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Abstract

In this paper a modified decision tree algorithm for
anomaly detection is presented. During the tree build-
ing process, densities for the outlier class are used di-
rectly in the split point determination algorithm. No
artificial counter-examples have to be sampled from
the unknown class, which yields to more precise deci-
sion boundaries and a deterministic classification re-
sult. Furthermore, the prior of the outlier class can be
used to adjust the sensitivity of the anomaly detector.
The proposed method combines the advantages of clas-
sification trees with the benefit of a more accurate rep-
resentation of the outliers. For evaluation, we compare
our approach with other state-of-the-art anomaly de-
tection algorithms on four standard data sets including
the KDD-Cup 99. The results show that the proposed
method performs as well as more complex approaches
and is even superior on three out of four data sets.

1 Introduction

Anomaly and outlier detection have become an im-
portant task in pattern recognition for a variety of ap-
plications like network intrusion detection, fraud detec-
tion, medical monitoring or manufacturing. Outliers are
data records which are very different from the normal
data but occur only rarely. If they are completely miss-
ing within the training data the problem is also called
one-class classification or novelty detection.

Many different approaches have been proposed for
solving the outlier detection problem: statistical meth-
ods, distance and model based approaches as well as
profiling methods. Surveys of the diverse categories and
methodologies are given in [5], [8] and [9].

Generating artificial counter-examples from the un-
known class is also used for outlier detection [1][2][4].
The advantage of this method is that a standard generic

classifier can be trained to separate the regular class (or
classes) and the anomalous class. These methods per-
form very well, but the sampling of the anomalous class
can be a tricky task, especially when dealing with high
dimensionality. Abe et al. [1] apply Active Learning
and Lazarevic et al. [7] apply Feature Bagging to ad-
dress this problem using a decision tree as classifier.

In this paper we propose an extension for standard
decision tree algorithms like C4.5 [10] or CART [3] for
anomaly detection that can deal with continuous as well
as with symbolic features. With the presented method,
there is no need of generating artificial samples of the
missing class into the training set. Instead, it uses a
parametric distribution of the outlier class during the
determination of the split points. This avoids problems
like the trade-off between the precision of sampling and
the prior of the classes. Furthermore, split points are
more accurate and training is faster due to fewer sam-
ples.

1.1 Decision Trees

Decision trees have several advantages compared to
other classification methods, which make them more
suitable for outlier detection. In particular they have
an easily interpretable structure and they are also less
susceptible to the curse of dimensionality [5].

In a decision tree, every node divides the feature
space from its parent node into two or more disjoint
subspaces and the root node splits the complete feature
space. The tree building process selects at each node
that split point, which divides the given subspace and
the training data best according to some impurity mea-
sure. One example impurity measure of a node t and its
range in feature space over a set of classes C uses the
number of instances of a class Nc(t) and the total num-
ber of instances N(t) at node t in the training data [3]:

i(t) = −
∑
c∈C

Nc(t)
N(t)

log2

(
Nc(t)
N(t)

)
(1)



The best split at a node is defined as the split with the
highest decrease of impurity of its child nodes [3]. The
decrease of impurity of a split s at node t with the child
nodes tL and tR is calculated for binary trees as follows:

∆i(s, t) = i(t)− N(tL)
N(t)

i(tL)− N(tR)
N(t)

i(tR) (2)

Since we avoid the sampling of the outlier class cA, we
have to use a density distribution for estimating NcA

instead. In general, it is possible to use any distribution,
e.g. if there is some background knowledge available
like dependencies of features. In the following, we use
for the sake of generality a uniform distribution.

2 Uniform Outlier Distributions

In this section we introduce two uniform distribu-
tions used for the outlier class density estimation for the
two types of attributes: discrete and continuous.

2.1 Discrete Uniform Distribution

A discrete uniform distribution is defined over a fi-
nite set S of possible values and all of these values are
equally probable. If there are |S| possible values, the
probability of a single one being picked is 1

|S| . Hence,
the probability that a feature has a value out of a set
M ⊂ S is:

P (X ∈M) =
|M |
|S|

(3)

This requires that the amount of possible symbols is
known at the training. Typically it can be derived di-
rectly from the training set since each symbol occurs at
least once in it. However, if |S| is undersized (a new
value of a discrete feature occurs for the first time at
classification) and consequentlyP (X ∈ S) < 1, the ac-
cording data point can be classified as novel with a high
confidence. In this case the probabilities were not esti-
mated completely correct, but with a sufficient accuracy
for our task.

