semantics which does constitute an institution, making use of a
general institution theoretic construction introduced in [76].

Definition 23 [22] An institution consists of

26

• a category of signatures and signature morphisms ;
• a contravariant model functor assigning to each signature Σ a category

Mod(Σ) of models and model morphisms and to each signature morphism
σ : Σ1 → Σ2 a reduct functor Mod(Σ2) → Mod(Σ1), whose action on
models is denoted by M 7→M |σ, where M |σ is called the σ-reduct of M ;
• a covariant sentence functor assigning to each signature Σ a set Sen(Σ)

of sentences and to each signature morphism σ : Σ1 → Σ2 a translation
Sen(Σ1)→ Sen(Σ2), whose action is denoted by φ 7→ σφ; and
• for each signature Σ, a satisfaction relation |= on Mod(Σ)× Sen(Σ)

such that for each signature morphism σ : Σ1 → Σ2, the satisfaction condition

M |= σϕ ⇐⇒ M |σ |= ϕ

holds for all M ∈Mod(Σ2) and all φ ∈ Sen(Σ1).

For HasCasl, we have assembled most of the data required by this definition
in the preceding section, with the exception of model reduction and sentence
translation; these data are completed as follows.

Definition 24 Recall that a signature morphism σ : Σ1 → Σ2 of polymorphic
HasCasl signatures (Defn. 18) induces a signature morphism B(σ) : B(Σ1)→
B(Σ2) between the associated basic HasCasl signatures. A basic signature
morphism induces a reduct functor in the usual way (i.e. M |σ interprets sym-
bols by the interpretations of their σ-translations in M). The model classes of
the Σi are, by definition, those of the B(Σi); the reduct functor for σ is defined
to be that of B(σ). The translation map for σ works in the obvious way by
replacing all symbols in a formula by their images under σ, which may involve
replacing type constructors by type synonyms.

Given these definitions, it is clear that the satisfaction condition fails for the
first level of the semantics: e.g., a signature morphism σ may be an inclusion
Σ1 ↪→ Σ2 into a signature with more types, and thus given a Σ2-model M , a
Σ1-formula of the form, say, ∀a : Type • φ may hold for M |σ, i.e. for the type
instances in Σ1, but fail to hold for M , i.e. for the additional type instances
in Σ2. As an extreme example, which also illustrates that the notion of model
at the first level fails to capture the full intuitive meaning of polymorphic
specifications, consider the specification of monads in Fig. 5. This specification
introduces only a class, but no types of that class. Therefore, the given axioms
for monads do not have any instances, i.e. the specification is, at the first level,
model-theoretically vacuous, which is certainly not the intended meaning. A
model of an extension of the signature of Monad where instances of the class
Monad are declared may very well violate the monad axioms, while its reduct
to the signature of Monad will still trivially satisfy them.

27

All this is remedied at the second level of the semantics, where models are
defined to be first-level models of ‘future’ extensions of the present signature.
This is an instantiation of a generic construction presented in [76]. The for-
malisation of “future extension” also requests for a way of extending models
to the extended signatures. This is done using the notion of derived signature
morphisms. The intuition is that a derived signature morphism may map sym-
bols of the source signature not only to symbols, but also to more complex
terms in the target signature.

Definition 25 A derived signature morphism into a signature Σ is a (stan-
dard) signature morphism into an extension Σ̄ of Σ defined as follows.

• The classes of Σ̄ are the classes of Σ, and additionally all homogeneous sets
A of type instances in Σ, i.e. sets A such that all elements of A have the
same raw kind.
• The type constructors of Σ̄ are the type instances of Σ. The kinds assigned

to such a type constructor are those derivable according to the rules of
Fig. 6 from the kind assignments of Σ and additional kind assignments t : A
for every homogeneous set A of type instances and every t ∈ A. Note that
the closed types of Σ̄ may be identified with the type instances of Σ by
collapsing layers of type formation.
• For a class Cl and a kind Kd of Σ̄, Cl < Kd iff all instances of Cl are also

instances of Kd .
• The operation constants in Σ̄ of (closed) type t are the closed terms of

the type instance t in Σ. These are determined in a combined calculus
involving typing and logical deduction which includes the standard typing
and deduction rules and additional rules for generalised types (t. φ),

α : t φ α

α : (t.φ)
and

α : (t.φ)

α : t φ α
.

Remark 26 The categorically-minded reader will recognise derived signature
morphisms as Kleisli morphisms for a corresponding monad on the category
of signatures. Note that the classes of Σ have to be retained explicitly in Σ̄ as
they cannot be identified qua syntactic entities with sets of types, while e.g.
operation constants can just be regarded as particular terms. Crucially, the
identities in the category of derived signature morphisms map every class to
itself rather than to the set of its instances.

Definition 27 Any (first-level) Σ-model can be uniquely extended to a Σ̄-
model by just interpreting the closed terms serving as operation constants via
term evaluation. Note that the additional classes and type constructors in Σ̄
do not lead to additional type instances.

The reduct of a model against a derived signature morphism into a signature
Σ is obtained by first extending to the model to Σ̄ and then taking ordinary

28

reduct. In order to define a generalised sentence translation, the notion of sen-
tence has to be slightly extended to include universal quantification over type
variables ranging over given sets of type instances, with the obvious semantics;
given this extended syntax, the definition of translation is straightforward.

Remark 28 Derived signature morphisms are of independent interest, as
they can form the basis for constructor implementations in the sense of [68,67].
Specifically, taking reducts along a derived signature morphism is a construc-
tor that may be used to refine a more complex specification to a simpler one;
the terms and type sets involved in the derived signature morphism then de-
termine how to extend a model of the simpler specification to a model of the
more complex one.

Definition 29 The second level of the semantics of polymorphic HasCasl is
defined as follows. The notions of signature and sentence remain unchanged.
An extended model of a signature Σ1 is a pair (N, σ), where σ : Σ1 → Σ2 is
a derived signature morphism in the sense defined above and N is a (first-
level) Σ2-model. The reduct (N, σ)|τ of (N, σ) along a signature morphism τ
is (N, σ ◦ τ). The extended model (N, σ) satisfies a sentence φ if

N |= σφ

at the first level.

By the results of [76], we have

Theorem 30 The second level of the semantics of polymorphic HasCasl
constitutes an institution.

Moreover, instead of the pathologies indicated above, we obtain

Theorem 31 On the second level of the semantics, the Σ-sentence ∀b1 :
Kd21; . . . ; bm : Kd2m • ψ is a semantic consequence of ∀a1 : Kd11; . . . ; an :
Kd1n • φ, where the Kd ij are kinds, and φ and ψ are formulas not containing
further quantification over type variables, iff

(∀a1 : Kd11; . . . ; an : Kd1n • φ) |= ψ

on the first level, equivalently on the second level, in the signature obtained
from Σ by adding type constructors bi : Kd2i, i = 1, . . . ,m.

This is precisely the notion of semantic consequence one would intuitively
expect, and also the basis for polymorphic proofs as conducted e.g. in Is-
abelle [54]. A consequence of the theorem is that the sound and complete
proof systems for the partial λ-calculus presented in [44,71] lead to sound and
complete proof systems for the second level of the semantics.

29

A further issue in this context are model-expansive or, in Casl terminology,
(model-theoretically) conservative extensions.

Definition 32 A theory in a given institution is a pair T = (Σ,Φ) consisting
of a signature Σ and a set Φ of Σ-sentences. A model of T is a Σ-model M
such that M |= Φ. A signature morphism σ : Σ1 → Σ2 is a theory morphism
(Σ1,Φ1)→ (Σ2,Φ2) if

Φ2 |= σΦ1,

where |= denotes logical consequence. We say that σ is (model-theoretically)
conservative if every model M of (Σ1,Φ1) has a (Σ2,Φ2)-extension, i.e. a model
M ′ of (Σ2,Φ2) such that M ′|σ = M .

It is easy to see that conservative theory morphisms at the second level are
sections (i.e. have left inverses) as derived signature morphisms; conversely,
theory morphisms which are sections as derived theory morphisms are con-
servative [76]. Informally, this means that extensions by syntactic definition
are conservative, where thanks to the use of derived signature morphisms in
extended models, syntactic definitions of symbols may use e.g. terms to define
operation constants and type instances to define type constructors. In par-
ticular, equational definitions, well-founded recursive definitions of functions
whose result types have unique choice [70], and class declarations are conser-
vative. It will be seen below that, moreover, general recursive definitions over
types of a class of domains and subtype definitions are conservative, and in-
ductive datatype definitions as well as primitive recursive function definitions
on such datatypes are conservative over base theories already containing the
natural numbers.

4 Subtyping

For convenience in both writing and reading specifications, HasCasl, like
Casl, features coercive subtyping. That is, basic types may be declared to be
subtypes of (possibly composite) types; e.g.

types Nat < Int ;
Inj < Int → Int

declares Nat to be a subtype of Int , and Inj a subtype of Int → Int (say,
of injective functions). The mutual subtype relation, i.e. type isomorphism,
is expressed by ‘=’. Semantically, subtype relations are realised by coercion
functions which are omitted in the notation. Thus, terms of the subtype may
be used in terms whenever terms of the supertype are expected. Coercion
functions for directly declared subtype relations are required to be injective;

30

however, coercion functions for inferred subtype relations as discussed further
below may fail to be injective. Coercion functions are required to be coherent
and compatible with overloading; this will be made more precise below. For
s < t, one has a partial downcast operation as s : t →?s, defined precisely
on the image of s in t, and an elementhood predicate ∈ s on t, defined as the
predicate λx : t • def x as s. Upcasting of terms may be achieved by explicit
type annotations of terms in the form α : t.

Subtype relations may also be given polymorphically, i.e. basic type construc-
tors may be declared to be subtypes of pseudotypes. E.g.

var a : Type
type NonrepList a < List a

declares a type constructor NonrepList (say, of nonrepetitive lists) such that
instances of NonrepList are subtypes of instances of List . This is briefly ex-
pressed by saying that NonrepList is a subtype of List (which may be declared
in the form NonrepList < List). For the built-in type constructors, we have
the subtype relation

→ < →? .

A total λ-abstraction is equal to the downcast of the corresponding partial
λ-abstraction to the total function type.

A type constructor F may be declared to be covariant or contravariant, where
the former means that s < t implies F s < F t and the latter that t < s implies
F s < F t. The absence of co- or contravariance is called non-variance, while
the combination of contravariance and covariance is referred to as invariance.
Covariance or contravariance of a type constructor are indicated by adding the
variance annotation + or −, respectively, to the corresponding constructor
kind or to type variable declarations (similar ideas appear already in [10]; the
notation used here is the one applied also e.g. in [1]). E.g., the list constructor
might sensibly be declared to be covariant by writing

var a : +Type
type List a : Type

(or shortly List : +Type → Type). We do not provide dedicated syntax for
invariance; however, invariant type constructors may arise through redeclara-
tion, unions of specifications, or instantiations of parametrised specifications.

A typical example of a contravariant type constructor argument is the function
type constructor: if a is a subtype of b, then b→ c is, via function restriction,

31

a subtype of a→ c. Explicitly, the built-in type constructors have kinds

× : + Type → +Type → Type,

→? , → : − Type → +Type → Type.

User-declared contravariant type constructors will mostly be related to func-
tion types in some way. E.g. one might choose to generalise the type of injective
functions to a type constructor, declared by

vars a : −Type; b : +Type
type Inj a b < a→ b

(this must indeed be declared rather than inferred; e.g. the above variance
declaration would not be sensible for a type of surjective functions).

It is possible to impose subtyping constraints on type variables in the form
a < t, where a is a type variable and t is a pseudotype (similar features are
present in the programming language O’Haskell [55]). For instance, the most
general way to declare the twice function is

vars a : Type; b < a
op twice : (a→? b)→ (a→? b)

The effect is that the polymorphic profile of twice is annotated with the sub-
typing constraint b < a. Similarly, subtyping constraints may be imposed on
polymorphic axioms. It is not presently allowed to impose subtyping con-
straints on type variables appearing as arguments in the declaration of type
constructors (since this would ultimately require the introduction of ‘depen-
dent kinds’); e.g. in the above context, the declaration type F a b would be
illegal. Instances of polymorphic operations with subtyping constraints may be
formed only for types that satisfy the constraints (satisfaction of constraints
is decidable by means of the syntax-directed set of subtyping rules given in
Appendix D).

Polymorphic operation constants introduced by the keyword op are required
to be coherent under subtyping, i.e. the polymorphic instance for a subtype
is required to be mapped to the instance for the supertype under the coercion
function, while operators introduced by means of fun or pred are regarded
as non-coherent.

Remark 33 Polymorphic predicates and functions that do not look into the
structure of their type arguments, in particular typical polymorphic programs,
will be coherent, while polymorphic functions or predicates involving e.g. quan-
tification or equality will often fail to be so. Care should be taken not to ac-
cidentally declare functions of the latter kind by op, since this will lead to

32

inconsistent specifications.

Subtypes may be defined by means of a predicate on the supertype; e.g.

vars a, b : Type
type Inj a b = {f : a→ b • ∀x, y : a • f(x) = f(y)⇒ x = y}

The total function type has the obvious subtype definition built in.

Formally, the subtype relation is a relation between type constructors and
pseudotypes. In particular, it is not possible to declare composite types to be
subtypes of others, nor to declare a subtype relation only for certain instances
of a type constructor, e.g. by declaring NonrepList a < List a only for a : Ord .
A type constructor may be declared a subtype only of pseudotypes of the
same raw kind (see below); if a type constructor F is introduced by means of
a subtype declaration F < t (such as NonrepList above) and no other kind is
declared for F within the same basic specification, then F implicitly inherits
the kind of t.

In the meta-theory, we denote the subtype relation by ≤. This relation is ex-
tended to two preorders ≤ and ≤∗ on pseudotypes, respectively representing
injective and general coercion as suggested in [28], by rules given further be-
low. A typical case where coercions are in general non-injective is coercion by
function restriction in subtype relations b → c ≤ a → c for a ≤ b. Conse-
quently, application of contravariant type constructors in general is assumed
to weaken ≤ to ≤∗. Signatures are implicitly embedding closed [77], i.e. the
profiles associated to a given operation constant name are upclosed under ≤∗
in the sense that f : s in Σ and s ≤∗ t implies f : t in Σ.

The set {±,+,−, · } of variance annotations, where ± indicates invariance
and · is a placeholder denoting non-variance, will henceforth be denoted by V .
The set V is ordered by taking ± and · to be the smallest and the greatest
element, respectively, and + and − to be mutually incomparable.

The subkind relation is extended by a variance rule

µKd1 → Kd2 ≤K νKd1 → Kd2

(µ, ν ∈ V , µ ≤ ν),

as well as analogous versions of the subkinding rule for constructor kinds
(Fig. 2) for covariant and contravariant constructor kinds. The full set of
subkinding rules can be found in Appendix A.

Unlike class restrictions, variance annotations are retained in raw kinds. This
affects the admissibility of kind assignments for type constructors (Sect. 3.1);
however, we syntactically relax the previous restrictions as follows: A redecla-

33

ration of a type constructor F may omit variances present in the raw kind of
the previous declarations and also introduce new variances; these variances are
then implicitly combined, and all kinds of F are modified to match the arising
raw kind. E.g. the declaration of product types as generic instances of the class
Ord in Sect. 3.1 is indeed legal, and declares the kind +Ord → +Ord → Ord
for × (since × has the built-in kind +Type → +Type → Type). Sim-
ilarly, declaring a type to be of kind +Cl1 → Cl2 → Cl3 and also of kind
Cl1 → −Cl2 → Cl3 results in the kind +Cl1 → −Cl2 → Cl3. In the same
way, different kinding declarations are reconciled in signature unions. No at-
tempt is made to resolve conflicting variance annotations in left nested occur-
rences of →; e.g. it is not possible to combine kindings t : (+C1 → C2)→ C3

and t : (D1 → D2) → D3 for classes Ci, Di. Similar relaxations apply to raw
kinds of classes. Formally, we call two kinds Kd1,Kd2 top-level compatible
if Kd i = µi1Kd ′1 → · · · → µinKd ′n → Kd ′ for suitable kinds Kd ′i, Kd ′ and
µij ∈ V , i = 1, 2. We admit redeclarations of types and new subclass dec-
larations Cl < Kd for existing classes Cl , provided that the associated raw
kinds are top-level compatible with the previous raw kinds; the new raw kind
is then the infimum of the newly declared and the previous raw kinds under
the subkind relation.

