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Abstract
This paper presents a comparison of methods for transforming 
voice  quality in  neutral  synthetic  speech  to  match cheerful, 
aggressive, and depressed expressive styles. Neutral speech is 
generated using the unit selection system in the MARY TTS 
platform and a large neutral database in German. The output is 
modified  using  voice  conversion  techniques  to  match  the 
target expressive styles, the focus being on spectral envelope 
conversion for transforming the overall voice quality. Various 
improvements  over  the  state-of-the-art  weighted  codebook 
mapping and GMM based voice conversion frameworks are 
employed resulting in three algorithms. Objective evaluation 
results  show  that  all  three  methods  result  in  comparable 
reduction  in  objective  distance  to  target  expressive  TTS 
outputs  whereas  weighted  frame mapping  and  GMM based 
transformations  were  perceived  slightly  better  than  the 
weighted codebook mapping outputs in generating the target 
expressive style in a listening test.
Index Terms: voice quality transformation, voice conversion, 
emotional speech synthesis

1. Introduction
Development  of  techniques  for  generating  synthetic  speech 
using a large number of speech recordings  resulted  in  high 
quality  systems  available  in  both  research  and  commercial 
domains.  The functionality to add and control expressiveness 
in synthetic speech has become an important research aspect 
in  such  systems  to  further  improve  naturalness  in  human-
machine interaction.  The conventional  approach  to  generate 
expressive  synthetic  speech  in  unit  selection  systems 
employed collection of a separate large corpora in the target 
expressive style which is a time consuming and tedious task. 
An alternative approach is to employ voice modification and 
conversion  techniques  to  adapt  neutral  synthesis  output  to 
match the target styles. The adaptation can be performed using 
a  considerably  smaller  number  of  recordings  in  the  target 
expressive style, enabling inclusion of new expressive styles 
in the system without much additional effort.

The efforts towards voice modification and conversion to 
generate a target expressive style in TTS focus on two major 
problems.  The  first  problem is  the  transformation  of  voice 
quality which is known to convey significant variation across 
different styles. However, explicit modeling and modification 
of voice quality parameters is still an open research question 
and needs future improvements to provide a fully automatic 
parametric  framework.  Alternatively,  voice  conversion 
techniques  can  be  used  to  transform  the  overall  spectral 
characteristics  for  realizing  corresponding  voice  quality 
changes  implicitly  in  the  spectral  conversion  function.  The 
second  problem  involves  generation  and  realization  of  the 
appropriate prosody patterns that fit the target expressive style.
This  paper  focuses  on  the  first  problem to  provide  a  voice 
quality transformation framework using conventional speaker 
identity conversion methods.

Voice  conversion  researchers  employ  different  machine 
learning  techniques  to  automatically  map  a  given  source 

speaker´s spectral  characteristics to that  of a target speaker. 
Codebook mapping  [1]  and GMM based  [2,  3]  approaches 
have  become  two  extensively  used  methods.  Codebook 
mapping models the spectral envelope transformation function 
by  clustering  the  source  and  target  training  data  and  by 
modifying the source spectral envelope by a filter estimated 
from the source and the corresponding target cluster center. 
The  major  drawback  of  this  approach  is  known  to  be  the 
discontinuity  problems  due  to  local  modeling  of  the 
transformation  function.  Weighted  codebook  mapping 
resulted in significant performance improvements [4,  5] and 
provided  the  framework  for  a  number  of  commercial 
applications  including  cross-language  dubbing  and  singing 
voice transformation.  A further improvement includes frame 
selection/mapping  approaches  to  generate  the  target 
characteristics in more detail [6]. 

GMM  based  voice  conversion  algorithms  provide  a 
parametric framework to model the relationship between the 
source and target acoustic spaces. The spectral transformation 
function  can  be  estimated  using  a  GMM trained  on  either 
source  spectral  feature  vectors  [2]  or  source-target  spectral 
feature  vectors  jointly  [3].  The  major  drawbacks  of  GMM 
based approaches include  over-smoothing problems [7]  and 
discontinuities in the transformation filter across consecutive 
speech frames. However, it is possible to reduce these effects 
by combining  codebook mapping and GMM based methods 
[8]  and  by  employing  temporal  smoothing  of  the 
transformation filter [9].

