
Speaker Classification for Mobile Devices

Michael Feld, Christian M̈uller
German Research Center for Artificial Intelligence (DFKI)

Saarbr̈ucken, Germany
{michael.feld,christian.mueller}@dfki.de

Abstract

User adaptivity is a key topic in the context of mobile de-
vices and applications, and speech is one the sources of in-
formation which has more recently been discovered for this
purpose. While considerable work has already been done
in both finding algorithms and designing well-performing
implementations for this speaker classification task on the
desktop platform as part of the AGENDER approach, ef-
forts to bring the results to portable platforms in a working
framework have been rather scarce so far. This work seeks
to state the major aspects that make mobile speaker classi-
fication different from its desktop counterpart, and proposes
a number of changes and enhancements to the existing in-
frastructure to fulfill the requirements emerging from it.

1 Introduction

Our work is based on the AGENDER [6] speaker classi-
fication approach. In AGENDER, a speech sample is clas-
sified according to several characteristics, originally being
age and gender (hence the name), but now extended to lan-
guage, noise context, and to even further aspects in the fu-
ture. It has been found an efficient way to support user
modeling in situations where no or little explicit informa-
tion about the user is available, and quite a number of these
scenarios involve mobile devices. One example would be a
navigation application running on a device which is owned
by a third party and only handed to the user temporarily in
order to complete the navigation task. Another example is
a shopping scenario where the user utilizes a handheld de-
vice to access services and retrieve additional information
about products in a physical store [4]. In the last case, the
application is created by the store owner and thus we cannot
assume prior knowledge about the user.

Analyses of large corpora of labeled speakers such as
SpeechDathave revealed that there are indeed speech fea-
tures like pitch, jitter and shimmer, which convey sufficient
information to discriminate between eight classes (four age

groups and two genders) with a promising accuracy of
63.5% (see [8] for the complete results). Similarly, onGlob-
alPhone, the three languages German, Turkish, and English
could be classified using an n-gram approach with an accu-
racy of 76.7%. Feature extraction was performed with the
tool Praat1 [1] for prosodic features andSphinx 2[5] for
phonemes, while classification was done with several algo-
rithms from theWEKAMachine Learning library [9].

In a mobile scenario, there are special requirements and
technical constraints that a concept like AGENDER has to
take into account. This work summarizes the major issues
and presents a framework that enables device-based speaker
classification.

2 The Agender Approach

A person’s recorded voice contains a lot of information
about the speaker. This includes sociological properties
such as language and accent, mental properties like cog-
nitive load and emotion, physiological properties such as
height and consumed substances, and others.

In a first step to determine the phonological attributes
of these features in speech, data collection of several large
corpora of labeled speakers and their empirical analysis
have been performed [6, 7]. Through these studies, sev-
eral prosodic features such aspitch, jitter, intensity, shim-
mer andharmonics-to-noise ratio, have been found which
convey sufficient information to distinguish between gen-
ders and ages. For age, the current version uses four classes:
Children (up to 12 years),Teenagers(13-20 years),young
Adults(21-64 years) andSeniors(65 years and older). The
choice of these boundaries can be primarily attributed to
the biological changes that typically occur to the human
anatomy around these ages, especially the vocal tract, and
that affect the characteristics of speech, and thus increase
the classification accuracy. They are also reasonable classes
for many application scenarios. However, given that suffi-
cient training material is available, other class separations

1http://www.praat.org



InputInput Feature

Extraction

Feature

Extraction First LayerFirst Layer Second LayerSecond Layer OutputOutput

Pitch

Jitter

Shimmer

Harmonics-

to-noise ratio

En-Rate

...

Gender GMM

Age Male GMM

Age Female GMM

�
�

�
�
ClassFusion

Speech

Figure 1. A sample pattern classification system implementi ng AGENDER. There is one classifier for
gender and two gender-specific classifiers for age. Their res ults are combined on the second layer.

may also be used. Another result of the data analysis was
the understanding that voices do not only differ between the
genders and between different ages, but that also a gender-
specific vocal aging can be witnessed, a fact which can be
exploited by combining several classifiers.