The kinding rules for pseudotypes now require type contexts allowing variance-
annotated type variables written in the form a : +Kd or a : −Kd , respectively.
Such variance annotations are called outer variances. Outer variances may
appear also in type variable declarations in pseudotypes and in the actual
HasCasl syntax, as already illustrated in the examples above, the effect being
a variance declaration for type constructors and type synonyms declared using
these type variables. Variance declarations for type synonyms are well-formed
only if the associated pseudotypes are kindable by the extended kinding rules
below.

The extended kinding rules concern kinding judgements Θ � t : Kd , with Θ a
context of variance-annotated type variables, which mean that the pseudotype
t depends on the variables in Θ with the indicated variance. (Strictly speaking,
pseudotype formation depends also on the declared subtype constraints, but
only in the sense that λ a : Kd • t is ill-formed if a appears in a subtype
constraint, see above.) In type formation, only covariant or non-variant type
variables can be introduced (so that e.g. the pseudotype λ a : −Type • a is
ruled out). The application rule for type constructors is split into three rules

Θ � t : Kd1

Θ � s : +Kd1 → Kd2

Θ � s t : Kd2

Θ−1 � t : Kd1

Θ � s : −Kd1 → Kd2

Θ � s t : Kd2

Θ0 � t : Kd1

Θ � s : Kd1 → Kd2

Θ � s t : Kd2

where the contexts Θ−1 and Θ0 denote Θ with all outer variances reversed or

34

removed, respectively. For type abstraction, one has rules

Θ, a : µKd1 � t : Kd2

Kd3 ≤K Kd1

Θ � λ a : µKd • t : νKd3 → Kd2

(µ ≤ ν in V).

By the above rules, e.g. the pseudotype λ a : +Type • Pred (Pred a) is of kind
+Type → Type, while the pseudotype λ a : +Type • Pred a fails to be well-
formed. The full set of kinding rules is recorded in Appendix B. By induction
over derivations, one shows that for t, Θ, the set {Kd | Θ � t : Kd} is upwards
closed w.r.t. subkinding.

Remark 34 It is not in general the case that pseudotypes have smallest kinds
w.r.t. the subkind relation. E.g. the user might sensibly assign the additional
kind +Ord → +Ord → Ord to the product type constructor ×; any lower
bound of that kind and the built-in kind +Type → +Type → Type of ×
would then be a subkind of +Type → +Type → Ord and hence cannot be
expected to be a kind for ×. However, the subkinding rule for variances given
above introduces a non-trivial ordering also on raw kinds, and the following
proposition shows that every pseudotype has a smallest raw kind.

Lemma 35 For all kinds Kd1 and Kd2, Kd1 ≤K Kd2 implies raw(Kd1) ≤K
raw(Kd2).

PROOF. Induction over the derivation of Kd1 ≤K Kd2.

Proposition and Definition 36 For every pseudotype t in type context Θ,
the set {raw(Kd) | Θ � t : Kd} has a smallest element, called the raw kind of
t in type context Θ.

(The raw kind may be calculated by recursion along the structure of t.)

PROOF. Induction over the structure of t. The cases for type constructor
and variable introduction, as well as type abstraction, are straightforward by
Lem. 35. In the cases for type application, the fact is needed that νKd2 →
Kd3 ≤K µKd1 → Kd4 implies Kd3 ≤K Kd4, which follows from the syntax-
directed set of subkinding rules of Appendix C.

The subtyping relations ≤ and ≤∗, ranged over by the metavariable v, are
defined by the rules of Fig. 7 (a syntax-directed version of the system is given
in Appendix D). Subtyping judgements Θ; Λ�s v t in type context Θ depend
on a context Λ of declared subtype constraints of the form a ≤ t, with a a type
variable and t a type in context Θ. Here, Θ is a simple type context without

35

outer variances. The formal difference between the two subtype relations lies
in the contravariant application rule, which applies only to ≤∗. The subtyping
rules assume that all occurring types are well-formed, i.e. kindable in the
given context (in particular, the rule for abstractions assumes that a is not
mentioned in Λ). The phrase ‘F ≤ t in Σ’ means that the type constructor F
is declared to be a subtype of t in the signature. Application of the built-in
type constructors →? etc. is covered by the application rules for arbitrary
pseudotypes.

a ≤ t in Λ

Θ; Λ � a ≤ t

F ≤ t in Σ

Θ; Λ � F ≤ t

Θ; Λ � s ≤ t

Θ; Λ � s ≤∗ t Θ; Λ � t ≤ t

Θ; Λ � s v t
Θ; Λ � t v u

Θ; Λ � s v u

Θ � t : +Kd1 → Kd2

Θ; Λ � s1 v s2

Θ; Λ � t s1 v t s2

Θ � t : −Kd1 → Kd2

Θ � s2 ≤∗ s1

Θ � t s1 ≤∗ t s2

Θ; Λ � t1 v t2
Θ; Λ � t1 s v t2 s

Θ, a : Kd ; Λ � t v s

Θ; Λ � λ a : µKd • t v λ a : µKd • s
(µ ∈ V)

Fig. 7. Subtyping rules for pseudotypes (with v∈ {≤,≤∗})

Lemma 37 For pseudotypes t1 and t2, Θ; Λ � t1 ≤∗ t2 implies that t1 and t2
have the same raw kinds.

Semantically, the interpretation of subtyping is determined by an extension of
the translation of polymorphic HasCasl into basic HasCasl to signatures
with subtyping, defined as follows.

Definition 38 A polymorphic HasCasl signature Σ with subtyping is de-
fined by extending the notion of polymorphic HasCasl signature (Defn. 16)
in the way indicated above: there is additional data in the shape of the sub-
typing relation ≤ between type constructors and pseudotypes, and a coher-
ence predicate on the set of polymorphic operations (see above). Moreover,
polymorphic operations and axioms are annotated with sets of subtyping con-
straints of the form described above. For semantic purposes, we admit also
subtyping constraints of the form a ≤∗ t (such constraints are never gener-
ated by user declarations). The restrictions listed above apply, in particular
embedding closure. Besides the user-declared symbols, Σ implicitly contains
polymorphic operations (assumed to be different from all user-declared oper-

36

ations)

up : ∀a, b : Type; a ≤∗ b • a→ b

down : ∀a, b : Type; a ≤ b • b→?a.

Similarly, morphisms of such signatures are defined by extending the definition
of morphism of polymorphic signatures. Signature morphisms map only the
user-declared symbols (not the above implicit operations). They are required
to preserve coherence and the subtype relation ≤, the latter in the sense that
subtype declarations are mapped to derivable subtyping judgements. We im-
pose that overloading of symbols is preserved [53], a condition which thanks
to embedding closure reduces to the requirement that identically named con-
stants c : s and c : t are mapped to identically named constants whenever
s < t. Moreover, we require that raw kinds of classes and type constructors
are preserved up to top-level compatibility (by Lem. 35 and Prop. 36, it fol-
lows already from preservation of the kinding and subclass relations that raw
kinds can only decrease w.r.t. the subkind relation).

Over a polymorphic HasCasl signature Σ with subtyping, we define two kinds
of sentences: explicit coercion sentences are just the expected polymorphic sen-
tences over Σ, including the built-in symbols, with instances of polymorphic
operations admitted only for types satisfying the associated subtyping con-
straints. Implicit coercion sentences additionally may use the above-mentioned
subtyping mechanisms, i.e. terms of a subtype can appear wherever terms of
a supertype are expected, and downcasts as s and elementhood ∈ s may
be used; however, implicit coercion sentences cannot use the built-in symbols
up and down. Implicit coercion sentences are used in actual specifications,
while explicit coercion sentences serve only semantic purposes. Implicit coer-
cion sentences are translated into explicit coercion sentences by

• inserting up where terms of a subtype are used in places where terms of the
supertype are expected;
• replacing uses of ∈ with its definition in terms of down and definedness;
• replacing downcasts as s with applications of down.

The translation of polymorphic signatures into basic signatures is extended
by associating to a polymorphic signature Σ with subtyping a basic theory
B(Σ) as follows. The signature of B(Σ) is defined as before (Defn. 18), except
that subtyping constraints are taken into account: a polymorphic operation
constant f : ∀a1 : Kd1, . . . , an : Kdn; Λ • t is instantiated only to those type
instances s1, . . . , sn that satisfy every subtyping constraint ai v t in Λ (with
v∈ {≤,≤∗}) in the sense that (); () � si v t[s1/a1, . . . , sn/an] is derivable
in Σ, using for generalised types the additional rule that (u. φ) ≤ (u. ψ) if ∀x :
u • φ x ⇒ ψ x is derivable. The axioms of B(Σ) are obtained by translating,
in the way described below, the following explicit coercion sentences over Σ:

37

• coercion from s to t is injective if s ≤ t, with down as a partial left inverse:

∀a, b : Type; a ≤ b • (∀x : a • down ((up x) : b) = x) ∧
∀y : b • def (down y) : a ⇒ up ((down y) : a) = y

• subtyping is coherent, i.e. coercion functions compose and coercion from a
type into itself is the identity:

∀a : Type • ∀x : a • ((up x) : a) = x and

∀a, b, c : Type; b ≤∗ c, a ≤∗ b • ∀x : a • up ((up x) : b) = (up x) : c.

• overloading of operations is compatible with coercion, i.e. for each type
context Θ = (a1 : Kd1; . . . ; an : Kdn), each polymorphic operation c :
∀Θ; Λ • s, and each type t such that Θ; Λ � s ≤∗ t, there is an axiom

∀Θ; Λ • up (c : s) = c : t

(where the profile c : ∀Θ; Λ • t is in Σ by embedding closure);
• correspondingly flagged polymorphic operations are coherent w.r.t. subtyp-

ing: if f : ∀b1 : Kd ′1, . . . , bm : Kd ′m • s is a coherent polymorphic opera-
tion, and for i = 1, . . . ,m, ti and ui are types of kind Kd ′i such that
Θ; Λ � s[t1/b1, . . . , tm/bm] ≤∗ s[u1/b1, . . . , um/bm], then there is an axiom

∀Θ; Λ • f [u1, . . . , um] = up f [t1, . . . , tn];

• the built-in subtype relations have the expected coercion functions; i.e.

∀a, b, c, d :Type; c ≤∗ a; d ≤∗ b •
(∀f : a→ b • (up f) : (a→?b) = λx : a • f x) ∧
(∀f : a→?d • (up f) : (c→?b) = λx : c • up (f (up x))) ∧
∀x : c; y : d • (up (x, y)) : a× b = (up x, up y)

(note that η does not apply to the right hand side in the first equation, since
f has the wrong type).

Finally, explicit coercion sentences are translated into collections of sentences
over B(Σ) in the same way as in Defn. 18, with instances restricted to those
satisfying the given subtyping constraints. A model of Σ is a model of B(Σ),
and such a model satisfies a Σ-sentence if it satisfies all its instances.

Remark 39 The subtyping axioms above imply that the subtype of total
functions contains all total functions that live in the partial function type (see
Defn. 9) and that co-contravariant subtype relations for total function types
have the right coercion functions, i.e.

∀f : a→ d • (up f) : (c→ b) = λx : c •! up (f (up x)).

38

Remark 40 The presence of the down operation implies that subtypes a ≤ b
are regular subobjects in the categorical models [71].

5 Datatypes

HasCasl supports recursive datatypes in the same style as in Casl. To begin,
an unconstrained family of datatypes ti is declared along with its constructors
cij : tij1 → . . .→ tijkij

→ ti by means of the keyword type in the form

type t1 ::= c11 t111 . . . t11k11 | . . . | c1m1 t1m11 . . . t1m1k1m1

. . .
tn ::= cn1 tn11 . . . tn1kn1 | . . . | cnmn tnmn1 . . . tnmnknmn

Here, the ti may be patterns of the form C a1 . . . ar, where C is a type
constructor and the ai are type variables, so that C is declared as a polymor-
phic type. The tijl are types in the context determined by the C and the ap.
Optionally, selectors sijl : ti →?tijl may be declared by writing (sijl :?tijl) in
place of tijl. All this is just syntactic sugar for the corresponding declarations
of types and constants, and equations stating that selectors are left inverse to
constructors.

Data types may be qualified by a preceding free or generated. The gener-
ated constraint introduces an induction axiom; this corresponds roughly to
term generatedness (‘no junk’). The free constraint (‘no junk, no confusion’)
instead introduces an implicit fold operation, which implies both induction
and a primitive recursion principle. If one of these constraints is used, then
recursive occurrences (in the tijl) of a type constructor C being declared are
restricted to the pattern C a1 . . . ar appearing on the left hand side; i.e.
HasCasl does not support polymorphic recursion. If a free constraint is
used, then additionally recursive occurrences of the types being declared are
required to be strictly positive w.r.t. function arrows, i.e. occurrences in the
argument type of a function type are forbidden.

In more detail, the semantics of the constraints is as follows.

5.1 Generated types

For types ti as above that have only types tj from the same declaration and
types from the local environment as arguments of constructors, the induction
axiom states that for any family of predicates Pi : Pred ti, called the induction
predicates, the premise of the induction principle implies that ∀x : ti. Pi(x) for

39

all i. Here, the premise of the induction principle expresses that the induc-
tion predicates are closed under the constructors in the usual sense. Note that
the induction axiom is a higher-order reformulation of the corresponding sort
generation constraint in Casl. Unlike in Casl, the induction axioms are how-
ever expressible in HasCasl, i.e. generation constraints in HasCasl are just
syntactic sugar.

For constructors with composite argument types, the notion of closedness of
predicates under the constructor requires extending the induction predicates
to extended induction predicates Ps on composite types s, as follows.

• Partial function spaces :

Ps→?tf ⇐⇒ ∀x : s.(Psx ∧ def f(x))⇒ Ptf(x).

• Total function spaces : Ps→t is the restriction of Ps→?t to s→ t.
• Product types :

Ps×t(x, y) ⇐⇒ Psx ∧ Pty.
• For types s from the local environment, Ps is taken to be constantly true.
• Applications D s1 . . . sq of a type constructor D from the local environment

to types s1, . . . , sq, where at least one sj contains a recursive occurrence of
the tj: extended induction predicates for such types are required to be closed
under all operations with result type D s1 . . . sq (which are necessarily
newly arising instances of polymorphic operations). Note that in general,
extended induction predicates are not uniquely defined by this requirement.
Examples follow below.

Remark 41 If a type constructor D from the local environment has a gen-
eration constraint, then of course the closedness requirement on extended in-
duction predicates for applications of D is equivalent to closedness under the
operations in the constraint. However, the induction axiom also makes sense
if D has no generation constraint; it then states essentially that the types be-
ing declared are generated from the reachable part of D. Note that extended
induction predicates do not appear in the conclusion of the induction axiom,
so that the latter does not imply a sort generation constraint for D.

Generally, every HasCasl specification, in particular every datatype decla-
ration, has a term model [71], and the induction axiom induced by a generat-
edness constraint is satisfied in the term model. However, we stress that the
induction axiom does not imply that elements of a generated datatype whose
constructors have functional arguments are reachable by the constructors and
λ-abstraction. In particular, concerning inhabitants of functional types, the
induction axioms only require that these map reachable elements to reachable
elements — they need not be themselves reachable. Specifically, a standard
interpretation of functional types (i.e. using the full function space, which
cannot be term generated for infinite types) is not precluded.