The selection of appropriate signal processing algorithms 
to  manipulate  voice  quality  and  prosody  characteristics  is 
crucial  since  additional  processing  distortion  is  a  strictly 
limiting factor in TTS applications. In this paper, we use LP 
inverse filtering followed by FD-PSOLA [10] and frequency 
domain  filtering  to  perform  voice  quality  and  prosody 
transformations. Specifically, we compare the performances of 
three methods for voice quality transformation in generating 
emotional  synthetic  speech  using  the  MARY TTS platform 
[11]. The first method employs   improved weighted codebook 
mapping [5] where the weighted codebook mapping procedure 
in [4] has been extended to automatically detect and eliminate 
outliers in the training data. The outlier elimination procedure 
makes use of the  distributions  of various distance measures 
between the source and target acoustic features. The second 
voice  quality  transformation  method  uses  a  direct  frame 
mapping  approach  in  which  a  more  detailed  vocal  tract 
transformation function is estimated using individual  speech 
frames and context information [6]. The third method is based 
on classical joint source-target GMM [3].  Both the weighted 
frame mapping and GMM based methods were extended with 
the  outlier  elimination  procedure.  We  have  also  applied 
temporal smoothing of the transformation function similar to 
[9]  to  reduce  possible  discontinuities  in  the  transformation 
filter as required. Since the focus of the recent work is not on 
prosody transformation, we simply generate the target prosody 
by CARTs trained  on  the  expressive data  to  provide  target 



pitch and duration values. The target values are super-imposed 
during  voice  conversion  to  modify  pitch  and  timing.  No 
models  of  intensity  are  employed  although  it  may help  in 
improving performance further in various expressive styles.

The outline of the paper is as follows: Section 2 reviews 
the MARY expressive TTS system which is used in generating 
neutral speech as input to the voice conversion algorithm and 
delivering expressive speech samples as a ground reference for 
performance  evaluations.  The  three  voice  quality 
transformation  algorithms  are  described  next  along  with  a 
brief  summary of  expressive  prosody  generation.  Section  3 
presents  objective  and  subjective evaluation  procedures  and 
results.  Finally,  the paper is concluded with a discussion of 
findings and future research directions in Section 4.

2. Method

2.1. MARY expressive TTS system
We use the unit selection system of the MARY TTS platform 
[11]  for  our  experiments.  It  implements  a  standard  unit 
selection algorithm, generating speech by concatenating units  
– small snippets of audio recordings – selected from natural 
recordings  of  a  given  speaker  and  style.  First,  a  target is 
predicted  from  the  text,  consisting  usually  of  linguistic 
descriptors  such  as  the  phone  chain,  part-of-speech 
information  etc.,  as  well  as  a  symbolic  or  parametric 
description  of  target  prosody.  Potentially,  this  target could 
also  include  information  about  the  intended  emotion  or 
speaking style. From the available unit  inventory of a given 
voice,  units  are  selected  to  match  the  target  as  closely  as 
possible;  at  the  same  time,  they  must  also  fit  to  the 
neighboring units.  Dynamic programming is used to find an 
optimal path through the candidate units to jointly minimize 
the target costs and the join costs.  The MARY system uses 
diphone-sized units, with an option to fall back to half-phones 
if no suitable diphones are available.

2.2. Database
In the standard unit selection framework, expressive synthetic 
speech is simply generated by using recordings of expressive 
speech as the voice database. We have recorded several voice 
databases with the same speaker, a professional German actor, 
who is speaking in a different style for each voice database.

A standard, “neutral” database was recorded as a baseline, 
consisting  of  3000  phonetically  and  prosodically  balanced 
sentences selected from the German Wikipedia [12]. The same 
speaker  produced  several  smaller,  expressive  databases, 
notably a cheerful, an aggressive, and a depressed voice. For 
each  voice,  400  phonetically  balanced  Wikipedia  sentences 
and approximately 200 style-specific sentences were recorded, 
based  on  the  concept  of  domain-oriented  synthesis  [13]: 
within  a certain  “domain” (such as,  here,  typical  “cheerful” 
sentences),  the  voice  will  have  high  quality;  outside  the 
domain, it will at least be intelligible.

Recordings were done with 24 bit  at 44.1 KHz, directly 
into  a  laptop  computer,  using  the  tool  Redstart  from  the 
MARY system and down-sampled  to  16  KHz during  voice 
generation.  The  voices  used  in  this  paper  were  built  fully 
automatically,  using  the  MARY  voice  import  toolkit  [14]; 
manual correction of the labels is  currently under  way,  and 
will result in voices with more reliable quality.