Using methods from signal processing implemented in
the tool Praat, common statistics based on these features
(e.g. mean and standard deviation) were extracted on the
available corpus data. The resulting data was then used to
train models for each of the speaker classes, which con-
sist of anageand agendercomponent (e.g. AF = Adult
Female). Several well-known machine learning methods
have been investigated, in particular Naive Bayes, Gaussian
Mixture Models (GMM), k-Nearest-Neighbor, C 4.5 Deci-
sion Trees, Support Vector Machines and Artificial Neural
Networks (ANN). The highest accuracy was in most tests
reached by the ANN classifier (see [8] p. 121), but other
factors like speed and memory consumption may also af-
fect the choice, especially in mobile scenarios. In subse-
quent tests, it also became apparent that some classes, in-
cluding those spanning different speaker properties, could
be grouped to form a single combined class that resulted
in a better overall performance for a specific feature set.
For example, one classifier discriminates between the three
classeschildren, female adultsandmale adults or seniors.

The results from multiple classifiers extracted on a “first
layer” can be combined on a “second layer” using a Dy-
namic Bayesian Network [2]. This method can also be used
to exploit the aforementioned fact of gender-dependant vo-
cal aging by modeling the probability of a gender-specific

age classifier as dependant on the probability output of the
genderclassifier. This improves performance because cur-
rently, gender can be classified with a much higher accuracy
than age on unfiltered data. Additionally, the aspect of time
is incorporated into the network when multiple utterances
of the same speaker are considered, so that the final proba-
bility should converge and reduce classification errors.

Figure 1 shows an example classification setup consist-
ing of the phases feature extraction, classification (“first
layer”), and post-processing (“second layer”). It distin-
guishes six age/gender classes and employs three classifiers.

3 Requirements for the Mobile Scenario

There are quite a few differences between the various
types of scenarios in which AGENDERcan be used, e.g. the
mobile scenario, a non-portable embedded scenario (such as
public terminals), and large-scale server-based applications.
Hence, adapting the existing AGENDERplatform to support
a portable experience while preserving its major character-
istics like accuracy and runtime did pose a number of chal-
lenges to both the architecture as well as the engineering.
As part of this work, the following main requirements for a
mobile speaker classification framework have been identi-
fied and investigated.

First, a compact implementation for the classification
process that will fit the mobile application concept is
needed. On the desktop, the classification process involved
calling several sub-processes, running them in parallel, each
of them creating many temporary files, and collecting the



results afterwards. This behavior and the fact that the
first implementation provided only Java-based access were
found to be not fulfilling this requirement in our analysis.
In this phase, we came up with the concept ofEmbedded
Modules, which is described in other recent work [3] and
which represents a generic and portable approach to em-
bedded machine learning scenarios. We will elaborate on
how this concept aids us in our task in the next section.

A second requirement is that our mobile classifiers need
to cope with platform and device limitations. There are sev-
eral conditions applying specifically to portable devices that
need to be taken into account. One such factor is memory,
which is usually much less on mobile devices than on desk-
top PCs. Also, we can expect the CPU to be far less pow-
erful, which in the worst case could mean an intolerable
increase in classification time. Then, because the user is ex-
pected to be constantly changing his or her location, we can-
not assume a permanent network connection in the server-
based classification scenario, but need to be able to handle
sporadic connections. There are of course other hardware
properties unique to mobile platforms, such as the size fac-
tor, but the majority of those which have not already been
mentioned lie in the responsibility of the application.

In stand-alone, local scenarios, classification should be
able to run fully on the device. This corresponds largely to
the desktop-based classification, except that all processing
is done on a machine with much less computational power.
However, if there is a connection to a more powerful server
for classification at our disposal, we also want to be able
to take advantage of this additional resource. Hence, as a
further requirement, our architecture should support both
variants, i.e. client-based and sever-based classification.

The last aspect relates to the tools which are used to build
the classifiers. The AGENDER approach that exists today
is implemented as part of an integrated development envi-
ronment called AGENDERIDE, which supports the devel-
oper with training, evaluation, and building of classification
modules. While not specifically a requirement of mobile
platforms, the addition of a new platform, especially with
such a discrepancy in characteristics like the mobile plat-
form, involves changes in the way code is generated and
compiled. Because we not working with a static appli-
cation but dynamically built modules, this cannot be sim-
ply considered a standard porting problem. Our task is
to extend this architecture to also build modules that can
run on mobile platforms such as PocketPC and Smartphone
while maintaining compatibility with the version for per-
sonal computers and servers.