40

Finally, note that, due to the flexibility of interpretation of higher types in
Henkin models, the higher-order reformulation of generation constraints in
HasCasl is weaker than the corresponding generation constraint in Casl,
and in particular does not exclude non-standard models. However, proof-
theoretically, this difference disappears — at least if the standard Casl proof
system with the usual finitary induction rule is used. Only if stronger (e.g.
infinitary) forms of induction are used, the difference becomes relevant. It also
becomes relevant for monomorphicity. A specification is called monomorphic
if all its models are isomorphic. Due to possible non-standard interpretations
of higher types, even free datatypes (see below) are not monomorphic in Has-
Casl, although they are monomorphic in Casl.

Example 42 The following datatype declaration (to be extended by a precise
specification of equality on the declared types) might form part of a specifica-
tion of finite systems with unordered branching:

generated type Container a ::= empty | add a (Container a)
generated type Sys b ::= node b (Container (Sys b))

The induction axiom for Container is as in Casl; the induction axiom for
Sys b is as follows.

(∀x : b; s : Container (Sys b) •
Q s⇒ P (node x s)) ∧

Q empty ∧
(∀s : Container (Sys b); t : Sys b •

(Q s ∧ P t)⇒ Q (add t s))

⇒ ∀t : Sys b • P t.

As an example with functional constructors, consider a datatype of at most
countably branching trees,

generated type CTree a ::= leaf a | branch (Nat →? CTree a)

(with the type Nat of natural numbers declared elsewhere), which for CTree
gives rise to the induction axiom

(∀x : a • P (leaf x)) ∧
(∀f : Nat →?CTree a •

(∀n : Nat • def f n⇒ P (f n))⇒ P (branch f))

⇒ ∀t : CTree a • P t.

41

5.2 Free types

The semantics of free datatypes is determined by a fold operation, i.e. free
datatypes are explicitly axiomatised as initial algebras. As indicated above,
negative occurrences of the types being declared are forbidden in declarations
of free types, i.e.

free type L ::= abs (L→ L)

is illegal, while

free type Tree a b ::= leaf b | branch (a→ Tree a b)

is allowed. Thanks to this restriction, we can set about interpreting free
datatypes as initial algebras for functors.

To begin, a declaration of datatypes t1, . . . , tn as above can be regarded as
a fixed point declaration for a family F = (F1, . . . , Fn) of n-argument type
constructors; here, alternatives A | B are replaced by sums A + B, using a
built-in declaration of sum types as in Sect. 3.1. The constructors of the ti can
then be gathered into structure maps ci : Fi t1 . . . tn → ti.

We then extend F to a functor, where we view a functor as mapping types
to types and functions to functions as in Fig. 4. The action of F on maps is
defined by recursion over the structure of F , with the standard clauses for
sums, products, function types (where only positive positions appear), and
constant types, i.e. types from the local environment. The remaining case in
the recursion are types D s1 . . . sq, where D is a type constructor from the
local environment. Here, we have to require that the functorial action of D
is determined by its specification; that is, the free type is well-formed only
if D belongs to the class Functorq , a built-in specification of functors with
q arguments that generalises the specification Functor = Functor 1 of Fig. 4.
(For practical purposes, q can be restricted to small values.)

If the ti are parametrised over type variables ai : Type, then F is parametrised
in the same way. If the ai appear only in functorial positions, so that the ti
depend functorially on the ai, then corresponding instances of Functor q are
derived automatically. (Note that this means that the average user will never
actually see the classes Functor q in practice, as instances are generated and ex-
ploited automatically for typical sequences of nested datatype declarations.) In
order to keep the language design manageable, functorial dependence on vari-
ables of higher kinds, although technically possible, is not supported. See [72]
for details on the functor mechanism.

42

The fold operations fold i for the ti then have the polymorphic types

fold i : ∀b1, . . . , bn : Type • (F1 b1 . . . bn → b1)→ . . .

→ (Fn b1 . . . bn → bn)→ ti → bi.

(In practice, if Fi is a sum type arising from alternatives, then the argument of
type Fi b1 . . . bn is decomposed into several functions, one for each component
of the sum.) The defining property of the fold operations states that, for
b1, . . . , bn : Type, fi : ti → bi, and di : Fi b1 . . . bn → bi, i = 1, . . . , n,

fi = fold i d1 . . . dn for all i iff di ◦ (Fi f1 . . . fn) = fi ◦ ci for all i;

Fi t1 . . . tn
Fi f1 . . . fn- Fi b1 . . . bn

ti

ci

? fi - bi

di

?

i.e. the fold i d1 . . . dn constitute the unique F -algebra morphism from the ti
into the F -algebra given by the di. Thus, the ci are determined as the initial
F -algebra.

Remark 43 The above requires two warnings. To begin, although we define
datatypes as internal initial algebras, they are not in general monomorphic;
e.g., the standard definition of the naturals as a free datatype admits non-
standard models. This is due to the Henkin semantics — the set of functions
to which the fold operation applies does not have a fixed interpretation.

Secondly, unlike in first order Casl, the meaning of free type does not co-
incide with that of the corresponding structured free extension free { type
. . . }. The difference is that a free extension also requires all newly arising
function types to be freely term generated, which has the undesirable effect
of precluding any further function definitions for these types (going beyond
existing λ-terms).

Example 44 Consider the following free datatype definitions.

vars a, b : Type
free type List a ::= nil | cons a (List a)
free type Tree a b ::= leaf a | branch (b→ List (Tree a b))

For the type constructor List , an instance List : Functor is derived, with map
defined in the standard way. For Tree, we obtain an operation

fold : (a→ c)→ ((b→ List c)→ c)→ Tree a b→ c,

43

CTree polymorphic over c : Type. This operation is axiomatised as being
uniquely determined by the equations

fold f g (leaf x) = f x

fold f g (branch s) = g (map (fold f g) ◦ s).

Remark 45 From the fold operation, one obtains also a primitive recursion
principle in the standard way (i.e. by means of a simultaneous recursive defi-
nition of the identity). From the latter, in turn, we obtain as a special case a
case operator, denoted in the form

case x of c y1 . . . yl → f y1 . . . yl | . . .

Moreover, free types are generated, i.e. satisfy the induction axiom of Sect. 5.1.
In the following, we regard sum types (Fig. 3), which we denote by + in the
interest of readability, as free datatypes, and in particular use the case notation
for them as well.

Remark 46 Unlike in Casl, declarations of free datatypes in HasCasl are
not necessarily a conservative extension of the local environment. Already
the naturals may be a non-conservative extension: as discussed in Sect. 3.2,
conservative extensions at the second level of the semantics essentially can
only introduce names for entities already in the present signature. However, if
the naturals, as well as sum types and an initial object as specified in Fig. 3,
are already present, then one can show finitely branching free datatypes to
be conservative extensions. This is done by constructing them in a similar
way as in standard HOL [57,5] as inductively generated subtypes of a suitable
universal type, with some modifications required due to the fact that HasCasl
does not impose unique choice (Sect. 2.2) — essentially, the universal type is
a type of trees, represented as partial maps from paths to values (rather than
as sets of (node, value)-pairs as in HOL), and annotated explicitly with finite
sizes in order to inherit primitive recursion from the naturals. Details are laid
out in [72].

6 Recursion

Unlike Casl, HasCasl has a notion of executable specification that includes
general recursion and hence possible non-termination, in the style of a strict
functional programming language (as laid out in Sect. 2.3, non-strict functions
can be modelled as well). This is achieved by explicitly bootstrapping a domain
semantics in the style of HOLCF [64]. On the technical side, this requires some
adjustments to standard domain theory in order to cope with the austerity of
the internal logic; these issues are dealt with in Sect. 6.1. We then go on to

44

discuss initial datatypes in the arising category of domain types, and finally
describe how these features are reflected by an appropriate sugaring of the
HasCasl syntax.

6.1 Domain Theory in the Internal Logic

We now recast the basics of standard domain theory, phrased in terms of chain-
complete partial orders, in the internal logic of HasCasl. The main difficulty
here is not so much the intuitionistic aspect (the study of domain theory in
toposes goes back at least to [65]), but the fact that due the the absence of
unique choice (Sect. 2.2), we can no longer e.g. define the value at x of the
supremum of a chain of partial functions fi as ‘the value (if any) eventually
assumed by the fi(x)’. Rather, we have to require existence of suprema of
chains in the lifting ?a of a domain a; for this purpose, we assume given in
this section a type Nat of natural numbers.

Definition 47 A partial order a with ordering v is called a complete partial
order (cpo) if the lifted type ?a, equipped with the ordering

x v y ⇐⇒ (def x()⇒ x() v y()),

has suprema of chains and a bottom element. We call chains in ?a partial
chains, as opposed to total chains, i.e. chains in a in the usual sense. We say
that a cpo a is pointed (or a cppo) if a has a bottom element. We say that a
type a is a flat cpo if a is a cpo when equipped with the discrete ordering.

Cpo’s can be specified as a class in HasCasl as shown in Fig. 9; the specifi-
cation imports, besides the natural numbers, a specification of partial orders
(Fig. 8), containing in particular the definition of the induced ordering on
lifted types. In the discussion below, we denote suprema of (total or partial)
chains by

⊔
.

Remark 48 Note that the notation for the ordering is changed from ≤ to v
in Fig. 9, and the class Ord is renamed into InfOrd (information ordering)
in order to allow the future declaration of the expected instances of the class
Ord , e.g. the usual ordering on the flat cpo of natural numbers. This nicely
illustrates the benefits of combining a class mechanism with Casl’s structured
specification constructs. In a framework without such constructs, such as Is-
abelle, it becomes necessary at this point to fully respecify a second copy of
the class Ord (and indeed this is precisely what happens in Isabelle/HOLCF,
where a class po of partial orders with ordering v is newly specified although
Isabelle/HOL already includes a class order of partial orders with ordering≤).

45

As in standard domain theory, cppo’s in the above sense have least fixed points
of continuous endofunctions f , constructed as suprema of (total) chains (fn⊥).
The fixed point operator is denoted by Y . For properties P of Y f , one has
the standard fixed point induction principle: if P ⊥, P x⇒ P (f x), and P is
admissible, i.e. closed under suprema of total chains, then P (Y f). Both the
definition of Y and the fixed point induction theorem are explicitly included
in Fig. 9.

spec Ord =
class Ord {var a : Ord
fun ≤ : Pred (a× a)
var x, y, z : a

• x ≤ x
• (x ≤ y ∧ y ≤ z)⇒ x ≤ z
• (x ≤ y ∧ y ≤ x)⇒ x = y
}

var a, b : +Ord
type instance a× b : Ord
var x, z : a; y, w : b

• (x, y) ≤ (z, w)⇔ x ≤ z ∧ y ≤ w
type instance Unit : Ord

• () ≤ ()
type instance ?a : Ord
var x, y :?a

• x ≤ y ⇔ (def x()⇒ x() ≤ y())

Fig. 8. Specification of partial orders

To begin, we note that under unique choice, i.e. for coarse types, the definition
of cpo coincides with the usual one using total chains.

Proposition 49 If a coarse type a has suprema of total chains, then a is a
cpo in the sense of Fig. 9.

PROOF. The supremum of a partial chain (xi) in a is ι x : a • φ, where φ
states that there exists n such that (xi+n) is a total chain with supremum x.
The bottom element of ?a = Unit →?a is the unique function ⊥ such that
¬def⊥().

Example 50 The above proposition implies in particular that coarse types
become cpo’s when equipped with the discrete ordering, so that one has the
usual concept of flat cpo. There are natural examples of models where all types
can be made into flat cpo’s, but also equally natural examples demonstrating
that this need not be the case.

46

spec Recursion = {Ord with Ord 7→ InfOrd , ≤ 7→ v } and Nat
then
class Cpo < InfOrd {var a : Cpo
fun v : Pred (a× a)
op undefined : ?a

• ¬def (undefined : ?a)
type Chain a = {s : Nat →? a • ∀n : Nat • def s n⇒ s n v s (n+ 1)}
fun sup : Chain a→?a
var x :?a; s : Chain a

• sup s v [?a] x⇔ ∀n : Nat • s n v [?a] x
}

class Cppo < Cpo {var a : Cppo; x : a
fun bottom : a

• bottom v x }
class FlatCpo < Cpo {vars a : FlatCpo; x, y : a

• x v y ⇒ x = y }
vars a, b : Cpo; c : Cppo; x, y : a; z, w : b
type instance × : +Cpo → +Cpo → Cpo
type instance × : +Cppo → +Cppo → Cppo
type instance Unit : Cppo
type instance Unit : FlatCpo
type a

c−→? b = {f : a→?b • ∀s : Chain a •
let t = λn : Nat • f (s n) in
t ∈ Chain b⇒ sup (t as Chain b) = f (sup s)}

type a
c−→ b = {f : a c−→? b • f ∈ a→ b}

type instance c−→? : −Cpo → +Cpo → Cppo
var f, g : a c−→? b • f v g ⇔ ∀x : a • def (f x)⇒ f x v g x
type instance c−→ : −Cpo → +Cpo → Cpo
var f, g : a c−→ b • f v g ⇔ ∀x : a • f x v g x
type instance c−→ : −Cpo → +Cppo → Cppo

• bottom[a c−→ c] = λx : a •! bottom[c]
then %def
var c : Cppo
fun Y : (c c−→ c) c−→ c

var f : c c−→ c; x : c; P : Pred c
• f (Y f) = Y f
• f x = x⇒ Y f v x
• (P bottom ∧ (∀x : c • P x⇒ P (f x)))⇒ P (Y f) % implied

Fig. 9. Specification of the cpo structure and the fixed point operator

As a positive example, consider the quasitopos ReRe of reflexive relations [2],
whose objects are pairs (X,R) with R a reflexive relation on the set X, and
whose morphisms are relation-preserving maps. In a model over ReRe, the
interpretation (X⊥, R⊥) of ?a is obtained from the interpretation (X,R) of a
by adding a new element ⊥ to X and putting xR⊥⊥ and ⊥R⊥x for all x ∈ X⊥.

47

It is easy to check that in this case, a indeed becomes a flat cpo, the crucial
point being that the supremum operation is a relation-preserving map from
the type of partial chains to ?a.

A negative example is given by the quasitopos PsTop of pseudotopological
spaces and continuous functions [30]. A pseudotopological space is given in
terms of a convergence relation→ between filters on a set X and points of X,
subject to the requirements that ẋ → x, where ẋ = {A ⊆ X | x ∈ A}, and
that F→ x iff for all ultrafilters U finer than F (i.e. F ⊆ U), U→ x. A function
f between pseudotopological spaces is continuous if f(F) → f(x) whenever
F→ x, where f(F) = {A | f−1[A] ∈ F}. In PsTop, the interpretation X⊥ of ?a
is obtained from the space X interpreting a type a by adding an element ⊥ and
putting F→ ⊥ for all filters F on X⊥, and F→ x iff FX → x for x ∈ X, where
FX = {A∩X | A ∈ F}. Moreover, if types a and b are interpreted by spaces X
and Y , respectively, then the function type a→ b is interpreted by the space
X → Y , consisting of the continuous functions f : X → Y , with F→ f for a
filter F on X → Y iff, whenever G→ x in X, then ev(F×G)→ f(x), where
F × G denotes the filter generated by the set {A × B | A ∈ F, B ∈ G}, and
ev(f, x) = f(x). A discrete pseudotopological space is characterised by F→ x
iff F = ẋ. For discrete spaces X, in particular the natural numbers object (i.e.
the set N equipped with the discrete structure), the above definition of F→ f
in X → Y simplifies to evx(F)→ f(x) for all x ∈ X, where evx(f) = f(x).

In models over PsTop, no discrete space B with at least two points is a flat cpo
in the above sense. The reason is that the supremum map sup : Chain B →
B⊥, where the type Chain B of partial chains in B inherits its convergence
relation from N→ B⊥ as a subspace, fails to be continuous. To see this, pick
s ∈ Chain B such that sm is defined for some m ∈ N. Let F be the filter
generated by the set

{ev−1
n [C ∪ {⊥}] | C ⊆ B, n ∈ N, sn ∈ C}.