2.2 Continuous Uniform Distribution

A continuous uniform distribution defines a constant
probability density over a finite interval [rmin, rmax]
with rmin < rmax:

f(x) =
{

1
rmax−rmin x ∈ [rmin, rmax]
0 otherwise

(4)

Since decision trees use intervals within the contin-
uous feature spaces, we are interested in the probability
that a data point is located inside such a specific interval
[a, b] ⊂ [rmin, rmax]:

P (X ∈ [a, b]) =
∫ b

a

f(x)dx =
b− a

rmax − rmin
(5)

Like the number of symbols |S| for symbolic features,
rmin and rmax have to be defined for all continu-
ous attributes separately before the training such that
P (X ∈ [rmin, rmax]) = 1. In general it is a good idea
that rmin and rmax do not coincide with the smallest
and largest value of the training set since we want the
uniform distribution to have a “border” around the data
in order to find optimal split points. There are many
different approaches conceivably for defining the bor-
der values like adding (subtracting respectively) a fixed
rate to the biggest/smallest value occurring in the train-
ing set [11], e.g. 10% of the difference between both.
A more convincing method is to use a value, that is de-
rived from the actual distribution of the given data, like
a multiple of the variance.

2.3 Joint Distribution

For testing a split, a decision tree algorithm needs to
know the number of instances which fall into the result-
ing multidimensional subspaces. In our approach, the
number for the class representing the anomaly is deter-
mined based on a uniform probability distribution and
not on previously generated data points.

We can compute the probability that a data point of
a uniform distribution over the limited space lies in-
side such a subspace Q, that is defined by its intervals
[ai, bi] ⊂ [rmin

i , rmax
i ] for all kc continuous features

and its subsets Mj ⊂ Sj of all ks symbolic features.
Under the assumption that the features are independent
variables this is the joint probability of its single proba-
bilities from Equation (3) and (5):

P (X ∈ Q) =
kc∏

i=1

P (Xi ∈ [ai, bi])
kc+ks∏

j=kc+1

P (Xj ∈Mj)

(6)
Having Nn regular training samples in total, we can

calculate the expected number of instances NcA
(t) of

the anomaly class cA within the subspace Qt of node t
to use it in Equation (1) by using their prior probability
P (cA):

NcA
(t) = NcA

P (X ∈ Qt) =
P (cA)

1− P (cA)
NnP (X ∈ Qt) (7)

The prior of the anomalous class P (cA) mainly con-
trols the trade-off between detection rate (correctly clas-
sifying outliers as novel) and false alarm rate (wrongly
classifying normal instances as novel). Varying this pa-
rameter results in the ROC curve as illustrated in Fig-
ure 2.

3 Methodology

Wherever in the decision tree algorithm the number
of instances of the unknown class is needed, we can



now use Equation (7) to estimate it without the need for
artificially generated samples. There is also no need for
major changes in the procedure of finding the next best
split, which makes the proposed method applicable to
arbitrary decision tree algorithms. Efficient techniques
to calculate the quality of a split as proposed in [12] are
also useable. However, there are several issues when
dealing with the proposed method, which we consider
in the following subsections.

3.1 Suitable Split Points

A decision tree algorithm usually checks a lot of po-
tential split points in order to find the one, which di-
vides the training data best. For symbolic features we
consider symbol sets without any order. The splits are
only checked on the basis of single symbols. Under the
assumption that all symbols are already known during
the tree building procedure, there is no reason to con-
sider other split points in our proposed method than in
other standard decision tree creation procedures.

For continuous features, the determination of good
potential split points is more difficult. The standard way
is to use the mean of two successive feature values that
occurred in the training set as candidate split points.
Since in our modified tree we only have instances of
one, respectively not every class, this would result in
splits between data points of the regular classes only.
This is a crucial point for delimiting regular classes
from areas without training samples.

A possible solution is using a grid over the feature
space such that splits will be tested in constant inter-
vals. This brute force method has the drawback, that
the search will spend a lot of time testing splits in ar-
eas of the feature space, where known data points (and
therefore optimal splits) are rare.