In training spectral envelope transformation functions,  a 
200-sentence subset  of the parallel  recordings was used for 
each  expressive  style.  The  transformation  functions  were 
trained  using  the  neutral  recordings  as  the  source  and  the 

expressive  recordings  as  the  target.  For  testing,  three 
utterances were synthesized using the neutral voice along with 
the  realized  phoneme  boundaries  and  pitch  contour.  These 
three  utterances  were  also  synthesized  using  the  expressive 
voice as well for generating the target prosody pattern using 
the  corresponding  CART  trained  with  the  expressive 
databases. The f0 contour  and the durations as predicted by 
the expressive CART and the phoneme boundary information 
for  the  expressive  outputs  were  used  as  input  to  the  voice 
conversion algorithm to determine time varying pitch and time 
scaling  factors  to  be  realized  during  FD-PSOLA  based 
prosody modifications.

2.3. Voice quality transformation

2.3.1. Weighted codebook mapping
The first spectral envelope transformation algorithm is based 
on  the  weighted  codebook  mapping  algorithm  STASC  [4] 
including  the  refinements  proposed  in  [5].  The  algorithm 
extracts average source and target LSF vectors for each source 
and  target phoneme pair  in  a parallel  training database and 
saves them in a codebook file. In the transformation stage, the 
source LSF vectors for each input speech frame are matched 
with  source  codebook entries  using  an  LSF  based  distance 
measure. The converted LSF vector is estimated as a weighted 
average of the corresponding target codebook entries using the 
inverse  of the  source distance values as  a weighting factor. 
This procedure is sensitive to alignment accuracy similar to all 
parallel  voice  conversion  training  algorithms.  In  order  to 
eliminate  codebook  entries  that  correspond  to  misaligned 
labels  automatically,  we  use  the  outlier  elimination  method 
described  in  [5].  The  outlier  elimination  computes  four 
confidence  measures  based on  the distributions  of LSF,  f0, 
root-mean-squared energy,  and duration differences between 
the source and the target codebook entries. A single Gaussian 
is fitted to each distribution and the entries that  have larger 
difference  from  the  Gaussian  mean  by  an  automatically 
determined  threshold  are  eliminated.  This  helps  to  exclude 
relatively different source and target pairs from the codebook, 
resulting  in  a  more  stable  and  less  discontinuous 
transformation  function.  In  the  transformation  stage,  source 
codebook entries can be used to estimate the input vocal tract 
spectrum from the source codebook as described in [4]. Then, 
the  input  spectrum is inverse  filtered with  the  source vocal 
tract spectrum estimate rather than the direct LP estimate to 
improve  smoothness  of  the  transformation  filter  across 
consecutive speech frames.

2.3.2. Weighted frame mapping

An extension  to  the  weighted  codebook mapping  algorithm 
described in the previous sub-section is proposed in the first 
author´s previous work for speaker identity conversion [6]. It 
includes mapping of LSF vectors extracted from source and 
target speech frames directly rather than averaging the source 
and  target  LSF  vectors  for  each  observed  phoneme.  This 
results in a more detailed modeling of the mapping between 
the  source  and  the  target  vocal  tract  characteristics.  As  a 
consequence  of  generating  codebook  entries  from  speech 
frames,  the  codebook  sizes  become  significantly  larger  - 
typically 10 to 20 times of the phoneme-averaged codebook 
size.  In  the  transformation  stage,  the  codebook  search 
procedure is constrained with context information in order to 
reduce computational requirements and to improve robustness 
in frame based codebook matching. Except the employment of 
context  information  and  searching  in  a  large,  speech  frame 



based codebook, the frame mapping based algorithm consists 
of identical steps as in weighted codebook mapping.

A two stage smoothing procedure is then employed since 
the  frame  mapping  procedure  is  more  likely  to  result  in 
discontinuities  due  to  the  estimation  of  vocal  tract 
transformation  filter  directly  from speech  frame  LSFs.  The 
first  smoothing  stage  involves  inverse  filtering  with  source 
vocal  tract  filter  estimated  from the  source  codebook as  in 
weighted codebook mapping.  In addition, we apply temporal 
smoothing of the transformation filter similar to [9] to further 
reduce  discontinuities  in  the  filter  in  consecutive  speech 
frames.  Temporal  smoothing  was  performed  off-line  by 
weighted averaging of filter spectrum bins using a Gaussian 
window  in  an  additional  pass.  A  total  of  three  (previous, 
current,  and  next  frame)  filters  are  used  in  the  smoothing 
process.