One can check that F→ s in Chain B. Thus in order for sup to be continuous,
one would need sup(F)→ sup s = sm in B⊥, whence for all C ⊆ B, sup−1[C ∪
{⊥}] ∈ F ⇐⇒ sm ∈ C by discreteness of B. In particular, sup−1[{sm,⊥}] ∈
F, i.e. there exist C1, . . . , Ck ⊆ B and m1, . . . ,mk ∈ N such that

sup −1[{sm,⊥}] ⊇
⋂
evmi

[Ci ∪ {⊥}].

Now pick t ∈ Chain B such that tmi
= ⊥ for all i and sup t ∈ B − {sm,⊥};

then t is contained in the right hand side of the above formula, but not in the
left hand side, contradiction.

We now verify that a number of domain theoretic constructions work for our
definition of cpo, as claimed by the instance declarations in Fig. 9. Partial
suprema have the expected behaviour:

48

Lemma 51 Let (xi) be a partial chain in a. Then
⊔
i xi is defined iff

∃n • def xn.

PROOF. The ‘if’ direction is trivial. Concerning ‘only if’, just note that

(
⊔
xi) res ∃n • def xn

is an upper bound of (xi).

According to Fig. 9, a partial function between cpo’s is continuous iff it pre-
serves suprema of partial chains. This is equivalent to the standard definition
in terms of Scott open domains of definition and preservation of suprema of
total chains:

Definition 52 A predicate P : Pred a is called Scott open if P is upclosed,
i.e. P x and x v y imply P y, and P (

⊔
xi) for a total chain (xi) implies

∃n • P xn.

Proposition 53 Let a and b be cpo’s, and let f : a→?b. Then f is continuous
iff the predicate P = λx : a • def (f x) is Scott open, f is monotone on P ,
and f preserves suprema of total chains (xi) in the sense that if f (

⊔
i xi) is

defined then there exists m such that f xm is defined and f
⊔
i xi =

⊔
i(f xi+m).

PROOF. ‘Only if ’: If f x is defined and x v y, then we have a chain xi
recursively defined by x0 = x and xi+1 = y. Thus f y = f

⊔
i xi =

⊔
i f xi ≥ f x

in ?b, so that f y is defined. This proves monotonicity of f and the first part of
Scott openness. For the second part of the latter and preservation of suprema
of total chains, let (xi) be a total chain such that f

⊔
i xi is defined. By

continuity,
⊔
i f xi is defined and equal to f

⊔
i xi, so that by Lem. 51, there

exists m such that f xm is defined; then f
⊔
i xi =

⊔
f xi =

⊔
f xi+m.

‘If ’: Let (xi) be a partial chain. We have to prove the strong equation f
⊔
xi =⊔

f xi. To begin, assume that f
⊔
i xi is defined. Then

⊔
i xi is defined, so that

by Lem. 51, there exists m such that xm is defined. Then (xi+m) is a total
chain and

⊔
xi+m =

⊔
xi; hence we have n such that f xi+m+n is defined and

f (
⊔
xi) =

⊔
(f xi+m+n) =

⊔
(f xi).

Conversely, let
⊔

(f xi) be defined. By Lem. 51, we have n such that f xn is
defined. Since P is upclosed, it follows that f (

⊔
xi) is defined.

Proposition 54 Let a and b be cpo’s. Then a× b, equipped with the compo-
nentwise ordering, is a cpo.

49

PROOF. Let (zi) be a partial chain in a × b. Then (fst zi) and (snd zi) are
partial chains in a and in b, respectively. We thus obtain

⊔
zi as

(
⊔

(fst zi),
⊔

(snd zi)).

Definition 55 We say that a subtype b of a cpo a is a sub-cpo of a if the
subtype ?b of ?a is closed under suprema of chains.

Remark 56 It is automatically the case that for a subtype b of a cpo a,
?b inherits the bottom element ⊥ of ?a, namely as λ • (⊥() as b) (see also
Rem. 40).

Proposition 57 Let a and b be cpo’s. Then the type a
c−→?b of continuous

partial functions is a cppo when equipped with the componentwise ordering.
The type a

c−→ b of continuous total functions is a sub-cpo of a
c−→?b.

PROOF. Let (fi) be a partial chain in a
c−→?b. Then (fi x) is a partial chain

for all x, so that we obtain
⊔
fi as(

λx •
⊔

(fi x)
)

res ∃i. def fi.

It is clear that we can use the same definition for partial chains in a
c−→ b.

The bottom element of a
c−→?b is λx • ⊥.

Proposition 58 The unit type is a cpo.

PROOF. The type ?Unit = Logical is (internally) even a complete lattice.

Corollary 59 If a is a cpo, then ?a is a cppo.

In general, the sum of two cpo’s is not again a cpo: as shown in Expl. 50, even
Bool = Unit + Unit need not be a (flat) cpo. However, we have

Lemma 60 In the presence of sum types (Fig. 3), cpo’s are stable under sums
of partial orders, i.e. the sum a + b of two cpo’s a and b is again a cpo when
equipped with the sum ordering, iff Bool is a flat cpo.

PROOF. ‘Only if’ is trivial. To prove ‘if’, let a and b be cpo’s. Define a
function isLeft : a+ b→ Bool by

isLeft z = case z of inl x→ True | inr y → False.

50

Let s be a partial chain in a+ b. Then

⊔
sn = if

⊔
(isLeft sn) then inl

(⊔
(outl sn)

)
else inr

(⊔
(outr sn)

)
.

The precondition of the above lemma has a natural sufficient condition:

Lemma 61 If Nat is a flat cpo, then so is Bool .

PROOF. Bool is isomorphic to the subtype {0, 1} of Nat .

6.2 Domain Datatypes

For use with the concept of recursion laid out in the previous section, Has-
Casl offers suitable cpo versions of free datatypes. These are declared in
otherwise the same syntax as standard free types by means of the keyword
free domain. Like in the case of free types, the semantics of free domains is
defined by means of a fold operation, which however specifies the interpreta-
tion of the free domain to be an initial algebra in the above-defined category
of internal cpo’s — i.e. the fold operation applies only to algebras which are
continuous functions on types a of class Cpo, returns a continuous function
from the initial algebra to a, and is itself continuous. E.g. the specification

var a : Cpo
free domain List a ::= nil | cons a (List a)

induces an operation

fold : c
c−→ (a

c−→ c
c−→ c)

c−→ List a
c−→ c,

polymorphic over c : Cpo.

The question then arises whether a conservativity result analogous to the one
for free types holds for free domains. The answer is positive in case the types of
constructor arguments are either types from the same declaration of mutually
recursive domains or cpo’s from the local environment. This is established by
defining a suitable cpo structure on the standard free datatype for the same
constructor signature; see the forthcoming extended version of [72] for details.
An interesting open problem is whether the result can be extended to types
t with non-strict constructors, i.e. constructors with arguments of type ?t. A

51

typical example is the type of lazy lists, which can be specified in HasCasl
by

var a : Cpo
free domain LList a ::= nil | cons a ?(LList a)

where cons is a non-strict operation of type a
c−→?(LList a)

c−→ LList . In-
tuitively, this type should contain, besides the usual finite lists, finite lazy
lists that arise by prefixing elements of a to an undefined lazy list, as well
as infinite lists, which come about as suprema of chains of finite lazy lists. It
is the subject of ongoing research to formalise this description as a construc-
tion in the internal logic of HasCasl, thus showing that the above axiomatic
specification is conservative.

6.3 Programming in HASCASL

General recursive function definitions with a cpo-based fixed point semantics
may be written in HasCasl as recursive equations in the standard functional
programming style, marked by the keyword program; these are implicitly
translated into the corresponding fixed point terms. One thus obtains essen-
tially a strict functional programming language, in which non-strict functions
can be emulated as laid out in Sect. 2.3.

An explicit import of the specification Recursion is not required. A program
block is written as a sequence of so-called pattern equations PEi in the form

program {PE1 . . . PEn}

Such a program block defines a number of previously declared continuous func-
tions on cpo’s. The given types may be partial or total function types; future
versions of the HasCasl tools will include termination checks for functions
that are declared as total. A pattern equation PEi has as its left hand side a
pattern and as its right-hand side an arbitrary term. A pattern is an applica-
tion of a function being recursively defined to argument terms. In the simplest
case, the argument terms are applications of constructors to variables; how-
ever, more complex argument patterns including nested patterns, wild cards,
tuple patterns, and even Haskell-style as-patterns [58] are also admitted. Vari-
ables in patterns need not be explicitly declared; their type is inferred. It is
statically checked that all involved types are cpo’s; the program block is ill-
formed if this check fails. All occurring λ-abstractions, implicit or explicit, are
equipped with a downcast to the appropriate continuous function type (so
that the user does not have to write these casts explicitly). By consequence,

52

recursively defined functions are undefined if one of the functions involved in
their definition fails to be continuous (sufficient criteria for continuity can be
statically checked). Recursive functions on free datatypes can be defined by
giving a recursive equation for each constructor. This is coded by means of
the case operator; an attempt to use this mechanism for non-free datatypes
(which do not have case operators) makes the specification ill-formed. On
missing constructor patterns, functions are implicitly undefined; in this case,
a warning (‘non-exhaustive match’) is produced.

As a simple example, Fig. 10 shows an implementation of an interpreter for
an abstract imperative core language, where programs are regarded as partial
functions on a type s : Cpo of states. The program block is translated into a
definition of eval as a least fixed point of a continuous functional on the type
Prog

c−→ s
c−→?s.

spec Interpreter = Sums then
var s : Cpo

free domain Prog s ::= skip | basic (s
c−→? s)

| seq (Prog s) (Prog s)

| if (s
c−→ Bool) (Prog s) (Prog s)

| while (s
c−→ Bool) (Prog s)

op eval : (Prog s)
c−→ s

c−→? s
program

eval skip s = s;
eval (basic f) s = f s;
eval (seq p q) s = eval q (eval p s);
eval (if b p q) s = if b s then eval p s else eval q s;
eval (while b p) s =

if b s then eval (while b p) (eval p s) else s;

Fig. 10. Programming an interpreter for a simple abstract language in HasCasl

7 HASCASL in the Heterogeneous Tool Set

Tool support for HasCasl is implemented within the framework of the Bre-
men heterogeneous tool set Hets [50]. This framework is centred around a
logic graph in which logics, formalised as institutions (Defn. 23), appear as
nodes and logic translations, formalised as comorphisms (see below), appear
as edges. As a node in the logic graph, HasCasl is equipped with tools for
parsing and static analysis. Important translations are an embedding of first
order Casl into HasCasl, a connection between HasCasl and the interac-
tive higher order theorem prover Isabelle/HOL, and a mapping of executable

53

HasCasl specifications into Haskell. We briefly discuss these translations in
the following.

Morphisms and Comorphisms of Institutions Recall from Defn. 23
that an institution consists of a category of signatures, equipped with a set-
valued sentence functor, a category-valued contravariant model functor, and
a satisfaction relation between models and sentences. We briefly recall some
standard notions of translations between institutions [23].

Given institutions I and J , an (institution) comorphism [23] (also called a
plain map of institutions [41]) µ = (Φ, α, β) : I → J consists of

• a functor Φ from the signature category of I into that of J ;
• for each signature Σ in I, a sentence translation αΣ taking Σ-sentences to

Φ(Σ)-sentences, natural w.r.t. signature morphisms in I; and
• for each signature Σ in I, a model reduction functor βΣ taking Φ(Σ)-models

to Σ-models, again natural w.r.t. signature morphisms in I,

such that the following satisfaction condition holds for all signatures Σ in I,
every Φ(Σ)-model M , and every Σ-sentence φ:

M |=Φ(Σ) αΣφ ⇐⇒ βΣM |=Σ φ.

If the model reduction functors βΣ are surjective on models, then we say that µ
is model-expansive. In this case, µ admits borrowing of entailment systems for
basic specifications, i.e. for every signature Σ in I, every set Φ of Σ-sentences,
and every Σ-sentence ψ, ψ is a consequence of Φ iff αΣ(ψ) is a consequence of
αΣ[Φ] [11] (where ‘only if’ holds in general). If µ is even model-bijective, i.e. if
the βΣ are bijective on models (but not necessarily on model morphisms), then
µ admits borrowing of entailment and refinement also for structured specifi-
cations excluding free specifications. If the βΣ are moreover isomorphisms as
functors, then µ admits borrowing of entailment and refinement for structured
specifications including free specifications (see [48] for a proof and a detailed
explanation of the terminology).

A theoroidal comorphism from I to J is a comorphism from I to J th, where J th

is obtained from J by replacing the category of signatures with the category
of theories (the model functor applied to a theory yields the category of all
models of the signature that satisfy the axioms of the theory).

Morphisms of institutions are defined dually to comorphisms: a morphism
µ = (Φ, α, β) : I → J between institutions I and J consists of a functor Φ
from the signature category of I to that of J , sentence translation functions αΣ

from Φ(Σ)-sentences to Σ-sentences, and model translation functors βΣ from

54

Σ-models to Φ(Σ)-models for every signature Σ in I, subject to the obvious
satisfaction condition. In heterogeneous specifications, comorphisms appear
naturally in translations of structured specifications, while morphisms appear
naturally in reductions [49].

Embedding CASL into HASCASL Syntactically, HasCasl is essentially a
superset of Casl, so that Casl users can upgrade to HasCasl at liberty.
Some subtleties are however attached to the semantic basis of this embed-
ding. It is not possible to define an institution comorphism from Casl into
HasCasl: generally, there are no comorphisms from extensional institutions
into intensional institutions that work by embedding logical syntax. This is
due to the satisfaction condition: e.g., disjunction is extensional in Casl, i.e.
for a model M and sentences φ, ψ, M |= φ ∨ ψ iff M |= φ or M |= ψ. Now if
M is a HasCasl model such that M |= φ ∨ ψ but neither M |= φ or M |= ψ
(such models exist), then there is no possible choice for a reduct β(M) of M
in the extensional source institution, as by the satisfaction condition β(M)
would also have to satisfy φ ∨ ψ but none of φ and ψ.

The solution to this problem is to connect Casl and HasCasl by a net-
work of morphisms and comorphisms, involving the following modifications of
HasCasl.

• The institution HasCasl/FOL of classical first order HasCasl is ob-
tained by restricting signatures to first order signatures, in which all oper-
ations have types of the form s1 → . . . → sn → t or s1 → . . . → sn →?t,
where the si are basic types and t is either Unit or a basic type, and sen-
tences to formulas not involving λ-abstraction, pairing, quantification over
non-basic types, or type variables. Models and satisfaction are inherited
from the first level of HasCasl, except that we restrict models to those
with a Boolean algebra (rather than just a Heyting algebra) of truth values;
moreover, we relax the notion of model morphism to the standard notion
of morphism of partial first-order structures (i.e. we require only the weak
homomorphism property, which in particular amounts to preservation of
definedness for partial functions and preservation of satisfaction for predi-
cates, while higher order homomorphisms may additionally impose reflec-
tion in both cases; in particular, this is always the case for higher order
homomorphisms of standard models). The most relevant difference between
Casl and HasCasl/FOL is that the latter does not have sort generation
constraints as a separate type of sentence.
• The institution HasCaslc,uc is obtained from HasCasl by restricting mod-

els to be classical and to satisfy unique choice. (This is essentially the in-
ternal logic of Boolean toposes.)
• The institution HasCaslext,uc is obtained from HasCasl by restricting

models to be extensional (Sect. 2.4) and to satisfy unique choice. (This is

55

essentially the internal logic of well-pointed toposes.)
• The institution HasCaslstd is obtained from HasCasl by restricting mod-

els to be standard (Sect. 2.4).

We then have the following morphisms and comorphisms.