Therefore we test split points close to given samples
with a defined spacing. The spacing distance should be
chosen by considering the data. We compute it by the
mean of all distances between successive data points. It
is conceivable that it could also be determined by the
mean and variance of all data points, but our experi-
ments show that this definition plays a minor role. Fur-
ther on, it is also possible to create arbitrary more poten-
tial split points around a known data point with fractions
of the distance, recalling that the tree will select the best
cut based on the minimal impurity anyway.

3.2 Stopping Criterion

A standard tree building algorithm stops the creation
of new child nodes if a predefined stopping criterion is
fulfilled, e.g. a lower error bound is reached. A special
case is setting this error bound to zero such that all train-
ing samples are classified correctly. This is not possible
when dealing with outlier distributions, because there

(a) lower P (cA) (b) higher P (cA)

Figure 1. Different decision boundaries on
synthetic 2D example by varying the out-
lier prior

will always be a misclassification error at a leaf node
(within computational precision). Therefore we have to
define an error limit ε > 0 as threshold. It should be
selected with respect to P (cA) in relation to the dimen-
sionality of the data. If P (cA) is quite small and the
dimensionality is rather high, a smaller value is possi-
bly required to force the algorithm to cut closer to the
data points in order to increase the detection rate.

3.3 Pruning

A nice property of decision trees is the possibility to
prune them in order to increase their generalization per-
formance. There are several techniques like leave-one-
out or n-fold cross validation, which are still applicable
with our approach since they simply use error measures
based on counting instances. But the effect of pruning
is lower when using the proposed extension because di-
viding the outlier class has no influence at all. Our eval-
uation shows that the method obtains good results even
without pruning.

4 Experiments and Evaluation

For a first illustrating experiment we created a small
synthetic data set that contains 1000 normally dis-
tributed data points in a two-dimensional space. The
visualization of the results for two different values of
the prior P (cA) are shown in Figure 1. Each filled rect-
angle represents a leaf of the decision tree that classifies
its region as the regular class. The brightness indicates
the confidence and leaves representing the outliers were
grouped together to one hatched area.

For comparing our approach, we performed an eval-
uation with different public and commonly used real
life data sets from the UCI repository. Because they
are not designed for novelty detection, we also applied
the modifications as described in [1]: The most com-
mon class of each data set was chosen to be the known



Dataset Regular
Class

Anomaly
Class

Active-
Outlier

Bagging Feature
Bagging

Boosting LOF This
Paper

Ann-thyroid 3 1 0.97 0.98 0.869 0.64 0.869 0.993
Ann-thyroid 3 2 0.89 0.96 0.769 0.54 0.761 0.977
Shuttle (avg.) 1 2,3,5,6,7 0.999 0.985 0.839 0.784 0.825 0.994
KDD-Cup 99 normal U2R 0.935 0.611 0.74 0.510 0.61 0.946

Table 1. AUC for real life data sets after converting them into binary problems
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Figure 2. ROC curves for Active Outlier,
Bagging and this paper (KDD-Cup 99)

one. The training sets consist of these classes only. The
test set contains additionally one of the rare classes to
represent anomalies.

To compare the results of the presented approach to
other methods [1][6][7], the common concepts of re-
ceiver operating characteristic (ROC) and especially the
area under the ROC curve (AUC) are used. Table 1
gives an overview of the achieved AUC values for dif-
ferent data sets. In Figure 2 the ROC curves of different
approaches for the KDD-Cup 99 data are compared to
our method, whereas the most unfavorable results (due
to the nondeterministic sampling) have been used fol-
lowing [1].

Summarizing the results, the proposed method per-
formes best on three out of four data sets. The results
are slightly better than “Active-Outlier”, but the pre-
sented approach is appealing by its simplicity, its deter-
ministic results and –depending on the number of suit-
able split points used– its faster algorithm.

5 Conclusion

In this paper we introduced a new deterministic ap-
proach to use decision trees for anomaly detection with
no need to generate artificial counter-examples of the
outlier class. The general integration of the outlier den-
sities into the tree building process makes it possible to

use different decision tree algorithms. The results on
multiple data sets showed that our approach is practi-
cally as good as state-of-the-art methods or even better.
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