4 Design Concepts

The overall architecture which we created to comply
with the requirements outlined in the previous section is de-

picted in Figure 2. The development environment AGEN-
DERIDE is the basis for creating classification modules that
will run on mobile devices. We use the existing tools for
corpus management, feature extraction, classifier training
and evaluation to compose the modules which are going to
solve the respective classification problems.

An Embedded Module is made up from various com-
ponents such as classifiers and pre-processors, which are
connected together and equipped with an external interface.
The module core takes care of i/o management, component
caching, tracing and parallelization. It can be integrated
into applications through means of static C/C++ linking,
dynamic linking (DLLs) and common language interface
(Java, .NET). This flexible design is especially helpful for
mobile applications. For example, certain devices may re-
quire specific pre-processing layers to reduce acoustic ef-
fects introduced by their microphones, while others do not.
Also, for learning methods that are implemented in hard-
ware, individual layers of the classification process can be
replaced without affecting the other layers and without hav-
ing to redesign the architecture.

The Embedded Module is built using AGENDERIDE’s
build engine. This module build engine is extended to sup-
port multiple platforms and multi-targeting, such that the
same module configuration can be compiled for different
platforms in one step. As each module is compiled individu-
ally, any optimizations or configuration options for specific
platforms will be compiled into the object code, resulting
in less and faster code. The embedded module source code
frame is ported to the Windows CE platform, which we used
to obtain our results.

Initial tests with a classifier built for the PocketPC
showed that even for short utterances, the module required
a considerable amount of time (usually more than a minute)
to complete. Timing analyses have been performed and
some critical routines have been optimized to require less
computational power at the cost of some accuracy. The
most notable gain was achieved by reducing interpolation
in the Praat feature extraction routines for all pitch-based
features. In order to reduce problems resulting from higher
classification times on mobile devices, we have also pro-
vided the ability for applications to do background user
model adaptation in cases whether this does not negatively
impact the user experience, i.e. classify a speech sample
in the background and adapt the application once the user
profile is updated.

To comply with the reduced memory of the mobile de-
vice, several options that control caching have been added.
For example, it can be configured by the module designer
which classifier models are kept in memory and which are
loaded on access. Also, clean-up tasks can be executed
more frequently.

Our approach intrinsically supports the local classifica-



Figure 2. Architecture for device-based classification.

tion scenario. To add the option of server-based classifica-
tion as described earlier, we included an AGENDER classi-
fication server on the one hand and a wrapper client library
that can connect to that server on the other hand. Both are
featuring the same module configuration built for different
platforms and with different optimizations. Server-based
classification is transparent to the application, i.e. there is
no difference in calls depending on whether local or remote
classification is active. The library can even switch between
both on-the-fly, which mitigates the effects of connection
loss (e.g. when connected over a wireless LAN) since the
application will continue classifying locally. The connec-
tion is established through TCP/IP sockets and uses a com-
pact custom protocol.

5 Results

Using this new architecture, some preliminary experi-
ments to measure the classification time have been per-
formed using four different PocketPC devices (see Table 1).
The current build engine supports the platformsWin32(X86
processors),Windows CE 3.0and Windows Mobile 5.0
(both PocketPC and Smartphone). In this evaluation, ut-
terances of different lengths and audio formats have been
classified using a GMM very close to the one in Figure 1 on
each of the devices, while the time needed for the complete
classification pipeline (e.g. including feature extraction and
post-processing) was measured.

Figure 3 illustrates the results. In two of the charts, we

are comparing the numbers stemming from the optimized
mobile versions of the components with the numbers ob-
tained using the desktop version of the classifiers with only
the required porting code applied. Our experiments also re-
vealed that feature extraction accounts for more than 95%
of the processing time for this type of classifier.

It is clear that more evaluation is needed in order to find a
tendency in how fast processing time approaches real time
for newer devices, and to determine the areas where opti-
mizations of the mobile versions of the modules are most
effective.

6 Summary and Future Work

In this paper, we have shown that speaker classification
is indeed possible on mobile platforms. Moreover, the ap-
proach presented here is advantageous when it comes to
compatibility with desktop applications and integration of
the modules. The two suggested scenarios are client-only
and server-based with a client fallback option.