• There is an isomorphism Φ from HasCasl/FOL signatures to Casl sig-
natures, and translations αΣ of Σ-sentences of HasCasl/FOL into Φ(Σ)-
sentences of Casl; both Φ and α perform only trivial syntactic rearrange-
ments, such as replacing profiles of operators by the corresponding curried
function types. In combination with model reductions βΣ which map a Φ(Σ)-
model in Casl to the associated standard Σ-model in HasCasl/FOL, we
obtain a comorphism (Φ, α, β) : HasCasl/FOL → Casl (with functori-
ality of the βΣ ensured by the relaxation to first-order homomorphisms in
HasCasl/FOL). This comorphism fails to be model-expansive and hence
does not admit borrowing of entailment; however, the standard (finitary)
proof systems for HasCasl/FOL and Casl differ only w.r.t. the absence of
sort generation constraints in HasCasl/FOL. Since Φ is an isomorphism,
one obtains also a morphism (Φ−1, α, β) : Casl→ HasCasl/FOL which,
intuitively speaking, imports standard models and hides sort generation
constraints.
• One has a comorphism Casl → HasCaslstd which embeds Casl-

signatures and standard sentences into HasCasl by acting as an inverse to
the corresponding mappings in the comorphism HasCasl/FOL → Casl
above, translates sort generation constraints into induction axioms, and re-
duces HasCasl models (of essentially first-order signatures) to Casl mod-
els by just forgetting higher order structure. Reduction is bijective on mod-
els; hence, this comorphism admits borrowing of entailment and refinement
for structured specifications not including free specifications.
• Since extensionality implies excluded middle and standard models satisfy

unique choice, one has obvious comorphisms HasCasl→ HasCaslc,uc →
HasCaslext,uc → HasCaslstd. These embeddings are isomorphic on
signatures and therefore give rise also to morphisms HasCaslstd →
HasCaslext,uc → HasCaslc,uc → HasCasl. Additionally, one has a the-
oroidal comorphism HasCaslc,uc → HasCasl which explicitly adds ex-
cluded middle and unique choice to each HasCasl signature. None of
the translations between HasCaslstd, HasCaslext,uc, and HasCaslc,uc are
model-expansive; nevertheless, the standard (finitary) proof systems for the
three logics coincide, so that transitions between HasCaslstd and Has-
Caslc,uc are transparent for the user. Model reduction functors are isomor-
phisms for the comorphism HasCaslc,uc → HasCasl, which hence admits
borrowing of entailment and refinement for structured specifications includ-
ing free specifications.
• One has a comorphism HasCasl/FOL → HasCaslc,uc which is just a

sublogic embedding. In particular, the model reduction functors are iso-

56

Casl - HasCaslstd

HasCaslext,uc

6

?

................

HasCasl/FOL

6

?

......................................
- HasCaslc,uc

6

?

................
-� HasCasl

Fig. 11. The Casl-HasCasl network

morphisms, so that this comorphism admits borrowing of entailment and
refinement for structured specifications including free specifications.

The ensuing network of morphisms and comorphisms is shown in Fig. 11. Solid
lines indicate comorphisms, and dotted lines indicate morphisms.

The comorphism part of the diagram commutes. The sequences of het-
erogeneous hidings and translations corresponding to the two paths from
Casl to HasCaslc,uc in the diagram, however, are distinct, as the path
via HasCasl/FOL syntactically hides sort generation constraints, while the
path via HasCaslstd makes them explicit as induction axioms. The path
via HasCaslstd will therefore usually be the preferable one; the interest in
the path via HasCasl/FOL lies primarily in the fact that it involves only
sublogics, rather than fundamental semantic modifications, of HasCasl.

The main question that remains w.r.t. borrowing of entailment systems in
the diagram is whether borrowing for structured specifications including free
specifications is possible between Casl and any of the higher order logics in
the diagram. The answer is negative:

Example 62 Consequences of free Casl specifications are not in general pre-
served by the comorphism into HasCaslstd. To see this, consider extending
the Casl signature Σ with two sorts s, t and two operations f, g : s → t to
a specification SP with an additional sort v, two constants c, d : v, and the
axiom

• (∀x : s • f(x) = g(x))⇒ c = d

In Casl, the free specification SP ′ = Σ then free SP has the consequence
c 6= d, and hence f 6= g (in particular, SP ′ is not conservative over Σ): SP -
models with f = g are never free over their Σ-reducts, since it is always

57

possible to find a homomorphism from their Σ-reduct into the Σ-reduct of an
SP -model where f 6= g and c 6= d. In HasCaslstd, however, the free extension
does have models where f = g: when f and g are identical functions, then they
will remain identical under all higher order homomorphisms. Note that this is
a general phenomenon that will occur in any higher order extension of a first
order logic that imposes higher order homomorphisms (including intensional
higher order logics such as HasCasl, where it may still happen that f and g
denote the same element of the function type).

Connecting HASCASL to Isabelle/HOL Proof support for HasCasl is
presently based on Isabelle/HOL [54]; the extensible structure of the hetero-
geneous tool set will however cater for connections to other theorem provers
in the future. Indeed the internal logic is to some degree at variance with Is-
abelle/HOL, as the latter imposes both the law of excluded middle and unique
choice (unlike e.g. the Coq proof assistant [14], which therefore presents a fu-
ture option for alternative proof support). Thus, the comorphism into Isabelle
is actually defined on the sublogic HasCaslc,uc of HasCasl (see above). The
mapping from HasCaslc,uc into Isabelle/HOL codes out subtypes by mak-
ing subtype injections explicit, and translates partial function types a →?b
into total function types ’a => ’b option, where ’b option is a built-in
Isabelle/HOL datatype extending ’b by an additional element. Finally, the
problem that Isabelle does not offer direct support for constructor classes is
solved by mapping type constructor variables to loose type constructors, and
axioms or implied formulas involving such variables to axioms or proof obli-
gations, respectively (by Thm. 31, this yields a complete proof principle for
the extension semantics).

Animating executable HASCASL specifications in Haskell The exe-
cutable sublogic execHasCasl of HasCasl is defined as follows: a specifi-
cation belongs to execHasCasl if

• all types it declares are of class Cpo,
• all its operation declarations are coherent (i.e. use the keyword op) and

have types of class Cpo (in particular, such types involve only the (total or
partial) continuous function type constructors, both of which are mapped
to Haskell’s function type constructor)
• its only axioms are pattern equations in program blocks. Program blocks are

expected to define values of types of class Cppo, typically partial continuous
functions. Program blocks defining total continuous functions are admitted;
they are interpreted as downcasts of fixed points in the partial function
types and generate a corresponding termination proof obligation.

58

It is straightforward to translate execHasCasl specifications into Haskell
programs, noting that standard λ-abstractions in HasCasl need to be trans-
lated into strict λ-abstractions in Haskell, while HasCasl terms of the
form λx :?a • t can be translated into standard (non-strict) Haskell-terms
\ x -> t; otherwise, the only real problems that arise concern the manage-
ment of name spaces. Thus, HasCasl supports a development methodology
where abstract requirement specifications are successively refined into design
specifications and eventually executable specifications, which are then auto-
matically translated into Haskell.

8 Monads for Functional-Imperative Programming

We now proceed to establish specification support for imperative con-
structs, which are embedded into functional programming languages such as
Haskell [58] by means of monadic encapsulation of side-effects in the spirit of
the seminal paper [46]. We give a brief introduction to the basic concepts
of monad-based functional-imperative programming, and then introduce a
generic monad-based Hoare logic [74]. (Monad-based Hoare logics discussed
in [18,46] are specific for particular types of state monad.)

Intuitively, a monad associates to each type A a type TA of computations of
type A; a function with side effects that takes inputs of type A and returns
values of type B is, then, just a function of type A → TB. This approach
abstracts away from particular notions of computation such as store, non-
determinism, non-termination etc.; a surprisingly large amount of reasoning
can in fact be carried out independently of the choice of such a notion.

More formally, a monad on a given category C can be defined as a Kleisli
triple (T, η, ∗), where T : Ob C→ Ob C is a function, the unit η is a family
of morphisms ηA : A→ TA, and ∗ assigns to each morphism f : A→ TB a
morphism f ∗ : TA→ TB such that

η∗A = idTA, f ∗ηA = f, and g∗f ∗ = (g∗f)∗.

This description is equivalent to the more familiar one via an endofunctor with
unit and multiplication [39].

In order to support a language with finitary operations and multi-variable
contexts (see below), one needs a further technical requirement: a monad is
called strong if it is equipped with a natural transformation

tA,B : A× TB → T (A×B)

called tensorial strength, subject to certain coherence conditions (see e.g. [46]);

59

this is equivalent to enrichment of the monad over C (see discussion and
references in [46]).

Example 63 [46] Computationally relevant monads on Set (since strength
is equivalent to enrichment, all monads on Set are strong) include

• stateful computations with possible non-termination: TA = (S →?(A×S)),
where S is a fixed set of states and →? denotes the partial function type;
• non-determinism: TA = P(A), where P denotes the power set functor;
• exceptions: TA = A+ E, where E is a fixed set of exceptions;
• interactive input: TA is the smallest fixed point of γ 7→ A+(U → γ), where
U is a set of input values.
• non-deterministic stateful computations: TA = (S → P(A × S)), where,

again, S is a fixed set of states;
• continuations: TA = (A→ R)→ R, where R is a type of results.

In order to accommodate binding also of programs A →?TB with intrinsic
non-termination, we use the specification of monads already shown in Fig. 5.
It is slightly modified w.r.t. the standard laws for monads, the main subtlety
arising from partiality being the treatment of the first unit law [75]. The
notation is (almost) identical to the one used in Haskell, i.e. the unit is denoted
by ret , and the binding operator >>= denotes, in Kleisli triple notation, the
function (x, f) 7→ f ∗(x). There is a built-in sugaring for the binding operation
in the form of a Haskell-style do-notation: for monadic expressions p and q,

do x← p; q

abbreviates p >>= λx • q. (This is essentially the same as Moggi’s let-
notation [46].) The intuition behind this notation is that the computations
p and q are performed sequentially, with the result of p being bound to x and
passed on to q (an expression which may contain the variable x).

In the do-notation, the axioms of Fig. 5 take the following shape: Binding is
associative, i.e. one has

do y ← (do x← p; q); r = do x← p; do y ← q; r

if r does not contain x. Moreover, we have unit laws stating that

(do x← ret a; p) = p[x/a], whenever p[x/a] is defined,

(do y ← q;x← ret a; p) = do y ← q; p[x/a], and

(do x← p; ret x) = p.

Thanks to associativity, one may safely denote nested do expressions like
do x ← p; do y ← q; . . . by do x ← p; y ← q; Repeated nestings
such as do x1 ← p1, . . . , xn ← pn; q are somewhat inaccurately denoted in

60

the form do x̄← p̄; q. Term fragments of the form x̄← p̄ are called program
sequences. Bound variables xi that are not used later may be omitted from the
notation. Terms are generally formed in a context Γ = (x1 : s1, . . . , xn : sn)
of variables with assigned types. Following [46], we shall refer to this notation
and the associated calculus as the computational meta-language.

As an example of an instance of the class Monad , a specification of the state
monad is shown in Fig. 12. Note that it is only thanks to the treatment of
partial functions in the specification of monads that the state monad is really
an instance of Monad , since stricter versions of the first monad law fail to
hold for the state monad (see [75] for a more detailed discussion). Monads
specified in HasCasl in the style of Fig. 12 are automatically strong, because
the operations of the monad are internalised as functions (recall that strength
is equivalent to enrichment).

spec State = Monad then
var state : Type
type instance ST state : Monad
vars a, b : Type
type ST state a := state →? (a× state)
var x : a; p : ST state a; q : a→?ST state b

• (ret x) : ST state a = λs : state • (x, s)
• (p >>= q) = λs1 : state • let (z, s2) = p s1 in q z s2

Fig. 12. Specification of the state monad

On top of a monad, one can generically define control structures such as if-
then-else or loops. The if-then-else construct is defined by

if b then p else q = do a← b; if a then p else q

for b : T Bool and p, q : TA, where the stateless if-then-else construct on the
right hand side is the one defined in Fig. 3. Loops require general recursion
on function spaces between flat cpo’s. Since in the absence of unique choice,
not all types need be flat cpo’s when equipped with the equality ordering (see
Sec. 6), one thus needs to restrict to monads that preserve flat cpo’s (under
unique choice, this condition is void). This is an example of a constructor
subclass; the corresponding specification of flat cpo monads is shown in Fig. 13.
The specification declares the class FlatCpoMonad to be a subclass of both
FlatCpo → FlatCpo and Monad , i.e. a flat cpo monad is a monad which
restricts to the class FlatCpo; moreover we require that the binding operation
is continuous on flat cpo’s. Note that for flat cpo’s a, b, the continuous function
types a

c−→ b and a
c−→?b coincide with the respective function types a → b

and a →?b, so that there is no need to explicitly specify continuity of the
return operation. Most relevant computational monads including the ones in
Expl. 63 above are instances of this subclass (even without unique choice).

61

spec FlatCpoMonad = Recursion and Monad then
class FlatCpoMonad < FlatCpo → FlatCpo
class FlatCpoMonad < Monad
var m : FlatCpoMonad ; a, b : FlatCpo

op >>= : m a× (a
c−→?m b)

c−→?m b;

Fig. 13. The constructor subclass of flat cpo monads

As an example of a loop construct we introduce an iteration construct which
generalises the while loop by extending it with a default return value (the
while loop as programmed e.g. in the Haskell prelude returns only a unit
value) which is fed through the iteration. The specification of the iteration
construct is shown in Fig. 14. Note that the while loop is just iteration with
a dummy return value.

spec Iteration = Sums and FlatCpoMonad then

vars m : FlatCpoMonad ; a : FlatCpo

ops iter : (a
c−→?mBool)

c−→ (a
c−→?m a)

c−→ a
c−→?m a;

while : m Bool
c−→ m Unit

c−→?m Unit
program

iter test f x = do b← test x
if b then

do y ← f x; iter test f y
else ret x

while b p = iter (λ •! b) (λ • p) ()

Fig. 14. The iteration control structure

Remark 64 The iteration construct may more generally be defined by recur-
sion on general cpo’s. This requires a specification of monads on the category of
cpo’s and continuous functions, in perfect analogy to the specification given in
Fig. 5 which defines the class of monads on the category of types and functions.
The most convenient way to express this is to parametrise the specification
of monads over the base category of the monad, i.e. a class equipped with
subtypes of the function types representing the morphisms. We avoid such a
parametrised specification of monads purely in the interest of readability.

9 Generic Purity and Global Evaluation

In preparation for the formulation of the monad-based Hoare calculus, we now
summarise material from [75] on generic notions of purity (previously called
side-effect freeness), to be required of stateful formulas appearing as pre- and
postconditions, and global evaluation formulas (called global dynamic judge-

62

ments in [75]). Informally, pure programs are those that have the following
properties:

(1) discardability: if their result is not used, then pure computations can
be left out from a sequence of computation steps without changing its
behaviour;

(2) determinism (copyability): when executed repeatedly, pure programs al-
ways return the same value;

(3) interchangeability: pure programs can be interchanged with each other,
that is, the order does not matter.

Purity is generally a much weaker property than statelessness, which means
that there is no interaction with ‘state’, or generally the monad, at all.

We fix the notation for monads introduced in the previous section (T , η etc.)
throughout the remaining development.

Definition 65 [19,79] A program p is called stateless if it factors through
ret , i.e. if it is just a value inserted into the monad. A program p is called
discardable if

(do y ← p; ret ∗) = ret ∗,
where ∗ is the unique element of the unit type. A program p is called copyable
if

(do x← p; y ← p; ret (x, y)) = do x← p; ret (x, x)

for x /∈ FV (p), where FV (p) denotes the set of free variables in p. Moreover,
programs p, q commute if

(do x← p; y ← q; ret (x, y)) = do y ← q;x← p; ret (x, y)

for x /∈ FV (q), y /∈ FV (p).

Proposition and Definition 66 [75] Let p be discardable and copyable.
Then p commutes with all discardable copyable programs iff p commutes with
all discardable copyable Logical-valued programs. In this case, p is called pure.
The subtype of TA formed by the pure computations will be denoted by PA
throughout.