2.3.3. Joint source-target GMM

The GMM framework [2, 3] has been widely used for speaker 
identity  conversion  in  speech  and  expressive  style 
transformation in TTS [15].  In our implementation,  we fit a 
GMM with  40  mixture  components  to  the  joint  source and 
target  LSF  acoustic  space  as  described  in  [3]  using  the 
expectation-maximization  (EM)  algorithm.  The  minimum 
number  of EM iterations  was set  to  100  and the  algorithm 
automatically decided when to quit iterations by considering 
the average change in mixture means in consecutive iterations.

2.4. Prosody transformation
In  the  MARY  unit  selection  system,  prosody  models  are 
trained  for  each  voice  using  the  speech  corpus.  Regression 
trees are trained for phone durations and for three f0 values 
per syllable:  initial,  medial,  and final f0 value in the voiced 
section of the syllable. In order to select suitable questions at 
the  decision  nodes,  a  large  range  of  linguistic  features  are 
predicted  using  the  MARY system for  each  phone  in  each 
sentence  in  the  speech  database.  The  tool  wagon from the 
Edinburgh  speech  tools  is  then  used  to  compute  the  trees. 
While this method is very simple, it can be expected to capture 
the  typical  prosody  of  a  given  voice.  In  standard  unit 
selection, the acoustic models trained in this way are used to 
predict  the  target  prosody  for  the  computation  of  acoustic  
target costs in the unit selection process.

During  transformation,  we  use  the  FESTIVAL_UTT 
output  as  generated  by MARY for  providing  target  f0  and 
duration values as well as corresponding phonetic labels for 
expressive voices. The expressive labels are aligned with the 
corresponding  neutral  TTS  output  labels  using  dynamic 
programming since there  can be  minor  differences  in  these 
two  due  to  silence  insertions  and  deletions.  Time  varying 
duration and pitch scaling factors are estimated for each pitch 
synchronous frame of the neutral TTS output provided that it 
corresponds  to  a  voiced  frame.  Otherwise,  both  pitch  and 
duration scaling factors are set to unity. The time varying pitch 
and  duration  scaling factors  are used in  the  transformation 
stage in FD-PSOLA to generate the CART based expressive 
pitch and duration estimates at the output.

2.5. Outline of voice quality transformation system 
for expressive TTS
The  flowchart  of  the  proposed  system  for  voice  quality 
transformation is shown in Figure 1. Using the MARY Voice 
Import Toolkit [14],  a neutral unit  selection voice is created 
using the large database described in Section 2.2. Expressive 
prosody  predicting  CARTs  are  trained  using  the  small 

expressive  databases.  Voice  conversion  training  is  then 
performed  using  200  parallel  utterances  from  the  neutral 
database and the expressive databases with the three methods 
described in Section 2.3. In the transformation stage, neutral 
TTS output  is  generated  from text  using  MARY TTS.  The 
vocal tract spectrum of the neutral TTS output is transformed 
using the voice conversion models in the frequency domain. 
The  target  f0  and  duration  values  as  predicted  by  the 
expressive CARTs are provided as input  to  the FD-PSOLA 
based prosody transformation algorithm. We followed a two-
step approach to obtain voice quality and prosody transformed 
output  based  on  our  informal  observations  that  the  overall 
quality  was  slightly  better  as  compared  to  a  single-step 
approach: Vocal tract transformation is performed in the first 
step followed by FD-PSOLA based prosody modifications in 
the second step.

Figure  1:  Flowchart  of  the  voice  quality  
transformation system for expressive TTS.

3. Evaluations

3.1. Objective evaluation
We have used the root-mean-squared error (RMSE) of Bark-
scaled  LSF  values  as  estimated  from  TTS  outputs  or 
transformed  TTS  outputs.  RMSE  between  the  transformed 
TTS outputs and the corresponding TTS outputs generated by 
the expressive synthesizer is estimated using:

RMSE i= 1
P ∑k=0

P−1

ei k −tmi k 
2 (1)

where P is the linear prediction order, e and t are the mapped 
Bark-scaled  LSF  vectors  of  expressive  TTS  outputs  and 
transformed TTS outputs  respectively,  i is  the speech frame 
index and  m(i) is the mapping of speech frame indices using 
phonetic alignment information. An LP order of 18 was used 
for  16  KHz recordings.  The  mean  RMSE values  shown  in 
Table  1  are  computed  excluding  the  silence  periods  in  the 
beginning  and  at  the  end  of  the  signals.  Comparing  the 
original distances between neutral and expressive TTS outputs 
on  the  last  row  of  the  table,  we  observe  that  all  three 
algorithms result in a reduction of the RMSE based measure. 
Weighted frame mapping results in slightly better performance 
indicating that modelling the mapping between the source and 
the  target  in  more  detail  leads  to  additional  reduction  in 
neutral  to  expressive  distance  values.  The  objective 
performances of weighted codebook mapping and GMM are 
similar.
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Table 1: RMSE of Bark-scaled LSF values.

Method Aggressive Cheerful Depressed All

Codebook 0.54 0.53 0.50 0.52

Frame 0.52 0.51 0.46 0.50

GMM 0.54 0.53 0.48 0.52

Neutral 0.64 0.57 0.57 0.59

3.2. Subjective evaluation
We have carried out a small listening test to assess the extent 
to  which the transformed speech is perceived as having the 
intended expressivity. We also wanted to initially assess  the 
effect  of  prosody  modification.  As  the  quality  of  prosody 
modification might differ between a natural and a synthesized 
source, we used two  sentences, one taken from the voice data 
held  out  from the  training  sets,  and  one  synthesized.  Both 
were semantically unemotional. We transformed each sentence 
from the neutral  voice  towards  each of the  three emotional 
voices using each of the three methods described above, each 
time with and without prosody modification. In addition, we 
also  used  the  corresponding  recording  from the  expressive 
voices  and  the  sentence  synthesized  with  the  target  voice 
database,  in  order  to  verify  that  the  targets  are  indeed 
perceived as intended. Stimuli were presented in randomized 
order,  to  five  listeners,  who  indicated  for  each  stimulus 
whether it sounded cheerful, aggressive or depressed.

The  untransformed  original  stimuli  from the  expressive 
voices were perceived as intended, in 97% of the cases. This 
confirms that the intended style can be clearly perceived from 
the training material. The transformed samples were perceived 
as  intended  in  65%  of  the  cases  (see  Table  2),  which  is 
substantially higher than chance rate (33%). Aggressive and 
depressed  samples  were  perceived  better  than  cheerful 
samples;  frame  and  GMM  based  transformation  were 
perceived slightly better than codebook-based transformations.

There  was  no  global  difference  in  recognition  between 
versions  with  and  without  prosody modification:  they were 
rated correct in 66% and 64% of the cases, respectively. This 
is  surprising,  as  prosody  usually  is  an  important  factor  for 
emotion  perception.  Instead,  there  seems  to  be  a  clear 
tendency for prosody-modified transformation samples to  be 
rated as “depressed”: 47% of the prosody-modified samples, 
but  only 30% of  the  spectrally transformed stimuli  without 
prosody modification, were rated as “depressed”. This may be 
due  to  the  artifacts  introduced  by  the  FD-PSOLA  based 
prosody  modification  method.  There  were  no  differences 
between the natural and the synthesized sentence.

Table 2: Results of the listening test: Percent correct.

Method Aggressive Cheerful Depressed All

Codebook 65% 55% 70% 63%

Frame 80% 45% 60% 72%

GMM 75% 55% 80% 70%

Total 73% 52% 70% 65%

4. Conclusions
In  this  study,  we  compared  three  methods  for  transforming 
voice  quality  for  emotional  speech  synthesis.  The  methods 
were based on state-of-.the-art voice conversion algorithms for 

speaker identity conversion and were extended  with an outlier 
elimination procedure and with additional smoothing steps as 
necessary. In objective evaluations, the three methods resulted 
in similar performances whereas weighted frame mapping and 
GMM performed slightly better in subjective evaluations. 

Our  future  plans  include  the  development  of  a  hybrid 
algorithm that  uses  frame  mapping  and  GMM  methods  in 
parallel and performs residual transformation as well. We are 
also planning to integrate a more robust prosody modification 
framework into MARY TTS based on sinusoidal modelling or 
harmonics/noise  decomposition  techniques.  An  extended 
formal  subjective  evaluation  of  the  voice  quality 
transformation  methods  will  follow,  especially  on  the 
assessment  of  quality  and  intelligibility  after  voice  quality, 
prosody, and residual transformations.
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