
High Performance Traffic Shaping
for DDoS Mitigation

Markus Goldstein, Matthias Reif, Armin Stahl, Thomas Breuel

Technical University of Kaiserslautern, Germany

German Research Center for Artificial Intelligence (DFKI), Kaiserslautern

Introduction
•DDoS flooding attacks (UDP, ICMP, SYN) easy identifiable

•TCP based protocol conformant DDoS attacks (e.g. HTTP-GET floods) have

lower deviation compared to normal user traffic

→ more difficult to distinguish valid and illegal traffic

→ firewall DROP rules may cause blocking legal users

Idea

• Instead of blocking/accepting flows we shape their source IPs

•Conditional Legitimate Probability (CLP) [5] is the probability of a flow to be legal

CLP (p) =
Nn · Pn(A = ap) · Pn(B = bn) · . . .

Nm · Pm(A = ap) · Pm(B = bn) · . . .
(1)

where Nn is the number of normal packets, Nm the number of measured packets

(mixture of normal and attack traffic) and P (A = ap) the probability of a feature

A to be ap.

•CLP is calculated on the basis of previously observed traffic, e.g. histograms on

source IP prefixes, packet sizes or server ports

•The higher the CLP, the higher the assigned bandwidth during a DDoS incident

Challenge

•During an DDoS attack, thousands of source IP addresses need to be shaped.

•On Linux systems, tc [2] can only handle few shaping rules

→ Need for a better performing algorithm for the DDoS scenario.

Traffic Shaping
•Easy and fast algorithm for high packet rates

• Specialized for DDoS mitigation (filter parameter only source IP)

• IP ranges are continuous intervals r over IP addresses [rstart, rend] with a defined

bandwidth limit

• List of ranges can be sorted to perform binary search:

∀ri, rj ∈ R, i < j : rend
i < rstart

j (2)

•Every arriving packet is accepted, queued or dropped, similar to Random Early

Detection (RED) [4] in the Packet Handler function.

•A triggered function Timer Handler sends packets (with respect to the defined

bandwidth) and calculates the used bandwidth

•Complexity for each incoming packet is O(log2 n), where n is the number of IP

ranges with bandwidth limits.

•Worst case complexity: every source IP address has a different target bandwidth

O(log2 232) = 32 lookups for each incoming packet.

Future Work
• Support more than one parameter for shaping

• Investigate FIS trees [3] with O(log2 log2 N) lookup complexity

Shaping Algorithm
1: function packet handler(Packet p)

2: r ← range including. p.source IP using binary search

3: if r not found then

4: accept(p) and return

5: q ← queue of r

6: if not q.empty or r.sent+p.size > r.limit then

7: if q.size < q.max size then

8: q.push(p)

9: steel(p)

10: else drop(p)

11: else

12: r.sent + = p.size

13: accept(p)

14: function timer handler

15: for all ranges r do

16: r.sent ← 0; finished ← false

17: q ← queue of r

18: while not q.empty and not finished do

19: p ← q.front()

20: if r.sent + p.size < r.limit then

21: send(p)

22: q.pop()

23: r.sent += p.size

24: else finished ← true

Evaluation
•Measuring throughput of a legal (not shaped) user on a 1GBit/s link depending

on the number of shaped IP ranges.

• tc throughput decreases at 400 shaped ranges, not enough to mitigate DDoS

attacks

• nf-HiShape still performant at 100,000 defined IP ranges

 0

 200

 400

 600

 800

 1000

25 50 100 200 400 800 1600 3200 6400 12800 25600 51200 102400

th
ro

ug
hp

ut
 in

 M
bi

t/s

number of shaped ranges

tc (MTU 1518kbyte)
nf-HiShape (MTU 1518kbyte)

tc (MTU 512kbyte)
nf-HiShape (MTU 512kbyte)

Open Source Software
The presented algorithm is implemented as a Linux kernel module called

nf-HiShape [1].

It is available under GPL license at http://code.google.com/p/nf-hishape/.

It ships with a userland tool which syntax is similar to iptables, e.g.:

nf-hishape -i eth0 -f 192.168.0.0 -t 192.168.255.255 -l 5.0

sets a limit for 192.168.0.0/16 to 5.0 kB/s and

nf-hishape -i eth0 -L

lists all shaping ranges for the given interface. The userland tool also reads in ASCII

files with bandwidth limits for faster integration with DDoS mitigation systems.

References

[1] nf-hishape. http://code.google.com/p/nf-hishape/.

[2] W. Almesberger. Linux Network Traffic Control - Implementation Overview. In 5th Annual Linux Expo, pages 153-164, 1999.

[3] A. Feldmann and S. Muthukrishnan. Tradeoffs for packet classification. In INFOCOM, pages 1193-1202, 2000.

[4] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoidance. IEEE/ACM Transactions on Networking, 1:397-413, 1993.

[5] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao. Packetscore: A statistics-based packet filtering scheme against distributed denial-of-service attacks
IEEE Transactions on Dependable and Secure Computing, 03(2):141-155, 2006.

[6] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of Service: Attack and Defense Mechanisms (Radia Perlman Computer Networking and Security).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2004.