For details on the relation between the various notions above, see [19,75].
Here, we need mainly the notion of purity. Stateless programs are pure, but
not conversely. For example, in the state monad, statelessness means that the
program neither changes nor reads the state (p is stateless iff p exists in the
sense of [46]). Contrastingly, we have

Example 67 A program p is pure

• in the state monad iff p terminates and does not change the state (p may

63

however read the state);
• in the non-determinism monad iff p has a unique outcome;
• in the exception monad iff p terminates normally;
• in the interactive input monad iff p never reads any input;
• in the non-deterministic state monad iff p does not change the state and

always has a unique outcome;
• in the continuation monad (over Set) iff p is stateless.

The definition of the semantics of the Hoare logic is based on global evaluation
formulas [[x̄ ← p̄]]φ, where x̄ ← p̄ is a program sequence and φ : Logical is a
formula which may contain x̄. Intuitively, [[x̄ ← p̄]]φ states that φ holds for
the result values x̄ after execution of x̄ ← p̄ from any initial state. Formally,
[[x̄← p̄]]φ abbreviates

(do x̄← p̄; ret (x̄, φ)) = do x̄← p̄; ret (x̄,>)

(a strong equation). The degenerate case [[]]φ is (by injectivity of ret as spec-
ified in Fig. 5) equivalent to φ; we shall silently identify the two formulas.

Remark 68 The above semantics of global evaluation formulas is close to
Moggi’s global semantics of evaluation logic [47] (but not at all to the original
local semantics as defined in [62], which is related instead to the monad-based
dynamic logic of [75,52]).

Example 69 In the monads of Expl. 63, satisfaction of [[x ← p]]φ, where
p : TA, amounts to the following (we freely omit semantic brackets from the
notation):

• states : terminating execution of p from any initial state yields a result value
x satisfying φ;
• non-determinism: all values x in p ∈ P(A) satisfy φ;
• exceptions : if p terminates normally, then its result value x satisfies φ;
• interactive input : the value x eventually produced by p after some combi-

nation of inputs always satisfies φ;
• non-deterministic state monad : all possible result values x obtained by ex-

ecution of p from any initial state satisfy φ;
• continuations : for k : A → R, p k depends only on the restriction of k to

the set of values x : A satisfying φ.

Figure 15 shows a number of proof rules for global evaluation formulas. In
the present setting, this should be regarded as a collection of lemmas rather
than as a formally delimited calculus; in particular, we shall apply the rules
in proofs using the full power of the ambient higher order logic. A slightly
different calculus for a clearly separated definition of global evaluation logic is
given in [24]. Double lines indicate that a rule works in both directions. Recall
that FV (p) denotes the set of free variables of p. The rules (pre) and (wk) use

64

explicit quantification to enforce the usual variable condition stating that cer-
tain variables do not occur freely in assumptions. We have formulated specific
rules for pure terms; some of these hold more generally e.g. for discardable
or copyable terms, respectively, but we will not need this added generality.
Soundness of the rules, and derivability of the rules marked as such, has been
established in [75] (Figs. 3 and 4 and Prop. 4.29), except rule (ins) which is
derived using (app), (pre), and (comm). We will refer to proofs using only the
rules (∧I) and (wk) as propositional reasoning.

Basic rules

(∧I)

[[x̄← p̄]]φ
[[x̄← p̄]] ξ

[[x̄← p̄]] (φ ∧ ξ)
(wk)

∀x̄. φ⇒ ξ
[[x̄← p̄]]φ

[[x̄← p̄]] ξ
(eq)

[[x̄← p̄]] q1 = q2

[[x̄← p̄; y ← q1; z̄ ← r̄]]φ

[[x̄← p̄; y ← q2; z̄ ← r̄]]φ

(app)

[[x̄← p̄]]φ
y /∈ FV (φ)

[[x̄← p̄; y ← q]]φ
(pre)

∀x. [[ȳ ← q̄]]φ

[[x← p; ȳ ← q̄]]φ

(η)
[[x̄← p̄; y ← ret a; z̄ ← q̄]]φ

[[x̄← p̄; z̄ ← q̄[a/y]]]φ[a/y]
(ctr)

[[. . . ;x← p; y ← q; z̄ ← r̄]]φ
x /∈ FV (φ) ∪ FV (r̄)

[[. . . ; y ← (do x← p; q); z̄ ← r̄]]φ

. .
Rules for pure terms

(dis0)

[[x̄← p̄; q]]φ
q pure

[[x̄← p̄]]φ
(comm)

[[x̄← p̄; y ← q; z ← r; w̄ ← s̄]]φ
q, r pure

y /∈ FV (r), z /∈ FV (q)

[[x̄← p̄; z ← r; y ← q; w̄ ← s̄]]φ

(copy)
[[x̄← p̄; y ← q; z ← q; w̄ ← r̄]]φ

[[x̄← p̄; y ← q; w̄ ← r̄[y/z]]]φ[y/z]
(q pure, y /∈ FV (q))

. .
Derived rules

(tau)
∀x̄. φ

[[x̄← p̄]]φ
(rp)

∀x̄. q1 = q2

[[x̄← p̄; y ← q1; z̄ ← r̄]]φ

[[x̄← p̄; y ← q2; z̄ ← r̄]]φ

(dis)

[[x̄← p̄; q; z̄ ← r̄]]φ
q pure

[[x̄← p̄; z̄ ← r̄]]φ
(ins)

[[x̄← p̄; z̄ ← r̄]]φ
q, r̄ pure or q, p̄ pure

[[x̄← p̄; q; z̄ ← r̄]]φ

Fig. 15. Proof rules for global evaluation formulas

65

Convention 70 Pure terms can be handled notationally in a more relaxed
way, as it is immaterial how often and in which order they are evaluated as long
as no other programs interfere. We thus allow pure programs of type PA to
occur in places where a term of type A is expected in programs and formulas.
More precisely, if x̄ = (x1, . . . , xn) is a list of variables of types A1, . . . , An and q
is a program, then the program q[p̄/x̄] obtained by substituting terms pi : PAi
for the xi is defined as do x̄← p̄; q, with well-definedness guaranteed by purity
(see [75] for details). Similarly, [[ȳ ← q̄]]φ[p̄/x̄] abbreviates [[ȳ ← q̄; x̄ ← p̄]]φ.
Note that this includes the case that ȳ ← q̄ is the empty sequence. Since we
further identify [[]]φ with φ, e.g. φ ⇒ ψ abbreviates [[a ← φ; b ← ψ]] (a ⇒ b)
for φ, ψ : PLogical . Ambiguities may arise from polymorphic predicates and
operations such as equality, e.g. in the equation p = q, with p, q : PA. In
such cases, we will disambiguate formulas by explicit type annotations where
necessary; e.g., p =A q abbreviates [[x← p; y ← q]] x = y, while p =PA q is just
equality of computations. A single warning is required: rule (app) of Fig. 15
is sound only if the formula φ is really stateless.

10 The generic Hoare calculus

We now proceed to describe the generic monad-based Hoare-calculus.

Definition 71 A Hoare triple, written {φ} x̄← p̄ {ψ}, consists of a program
sequence x̄← p̄, a precondition φ : TLogical , and a postcondition ψ : TLogical
(which may contain x̄), where φ and ψ are pure. This abbreviates the global
evaluation formula

[[a← φ; x̄← p̄; b← ψ]] (a⇒ b)

with fresh variables a, b : Logical .

The fact that Hoare triples as just defined mention program sequences (rather
than just programs) reflects the need to actually reason about results of
computations, including intermediate results, as opposed to just about state
changes as in the traditional case.

Example 72 A Hoare triple {φ} x← p {ψ} holds

• in the state monad iff, whenever φ holds in a state s and p terminates in
state s′ with result x when executed in state s, then ψ holds for x in the
state s′;
• in the non-determinism monad iff, whenever φ is true, then ψ holds for all

possible results x of p;
• in the exception monad iff, whenever φ holds and p terminates normally,

returning x, then ψ holds for x;

66

• in the interactive input monad iff, whenever φ holds and p returns x after
reading some sequence of inputs, then ψ holds for x.
• in the non-deterministic state monad iff, whenever φ holds in a state s, and
p possibly terminates in a state s′ with result x, then ψ holds for x in s′.

A set of monad-independent Hoare rules is shown in Fig. 16. There is presently
no claim that the calculus is (relatively) complete; the main purpose of the
given rule set is to show that large parts of the program verification process
can be performed independently of the underlying notions of side-effect. The
rules (pure), (wk), (disj), and (conj) apply the notation introduced in Con-
vention 70. In particular, φ ⇒ ψ has the same decoding as the Hoare triple
{φ} {ψ}, so that (wk) is actually a special case of the sequential rule (seq).
Due to discardability, the decoding of φ⇒ ψ can be simplified to

(do a← φ, b← ψ; ret (a⇒ b)) = ret >.

In the pre- and postconditions, Boolean values b are implicitly converted to
Logical as b = true, and formulas of type Logical are implicitly cast to PLogical
via ret when needed (used in Fig. 16 only for the formula ⊥ : Logical). Square
brackets indicate reasoning with local assumptions, discharged by application
of the rule; this occurs only in rule (Y). Universal quantifiers on Hoare triples
in premises (rules (seq), (wk), (Y)) are, as already in Fig. 15, just a short way
of expressing the variable condition. An exception is the universal quantifier
on the assumption in (Y), which means that the derivation may use arbi-
trary instances of the assumption. Arguments in the calculus using only the
rules (Logical), (⊥), (wk), (conj), and (disj) are referred to as propositional
reasoning.

The rule (pure) applies in particular to stateless programs p = ret a, for
which the precondition simplifies to φ[a/x] (see Convention 70). Although the
classical Hoare calculus does not require the usual introduction and elimina-
tion rules for logical connectives, such rules are sometimes convenient (see the
example below); we have included introduction rules for conjunction and dis-
junction. One typical Hoare rule that is missing here is the assignment rule;
this rule only makes sense in a more specialised context where some sort of
store is present (the rule (pure) should not be confused with the assignment
rule — it refers to the monadic binding mechanism and not to assignment
to store locations). An example of an extension of the calculus by specialised
rules for a particular monad is presented below. Rule (Y) refers to the fixed-
point operator Y (Sect. 6); this rule applies only to flat cpo monads (Sec. 8).
Application of the Y operator to F requires implicitly that F has the contin-
uous function type (A

c−→?TB)
c−→ (A

c−→?TB) for flat cpo’s A,B. From
(Y), one derives e.g. a rule for the iteration construct from Sect. 8:

67

(⊥)
{⊥} p {ϕ}

(pure)
p pure

{φ[p/x]} x← p {φ}
(x /∈ FV (p))

(Logical)
{ret φ} p {ret φ}

(η)
{φ} x← p; y ← ret a; z ← q {ψ}
{φ} x← p; z ← q[a/y] {ψ[a/y]}

(seq)

{φ} x̄← p̄ {ψ}
∀x̄ • {ψ} ȳ ← q̄ {χ}
{φ} x̄← p̄; ȳ ← q̄ {χ}

(wk)

{φ} x̄← p̄ {ψ}
φ′ ⇒ φ

∀x̄ • ψ ⇒ ψ′

{φ′} x̄← p̄ {ψ′}

(ctr)
{φ} . . . ;x← p; y ← q; z̄ ← r̄ {ψ}

{φ} . . . ; y ← (do x← p; q); z̄ ← r̄ {ψ}
(x /∈ FV (r̄, ψ))

(if)

{φ} a← b {if a then ψ else ξ}
{ψ} x← p {χ}
{ξ} x← q {χ}

{φ} x← if b then p else q {χ}
(a /∈ FV (ψ, ξ))

(conj)

{φ} x̄← p̄ {ψ}
{φ} x̄← p̄ {χ}
{φ} x̄← p̄ {ψ ∧ χ}

(disj)

{φ} ȳ ← q̄ {χ}
{ψ} ȳ ← q̄ {χ}
{φ ∨ ψ} ȳ ← q̄ {χ}

. .

(Y)

[
∀y • {φ} x← p y {ψ}

]
...

∀y • {φ} x← F p y {ψ}
{φ} x← Y F y {ψ}

Fig. 16. The generic Hoare calculus (rule (Y) applies only to flat cpo monads)

Proposition 73 Given the definition of the iteration construct, the rule

(iter)

∀x • {φ} a← b x {if a then ψ else ξ}
∀x • {ψ} y ← p x {φ[y/x]}

{φ[e/x]} y ← iter b p e {ξ[y/x]}
(y /∈ FV (φ, ξ))

is derivable in the generic Hoare calculus.

PROOF. Let F be the functional from the definition of the iter b p, i.e.

F f x = if b then (do z ← p x; f z) else ret x.

68

Assume ∀x • {φ} y ← f x {ξ[y/x]}. By rule (Y), it suffices to derive

{φ} y ← F f x {ξ[y/x]}.

By rule (if) and the first premise, this reduces to

{ψ} y ← (do z ← p x; f z) {ξ[y/x]} and

{ξ} y ← ret x {ξ[y/x]}.

The second goal is discharged immediately by applying (pure), as
ξ[y/x][x/y] = ξ due to y /∈ FV (ξ). By the assumption and rules (ctr) and
(seq), the first goal reduces to

{ψ} z ← p x {φ[z/x]},

i.e. to the second premise.

The rules for if-then-else and iteration have been formulated so as to allow
side-effecting expressions as conditions. If the condition b is pure, then one
derives from the given rules and rule (pure) the usual if rule and a rule for
iter corresponding to the standard while rule:

{φ ∧ b} x← p {ψ}
{φ ∧ ¬b} x← q {ψ}

{φ} x← if b then p else q {ψ}
{φ ∧ (b x)} y ← p x {φ[y/x]}

{φ[e/x]} y ← iter b p e {φ[y/x] ∧ ¬(b y)}
.

The latter rule specialises to the usual while rule

(while)
{φ ∧ b} p {φ}

{φ} while b p {φ ∧ ¬b}
.

The rules of the calculus are sound for arbitrary (flat cpo) monads:

Theorem 74 If a Hoare triple is derivable in a (flat cpo) monad by the rules
of Fig. 16 excluding (including) rule (Y), then its decoding is derivable in the
internal language.

PROOF. We prove each rule as a lemma in the internal language, using the
proof rules of Fig. 15:

(Logical), (⊥), (η): Straightforward from rules (tau) and (η) of Fig. 15.

(pure): Renaming the bound occurrence of x to a fresh variable y and taking
into account Convention 70, we decode the conclusion to

[[x← p; a← φ; y ← p; b← φ[y/x]]] a⇒ b

69

where a, b are fresh. Since all involved terms are pure, this reduces to

[[x← p; a← φ]] a⇒ a

by rules (comm) and (copy) of Fig. 15. The latter formula is immediate by
rule (tau) of Fig. 15.

(seq): By rules (app) and (pre) of Fig. 15, the premises imply

[[a← φ;x← p̄; b← ψ; ȳ ← q̄; c← χ]] a⇒ b and
[[a← φ;x← p̄; b← ψ; ȳ ← q̄; c← χ]] b⇒ c.

By propositional reasoning, we obtain

[[a← φ;x← p̄;ψ; y ← q; c← χ]] a⇒ c.

The conclusion then follows by the rule (dis) of Fig. 15.

(wk): As indicated above, this is a special case of (two applications of) (seq).

(ctr): Immediate by rule (ctr) of Fig. 15.

(if): Since if b then p else q is just an abbreviation for do a ←
b; if a then p else q, the conclusion reduces by rules (seq) and (ctr) and
the first premise to

{if a then ψ else ξ} x← if a then p else q {χ}

for a : Bool . We can then perform a case distinction over a. If a = True, then
the above formula is equivalent (by rule (rp) of Fig. 15) to

{ψ} x← p {χ},

i.e. the second premise. The case a = False is analogous.