The device hardware is currently the limiting factor of
the implementation, especially CPU power. We have seen
that without any optimizations, classification times are too
high for most applications. With the optimizations enabled,
they are almost at real-time on newer devices for telephone-
quality audio. In this context, the audio quality aspect
should not be given too much priority because very often,
the recording hardware on mobile devices does not provide
high fidelity sound anyway. With older and slower devices,



Device name Processor CPU frequency Platform
HP Jornada 568 ARM SA1110 206 MHz Windows CE 3.0
HP Ipaq H6300 TI OMAP 1510 200 MHz Windows CE 4.2
HP Ipaq H5450 Intel PXA250 400 MHz Windows CE 4.2
HP Ipaq HX4700 Intel PXA270 624 MHz Windows CE 4.21

Table 1. Mobile devices used in our evaluation.

8 2

10

10 6

13

5 9

7

3 0

4
0

2 0

4 0

6 0

8 0

10 0

12 0

HP Jornada 568 HP Ipaq H6300 HP Ipaq H5450 HP Ipaq HX4700

2.3s, 8kHz, 16 bit

2 7 9

3 4

4 0 2

4 4

2 17

2 5

10 4

13
0

5 0

10 0

15 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

4 5 0

HP Jornada 568 HP Ipaq H6300 HP Ipaq H5450 HP Ipaq HX4700

8.4s, 8kHz, 8 bit

Desktop

Mobile

9 3

119

6 8

3 7

0

2 0

4 0

6 0

8 0

10 0

12 0

HP Jornada 568 HP Ipaq H6300 HP Ipaq H5450 HP Ipaq HX4700

2.3s, 44kHz, 16 bit

Figure 3. Benchmark results for different PocketPCs. Each b ar displays the time in seconds needed
to process an utterance.

scenarios for background adaptation are still possible.
In future work, one important aspect will be to improve

the performance of device-based classification. Although
newer devices will also provide more powerful CPUs, we
think that optimizing the algorithms can also help with our
goal to drive classification times down to a fraction of real-
time.

Additionally, capabilities and hardware configuration of
devices should be exploited even more. For example, device
families with different types of microphones should be able
to choose between different classifiers to match the record-
ing quality of the hardware.

References

[1] P. Boersma. PRAAT, a system for doing phonetics by com-
puter.Glot International, 9(5):341–345, 2001.

[2] B. Brandherm.Eingebettete dynamische Bayessche Netze n-
ter Ordnung [Embedded dynamic Bayesian networks of n-th
order]. PhD thesis, Computer Science Institute, University of
the Saarland, Germany, 2006.

[3] M. Feld. Embedded Modules for Speaker Classification. In
Proceedings of the IEEE International Conference on Seman-
tic Computing 2008 (ICSC 2008), Santa Clara, CA, USA, Au-
gust 2008. (to appear).

[4] M. Feld and G. Kahl. Integrated Speaker Classification for
Mobile Shopping Applications. InProceedings of the 5th In-
ternational Conference on Adaptive Hypermedia and Adap-
tive Web-Based Systems (AH 2008), Hannover, Germany, July
2008. (to appear).

[5] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, and R. Rosen-
feld. The SPHINX-II speech recognition system: an
overview. Computer Speech and Language, 7(2):137–148,
1993.

[6] C. Müller. Zweistufige kontextsensitive Sprecherklassifikation
am Beispiel von Alter und Geschlecht [Two-layered Context-
Sensitive Speaker Classification on the Example of Age and
Gender]. PhD thesis, Computer Science Institute, University
of the Saarland, Germany, 2005.

[7] C. Müller. Automatic Recognition of Speakers Age and Gen-
der on the Basis of Empirical Studies. InProceedings of the
9th International Conference on Spoken Language Process-
ing (Interspeech 2006 – ICSLP), Pittsburg, PA, USA, 2006.

[8] C. Müller and M. Feld. Towards a Multilingual Approach on
Speaker Classification. InProceedings of the 11th Interna-
tional Conference “Speech and Computer” SPECOM 2006,
pages 120 – 124, St. Petersburg, Russia, 2006. Anatolya Pub-
lishers.

[9] I. H. Witten and E. Frank.Data Mining: Practical machine
learning tools and techniques. Morgan Kaufmann, San Fran-
cisco, 2 edition, 2005.