(conj): By rule (ins) of Fig. 15, we obtain from the premises

[[a← φ; x̄← p̄; b← ψ; c← χ]] a⇒ b and
[[a← φ; x̄← p̄; b← ψ; c← χ]] a⇒ c.

By propositional reasoning, this implies

[[a← φ; x̄← p̄; b← ψ; c← χ]] a⇒ b ∧ c.

By rule (η) of Fig. 70, we obtain

[[a← φ; x̄← p̄; b← ψ; c← χ; d← ret (b ∧ c)]] a⇒ d,

which is precisely the decoding of the conclusion, taking into account Conven-
tion 70.

70

(disj): Analogous to (conj).

(Y): Let F : (A
c−→?TB)

c−→ (A
c−→?TB) for flat cpo’s A,B. As

the bottom element ⊥ of A
c−→?TB satisfies ∀y • {φ} x ← ⊥ y {ψ},

correctness of the rule follows by fixed point induction if the predi-
cate λz : A

c−→?TB • ∀y • {φ} x← z y {ψ} is admissible, i.e. closed under
suprema of total chains. This is easily established in the internal logic, noting
that (

⊔
fi) x =

⊔
(fi x), that Hoare triples decode into equations between

do-terms, and that binding is continuous in flat cpo monads.

Completeness of the calculus for the class of all (flat cpo) monads is the
subject of ongoing research. It is clear that completeness of the calculus over
a specific monad can only be expected in combination with suitable monad-
specific rules; e.g., the calculus becomes the usual (complete) Hoare calculus
when extended with an assignment rule specific to the store monad. In this
sense, the calculus may be regarded as a generic framework for computational
deduction systems.

11 Example: Reasoning about dynamic references

We now apply the general machinery developed so far to the (slightly ex-
tended) domain of the classical Hoare calculus, namely states consisting of
creatable and destructively updatable references (note that this is just one
example of a state monad), later to be extended by non-determinism.

The specification of reference monads is shown in Fig. 17. It uses a type con-
structor Ref , where Ref a is the set of references to values of type a. All
reference types are made subtypes of a fixed type Loc of locations, which al-
lows comparing references of different type. Nothing is said a priori on whether
references of different type must be distinct as locations. In dynamic reference
monads according to the specification DynamicReference, however, dis-
tinctness of references may be inferred in all relevant cases from their separate
creation. The monad comes with operations for reading from and writing to
references (besides the usual monad operations). The read operation * is pure,
which is expressed in the axiom pure-read using a built-in predicate pure; by
Convention 70, this allows using the read operation in places where values are
expected. Note the difference between r = s (equality of references, a stateless
formula) and *r = *s (equality of contents, a stateful formula).

The axiomatisation provides all that is really necessary in order to reason
about references, i.e. one does not need to rely on a particular implementa-
tion. Axiom read-write says that after writing to a reference, we can read the

71

spec Reference = FlatCpoMonad then
type Loc
var a : FlatCpo
types R : FlatCpoMonad ;

Ref a < Loc; Ref a : FlatCpo

ops * : Ref a
c−→ R a;

:= : (Ref a)× a c−→ R Unit
var x : a; y : b; r : Ref a; s : Ref b
• pure (*r)
• {} r := x {x = *r}
• {¬r = s ∧ x = *r} s := y {x = *r}

%(pure-read)%
%(read-write)%
%(read-write-other)%

spec DynamicReference = Reference then
var a, b, c : FlatCpo

op new : a
c−→ R (Ref a)

var x : a; y : b; z : b→ c; r : Ref c;
p : Ref a→ R b

• {} r ← new x {x = *r}
• {x = *r} s← new y {¬r = s⇒ x = *r}
• {} r ← new x; w ← p r;

s← new (z w) {¬r = s}

%(read-new)%
%(read-new-other)%

%(new-distinct)%

Fig. 17. Specification of the reference and the dynamic reference monad

value. By contrast, writing to a reference does not change the values of other
references (read-write-other). Note that nothing is said about the nature of
references; they could e.g. be integers. The specification of dynamic references
additionally provides an operation new for dynamically creating new refer-
ences. Axiom read-new states that after initialising a reference, we can read
the initial value. Moreover, creation of new references does not change the val-
ues of other references (read-new-other). Finally, two newly created references
are distinct (new-distinct). Note that we do not say anything about read-
ing from references that have not been created yet. In the discussion below,
references to rules always refer to the Hoare calculus of Fig. 16.

Using this axiomatisation, we now show

{} r ← new x; s← new y {¬r = s ∧ x = *r ∧ y = *s}. (1)

We proceed as follows. By read-new and rules (Logical) and (seq), we have

{} r ← new x; s← new y {y = *s}.

By applying rule (seq) to read-new and read-new-other, we obtain

{} r ← new x; s← new y {¬r = s⇒ x = *r}.

72

Instantiating new-distinct with p = λ • ret () and z = λ • y and applying
rule (η), we have

{} r ← new x; s← new y {¬r = s}.

We then obtain (1) by propositional reasoning with these three formulas.

Another example is the nondeterminism monad, shown in Fig. 18. While fail
yields no result and hence satisfies arbitrary postconditions, chaos yields any
result and hence nothing can be said about it. The operation [] is nondeter-
ministic choice (i.e. takes the union of value sets), and sync synchronises two
nondeterministic values (i.e. takes the intersection of value sets).

spec Nondeterminism = FlatCpoMonad then
var a : FlatCpo
ops fail , chaos : N a;

[] , sync : (N a×N a)
c−→ N a

var x : a; p, q : N a; ϕ, ψ : N Logical ;
χ1, χ2 : a→ N Logical

• {} fail {ψ}
• {ϕ} x← p {χ1x} ∧ {ϕ} x← q {χ2x} ⇒

{ϕ} x← p[]q {χ1x ∨ χ2x}
• {ϕ} x← p {χ1x} ∧ {ϕ} x← q {χ2x} ⇒

{ϕ} x← p sync q {χ1x ∧ χ2x}

%(fail)%

%(join)%

%(sync)%

Fig. 18. The nondeterminism monad

One advantage of the looseness of the specifications introduced so far is that
we now can combine the specification of references and of nondeterminism and
get a specification of nondeterministic reference computations (Fig. 19).

spec NondeterministicDynamicReference =
DynamicReference with R 7→ NR
and Nondeterminism with N 7→ NR

Fig. 19. The nondeterministic dynamic reference monad

As an example, we prove the partial correctness of Dijkstra’s nondeterministic
version of Euclid’s algorithm for computing the greatest common divisor [17]
within this monad. Let euclid be the program sequence (over NR Int)

73

r ← new x;
s← new y;
while ret (¬*r == *s)

(if ret (*r > *s) then r := *r − *s else fail
[]
if ret (*s > *r) then s := *s− *r else fail)

Assuming that we have some specification of arithmetic, including gcd speci-
fied to be the greatest common divisor function, we now prove

{} euclid {*r = gcd(x, y)}.

We proceed as follows. Using (pure-read), (comm), (copy), and propositional
reasoning, we can show

{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ *r > *s}
u← * r; v ← * s
{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ *r > *s ∧ u = *r ∧ v = *s}.

By congruence reasoning and (wk), we obtain

{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ *r > *s}
u← * r; v ← * s
{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = *s}.

(2)

From read-write and read-write-other, we show by propositional reasoning

{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = *s}
r := u− v
{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = *s ∧ u− v = ∗r}.

By arithmetic reasoning and (wk), we obtain

{¬r = s ∧ gcd(u, v) = gcd(x, y) ∧ u > v ∧ v = *s}
r := u− v
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

By sequencing with (2) and noting that r := *r − *s is shorthand for u ←
* r; v ← * s; r := u− v, we arrive at

{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ *r > *s}
r := *r − *s
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

74

By fail, we have

{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ ¬*r > *s}
fail
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

Hence by the (if) rule for pure conditions,

{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}
if *r > *s then r := *r − *s else fail
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

Analogously, we have

{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}
if *s > *r then s := *s− *r else fail
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

From these, we obtain by join and rule (wk)

{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}
if ret (*r > *s) then r := *r − *s else fail

[] if ret (*s > *r) then s := *s− *r else fail
{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}.

Applying the standard (while) rule and rule (wk) leads to

{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}
while ret (¬*r == *s)
(if ret (*r > *s) then r := *r − *s else fail
[] if ret (*s > *r) then s := *s− *r else fail)
{¬r = s ∧ gcd(*r, *s) = gcd(x, y) ∧ *r == *s}.

Using the arithmetic fact that gcd(z, z) = z, we obtain by (wk)

{¬r = s ∧ gcd(*r, *s) = gcd(x, y)}
while ¬*r == *s
(if ret (*r > *s) then r := *r − *s else fail
[] if ret (*s > *r) then s := *s− *r else fail)
{*r = gcd(x, y)}.

(3)

From (1) above, we obtain by congruence reasoning and rule (wk)

{} r ← new x; s← new y {¬r = s ∧ gcd(*r, *s) = gcd(x, y)}, (4)

and the result now follows by sequencing (3) and (4).

75

12 Conclusions

We have presented the design of HasCasl, a wide-spectrum language serving
the integrated specification and development of software as well as mathe-
matical modelling on a wider scale. Novel features of HasCasl include the
semantic treatment of type class polymorphism by means of an extension se-
mantics and support for inductive datatypes and recursion that does not rely
on unique choice. We have moreover laid out the technical aspects of the syntax
of the type class mechanism and its interaction with higher order subtyping
in some detail.

We have illustrated the expressive strength of HasCasl by means of the devel-
opment of a Hoare logic for monad-encapsulated generic side effects as used in
modern functional-imperative programming. The latter is a contribution in its
own right, as it offers modularised reasoning support for monad-based impera-
tive programs, where generic rules are cleanly separated from axiomatisations
of specific notions of side-effect (i.e. monads). A stronger generic computa-
tional logic of this nature, namely a monad-based dynamic logic, has been
presented in [75,52]; this extension, however, relies on stronger assumptions
on the underlying monad. The use of HasCasl outside the realm of software
specification as such has been illustrated in [81], where composition tables of
region connection calculi are verified in a logically heterogeneous setting in
which HasCasl serves the definition of higher-order concepts such as the real
numbers.

HasCasl is a central node in the logic graph of the Bremen heterogeneous
tool set. As such, it is provided with extensible reasoning support, presently
via a translation into Isabelle/HOL, and further connections to other logics
in the graph, e.g. a translation of executable specifications to Haskell. These
tools are being developed further; in particular, the technical handling of Is-
abelle proofs on translated HasCasl specifications and the development of
suitable dedicated tactics is the subject of ongoing work. Experimental work
on the verification of the Haskell prelude against a HasCasl specification is
in progress [9].

An open issue in the language design of HasCasl itself is the specification of
nested polymorphism as supported by the Glasgow extensions of Haskell [59],
i.e. to find a workaround for the fact that higher order logic is inconsistent
with System F [15]. An initial step in this direction would be the support for
existential types, which provide a clean way of encapsulating representations
of abstract datatypes [37]. Concerning the HasCasl development methodol-
ogy (and indeed any methodology that works with standard logics on non-
continuous functions to specify higher order programs), an open problem is
support for developments that start with an abstract algebraic specification

76

and only later refine this to a design specification working with cpo’s and
continuous functions. Currently, this works smoothly only for first-order func-
tions, whereas for many higher-order functions, one has to work with con-
tinuous function spaces from the outset in order to avoid possible dead ends
(in fact, this problem is not even entirely solved by working with continuous
functions, as any actual implementation will interpret higher-order types as
types of computable functions).

Some of the general limitations of the algebraic methodology of program spec-
ification listed in [69] also apply to HasCasl: firstly, the relation to informal
requirements is not addressed in the current work — we consider this to be
an important but separate issue. Secondly, real programming languages often
have subtle complex features that are ignored in the specification world; one
example that concerns HasCasl is Haskell’s lazy pattern matching (which,
however, could be integrated without too much effort using the work in [27]).
Finally, while the monad-based approach does support object-oriented and
concurrent programming as shown in work on Haskell, experiments are needed
that establish the feasibility of verification involving these features in Has-
Casl.

Acknowledgements

The authors wish to thank Mihai Codescu, Kathrin Hoffmann, Bernd Krieg-
Brückner, Christoph Lüth, Christian Maeder, and Don Sannella for useful
comments and discussions, and the referees for their valuable suggestions.
Erwin R. Catesbeiana contributed his opinion on matters of consistency.

References

[1] A. Abel and R. Mattes. Fixed points of type constructors and primitive
recursion. In J. Marcinkowski and A. Tarlecki, eds., Computer Science Logic,
CSL 2004, vol. 3210 of Lect. Notes Comput. Sci., pp. 190–204. Springer, 2004.

[2] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories.
Wiley Interscience, 1990.

[3] E. Astesiano and M. Cerioli. Free objects and equational deduction for partial
conditional specifications. Theoret. Comput. Sci., 152:91–138, 1995.

[4] J. Bates and R. Constable. Proofs as programs. ACM Trans. Prog. Lang.
Systems, 7:113–136, 1985.

77

[5] S. Berghofer and M. Wenzel. Inductive datatypes in HOL - lessons learned in
formal-logic engineering. In Y. Bertot, G. Dowek, A. Hirschowitz, C. Paulin,
and L. Théry, eds., Theorem Proving in Higher Order Logics, TPHOLs 1999,
vol. 1690 of Lect. Notes Comput. Sci., pp. 19–36. Springer, 1999.

[6] M. Bidoit and P. D. Mosses. Casl User Manual, vol. 2900 of Lect. Notes
Comput. Sci. Springer, 2004.

[7] L. Birkedal and R. E. Møgelberg. Categorical models for Abadi and Plotkin’s
logic for parametricity. Math. Struct. Comput. Sci., 15, 2005.

[8] M. Broy, C. Facchi, R. Grosu, R. Hettler, H. Hussmann, D. Nazareth,
F. Regensburger, and K. Stølen. The requirement and design specification
language Spectrum, an informal introduction, version 1.0. Technical report,
Institut für Informatik, Technische Universität München, Mar. 1993.

[9] G. M. Cabral. Developing a HasCasl library for the Haskell prelude. Master’s
thesis, Institute of Computing, University of Campinas. In preparation.

[10] L. Cardelli. Notes on Fω<:. Unpublished notes, 1990.

[11] M. Cerioli and J. Meseguer. May I borrow your logic? (transporting logical
structures along maps). Theoret. Comput. Sci., 173:311–347, 1997.

[12] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and
C. Talcott. All About Maude - A High-Performance Logical Framework. How
to Specify, Program, and Verify Systems in Rewriting Logic, vol. 4350 of Lect.
Notes Comput. Sci. Springer, 2007.

[13] CoFI. The Common Framework Initiative for algebraic specification and
development. Electronic Archives under www.cofi.info.

[14] The Coq Development Team. The Coq Proof Assistant – Reference Manual,
v8.1. INRIA, 2006, Available under http://coq.inria.fr.

[15] T. Coquand. An analysis of Girard’s paradox. In Logic in Computer Science,
LICS 1986, pp. 227–236. IEEE, 1986.

[16] R. Diaconescu and K. Futatsugi. CafeOBJ Report. AMAST series. World
Scientific, Singapore, 1998.

[17] E. W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[18] J.-C. Filliâtre. Proof of imperative programs in type theory. In T. Altenkirch,
W. Naraschewski, and B. Reus, eds., Types for Proofs and Programs, TYPES
1998, vol. 1657 of Lect. Notes Comput. Sci., pp. 78–92. Springer, 1999.

[19] C. Führmann. Varieties of effects. In M. Nielsen and U. Engberg, eds.,
Foundations of Software Science And Computation Structures, FOSSACS 2002,
vol. 2303 of Lect. Notes Comput. Sci., pp. 144–158. Springer, 2002.

[20] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Asp. Comput., 13:341–363, 2002.

78

[21] C. George, P. Haff, K. Havelund, A. E. Haxthausen, R. Milne, C. B. Nielson,
S. Prehn, and K. R. Wagner. The Raise Specification Language. Prentice Hall,
New York, 1992.

[22] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. J. ACM, 39:95–146, 1992.

[23] J. A. Goguen and G. Rosu. Institution morphisms. Formal Asp. Comput.,
13:274–307, 2002.

[24] S. Goncharov, L. Schröder, and T. Mossakowski. Completeness of global
evaluation logic. In R. Kralovic and P. Urzyczyn, eds., Mathematical
Foundations of Computer Science, MFCS 2006, vol. 4162 of Lect. Notes
Comput. Sci., pp. 447–458. Springer, 2006.

[25] J. V. Guttag, J. J. Horning, S. J. Garland, K. D. Jones, A. Modet, and J. M.
Wing. Larch: Languages and Tools for Formal Specification. Springer, 1993.

[26] T. Hallgren. Haskell tools from the programatica project. In J. Jeuring, ed.,
Haskell Workshop, HASKELL 2003, pp. 103–106. ACM Press, 2003.

[27] W. L. Harrison and R. B. Kieburtz. The logic of demand in Haskell. J. Funct.
Programming, 15:837–891, 2005.

[28] A. Haxthausen. Order-sorted algebraic specifications with higher-order
functions. Theoret. Comput. Sci., 183:157–185, 1997.

[29] L. Henkin. The completeness of the first-order functional calculus. J. Symbolic
Logic, 14:159–166, 1949.

[30] H. Herrlich, E. Lowen-Colebunders, and F. Schwarz. Improving Top: PrTop
and PsTop. In H. Herrlich and H.-E. Porst, eds., Category theory at work, pp.
21–34. Heldermann, Berlin, 1991.

[31] D. Hutter, H. Mantel, G. Rock, W. Stephan, A. Wolpers, M. Balser, W. Reif,
G. Schellhorn, and K. Stenzel. VSE: Controlling the complexity in formal
software developments. In D. Hutter, W. Stephan, P. Traverso, and M. Ullmann,
eds., Current Trends in Applied Formal Methods, FM-Trends 1998, vol. 1641 of
Lect. Notes Comput. Sci. Springer, 1999.

[32] C. B. Jones. Systematic Software Development Using VDM. Prentice Hall,
1990.

[33] S. Kahrs and D. Sannella. Reflections on the design of a specification language.
In M. Nivat, ed., Fundamental Approaches to Software Engineering, FOSSACS
1998, vol. 1382 of Lect. Notes Comput. Sci., pp. 154–170. Springer, 1998.

[34] S. Kahrs, D. Sannella, and A. Tarlecki. The definition of extended ML: A gentle
introduction. Theoret. Comput. Sci., 173:445–484, 1997.

[35] R. B. Kieburtz. P-logic: property verification for Haskell programs, 2002.
Unpublished manuscript.

79

[36] J. Lambek and P. J. Scott. Introduction to Higher Order Categorical Logic.
Cambridge University Press, 1986.

[37] K. Läufer. Type classes with existential types. J. Functional Programming,
6:485–517, 1996.

[38] S. Liang, P. Hudak, and M. Jones. Monad transformers and modular
interpreters. In Principles of Programming Languages, POPL 95, pp. 333–343.
ACM Press, 1995.

[39] S. Mac Lane. Categories for the Working Mathematician. Springer, 1997.

[40] P. Martin-Löf. Constructive mathematics and computer programming. In Logic,
Methodology, and Philosophy of Science, LMPS 1979, pp. 153–175. North-
Holland, 1982.

[41] J. Meseguer. General logics. In Logic Colloquium, LC 1987, pp. 275–329. North
Holland, 1989.

[42] G. Mints. A Short Introduction to Intuitionistic Logic. Kluwer, 2000.

[43] J. C. Mitchell and P. J. Scott. Typed lambda models and cartesian closed
categories. In J. Gray and A. Scedrov, eds., Categories in Computer Science
and Logic, vol. 92 of Contemp. Math., pp. 301–316. Amer. Math. Soc., 1989.

[44] E. Moggi. Categories of partial morphisms and the λp-calculus. In D. H.
Pitt, S. Abramsky, A. Poigné, and D. E. Rydeheard, eds., Category Theory and
Computer Programming, vol. 240 of Lect. Notes Comput. Sci., pp. 242–251.
Springer, 1986.

[45] E. Moggi. The Partial Lambda Calculus. PhD thesis, University of Edinburgh,
1988.

[46] E. Moggi. Notions of computation and monads. Inform. and Comput., 93:55–92,
1991.

[47] E. Moggi. A semantics for evaluation logic. Fund. Inform., 22:117–152, 1995.

[48] T. Mossakowski. Relating Casl with other specification languages: the
institution level. Theoret. Comput. Sci., 286:367–475, 2002.

[49] T. Mossakowski. Heterogeneous specification and the heterogeneous tool set.
Habilitation thesis, Universität Bremen, 2005.

[50] T. Mossakowski, C. Maeder, and K. Lüttich. The Heterogeneous Tool Set. In
O. Grumberg and M. Huth, eds., Tools and Algorithms for the Construction
and Analysis of Systems, TACAS 07, vol. 4424 of Lect. Notes Comput. Sci., pp.
519–522. Springer, 2007.

[51] T. Mossakowski, D. Sannella, and A. Tarlecki. A simple refinement language
for casl. In J. L. Fiadeiro, ed., Recent Developments in Algebraic Development
Techniques, 17th International Workshop, WADT 2004, vol. 3423 of Lect. Notes
Comput. Sci., pp. 162–185. Springer, 2005.

80

[52] T. Mossakowski, L. Schröder, and S. Goncharov. A generic complete dynamic
logic for reasoning about purity and effects. In J. Fiadeiro and P. Inverardi,
eds., Fundamental Approaches to Software Engineering, FASE 2008, vol. 4961
of Lect. Notes Comput. Sci., pp. 199–214. Springer, 2008.

[53] P. D. Mosses, ed. Casl Reference Manual, vol. 2960 of Lect. Notes Comput.
Sci. Springer, 2004.

[54] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, vol. 2283 of Lect. Notes Comput. Sci. Springer, 2002.

[55] J. Nordlander. Polymorphic subtyping in O’Haskell. Sci. Comput.
Programming, 43(2-3):93–127, 2002.

[56] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference, Version 2.4. SRI International, Menlo Park, 2001.

[57] L. C. Paulson. Mechanizing coinduction and corecursion in higher-order logic.
J. Log. Comput, 7:175–204, 1997.

[58] S. Peyton Jones, ed. Haskell 98 Language and Libraries — The Revised Report.
Cambridge, 2003. also: J. Funct. Programming 13, 2003.

[59] S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type
inference for arbitrary-rank types. J. Funct. Programming, 17:1–82, 2007.

[60] W. Phoa. An introduction to fibrations, topos theory, the effective topos
and modest sets. Research report ECS-LFCS-92-208, Lab. for Foundations
of Computer Science, University of Edinburgh, 1992.

[61] B. Pierce. Types and Programming Languages. MIT Press, 2002.

[62] A. Pitts. Evaluation logic. In G. Birtwhistle, ed., Higher Order Workshop IV,
Workshops in Computing, pp. 162–189. Springer, 1991.

[63] A. M. Pitts. Polymorphism is set-theoretic, constructively. In Category
Theory and Computer Science, vol. 283 of Lect. Notes Comput. Sci., pp. 12–39.
Springer, 1987.

[64] F. Regensburger. HOLCF: Higher order logic of computable functions. In E. T.
Schubert, P. J. Windley, and J. Alves-Foss, eds., Theorem Proving in Higher
Order Logics, TPHOLS 1995, vol. 971 of Lect. Notes Comput. Sci., pp. 293–307,
1995.

[65] G. Rosolini. Continuity and effectiveness in topoi. PhD thesis, University of
Oxford, 1986.

[66] G. Rosolini and T. Streicher. Comparing models of higher type computation.
In Realizability Semantics and Applications, vol. 23 of Electron. Notes Theoret.
Comput. Sci., 1999.

[67] D. Sannella and A. Tarlecki. Foundations of Algebraic Specifications and Formal
Program Development. In preparation. Preliminary version available under
http://homepages.inf.ed.ac.uk/dts/book.

81

[68] D. Sannella and A. Tarlecki. Toward formal development of programs from
algebraic specifications: implementations revisited. Acta Inf., 25:233–281, 1988.

[69] D. Sannella and A. Tarlecki. Algebraic methods for specification and formal
development of programs. ACM Comput. Surveys, 31, 1999.

[70] L. Schröder. The logic of the partial λ-calculus with equality. In J. Marcinkowski
and A. Tarlecki, eds., Computer Science Logic, CSL 2004, vol. 3210 of Lect.
Notes Comput. Sci., pp. 385–399. Springer, 2004.

[71] L. Schröder. The HasCasl prologue - categorical syntax and semantics of the
partial λ-calculus. Theoret. Comput. Sci., 353:1–25, 2006.

[72] L. Schröder. Bootstrapping types and cotypes in HasCasl. In T. Mossakowski
and U. Montanari, eds., Algebra and Coalgebra in Computer Science, CALCO
2007, vol. 4624 of Lect. Notes Comput. Sci., pp. 447–462. Springer, 2007. Full
version to appear in Log. Methods Comput. Sci.

[73] L. Schröder and T. Mossakowski. HasCasl: Towards integrated specification
and development of Haskell programs. In H. Kirchner and C. Ringeissen, eds.,
Algebraic Methodology and Software Technology, AMAST 2002, vol. 2422 of
Lect. Notes Comput. Sci., pp. 99–116. Springer, 2002.

[74] L. Schröder and T. Mossakowski. Monad-independent Hoare logic in HasCasl.
In M. Pezzè, ed., Fundamental Approaches to Software Engineering, FASE 2003,
vol. 2621 of Lect. Notes Comput. Sci., pp. 261–277. Springer, 2003.

[75] L. Schröder and T. Mossakowski. Monad-independent dynamic logic in
HasCasl. J. Logic Comput., 14:571–619, 2004.

[76] L. Schröder, T. Mossakowski, and C. Lüth. Type class polymorphism in an
institutional framework. In J. Fiadeiro, ed., Recent Developments in Algebraic
Development Techniques, 17th International Workshop, WADT 04, vol. 3423 of
Lect. Notes Comput. Sci., pp. 234–248. Springer, 2004.

[77] L. Schröder, T. Mossakowski, A. Tarlecki, P. Hoffman, and B. Klin. Semantics
of architectural specifications in Casl. In H. Hußmann, ed., Fundamental
Approaches to Software Engineering, FASE 2001, vol. 2029 of Lect. Notes
Comput. Sci., pp. 253–268. Springer, 2001.

[78] M. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1992. 2nd
edition.

[79] H. Thielecke. Categorical Structure of Continuation Passing Style. PhD thesis,
University of Edinburgh, 1997.

[80] P. Wadler. How to declare an imperative. ACM Computing Surveys, 29:240–
263, 1997.

[81] S. Wölfl, T. Mossakowski, and L. Schröder. Qualitative constraint calculi:
Heterogeneous verification of composition tables. In D. Wilson and G. Sutcliffe,
eds., 20th International FLAIRS Conference, pp. 665–670. AAAI Press, 2007.

[82] O. Wyler. Lecture notes on topoi and quasitopoi. World Scientific, 1991.

82

Appendix

A Subkinding Rules

For convenience, the full set of subkinding rules as assembled in Sect.s 3 and 4
is shown in Fig. A.1. Recall that V denotes the set {±,+,−, · } of variance
annotations, ordered by taking ± and · to be the smallest and the greatest
element, respectively, and + and − to be incomparable.

Cl ≤C Kd in Σ

Cl ≤K Kd

Kd1 ≤K Kd2 Kd3 ≤K Kd4

µKd2 → Kd3 ≤K µKd1 → Kd4

(µ ∈ V)

µKd1 → Kd2 ≤K νKd1 → Kd2

(µ, ν ∈ V , µ ≤ ν),

Kd ≤K Kd

Kd1 ≤K Kd2 Kd2 ≤K Kd3

Kd1 ≤K Kd3

Fig. A.1. Subkinding rules

B Kinding Rules

The full set of kinding rules for pseudotypes as assembled in Sect. 3 and 4
is shown in Fig. B.1. Recall that Θ−1 and Θ0 denote the context Θ with all
outer variances reversed or removed, respectively.

F : Kd1 in Σ
Kd1 ≤K Kd2

Θ � F : Kd2

a : µKd1 in Θ, µ ∈ {+, · }
Kd1 ≤K Kd2

Θ � a : Kd2

Θ0 � t : Kd1

Θ � s : Kd1 → Kd2

Θ � s t : Kd2

Θ � t : Kd1

Θ � s : +Kd1 → Kd2

Θ � s t : Kd2

Θ−1 � t : Kd1

Θ � s : −Kd1 → Kd2

Θ � s t : Kd2

Θ, a : µKd1 � t : Kd2

Kd3 ≤K Kd1

Θ � λ a : Kd1 • t : νKd3 → Kd2

(µ ≤ ν in V)

Fig. B.1. Kinding rules for type constructors

83

C Syntax-directed Subkinding Rules

For implementation purposes, we give a syntax-directed version of the sub-
kinding rules (Appendix A). The point is to eliminate the transitivity and re-
flexivity rules in the spirit of ‘algorithmic subtyping’ [61]. The syntax-directed
rules are given in Fig. C.1.

(cl-refl)
Cl ≤K Cl

(cl)

Cl ≤C Kd1

Kd1 ≤K Kd2

Cl ≤K Kd2

(→)
Kd1 ≤K Kd2 Kd3 ≤K Kd4

µKd2 → Kd3 ≤K νKd1 → Kd4

(µ, ν ∈ V , µ ≤ ν)

Fig. C.1. Syntax-directed subkinding rules

Note that rule (cl) is indeed algorithmic since there are only finitely many
declarations Cl ≤C Kd1. In rule (→), V is the set of variance annotations,
ordered as described in Sect. 4.

Proposition 75 The rules of Fig. C.1 derive the same subkinding judgements
as the rules given in Fig. A.1 above.

PROOF. (Sketch) It is clear that the rules of Fig. C.1 are derivable from
the previous rules and subsume all of the previous rules except reflexivity
and transitivity. By induction over the kind structure, it is easy to show that
Kd ≤K Kd is derivable by the rules of Fig. C.1 for all kinds Kd . Finally, the
fact that the relation ≤K generated by the rules of Fig. C.1 and the reflexiv-
ity rule is transitive is shown by induction over the combined lengths of the
derivations of Kd1 ≤K Kd2 and Kd2 ≤K Kd3; this involves a case distinction
over which rules were applied in the last step in either case.

D Syntax-directed Subtyping Rules

Similarly as for the subkinding system, one can give a syntax-directed set
of rules, shown in Fig. D.1, for the subtype relation which is equivalent to
the rules presented in Sect. 4. The proof of equivalence is analogous to the
one sketched for Prop. 75. The introduction rules for variables and type con-
structors are, like the rule (cl) of Fig. C.1, algorithmic because there are only
finitely many declarations F ≤ t and a ≤ t in Σ and Λ, respectively. As in
Fig. 7, v ranges over {≤,≤∗}.

84

a in Θ

Θ; Λ � a v a Θ; Λ � F v F

a ≤ t in Λ
Θ; Λ � t v s

Θ; Λ � a v s

F ≤ t in Σ
Θ; Λ � t v s

Θ; Λ � F v s

Θ � t1, t2 : +Kd1 → Kd2

Θ; Λ � s1 v s2

Θ; Λ � t1 v t2

Θ; Λ � t1 s1 v t2 s2

Θ � t1, t2 : −Kd1 → Kd2

Θ; Λ � s2 ≤∗ s1

Θ; Λ � t1 ≤∗ t2
Θ; Λ � t1 s1 ≤∗ t2 s2

Θ, a : Kd ; Λ � t v s

Θ; Λ � λ a : µKd • t v λ a : µKd • s
(µ ∈ V)

Fig. D.1. Syntax-directed subtyping rules for pseudotypes

85

