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Abstract

Run No. Run ID Run Description infMAP (%)

training on TV08 data

1 IUPR-TV-M SIFT visual words with maximum entropy 6.1
2 IUPR-TV-MF SIFT with maxent, fused with

color+texture, and motion (NN
matching)

5.9

3 IUPR-TV-S SIFT visual words with SVMs 5.3
4 IUPR-TV-SF SIFT with SVMs, fused with

color+texture, and motion (NN
matching)

6.3

training on YouTubeTMdata (no use of standard training sets)

5 IUPR-YOUTUBE-S SIFT visual words with SVMs 2.2
6 IUPR-YOUTUBE-M SIFT visual words with maximum entropy 2.1

We participated in TRECVID’s High-level Features task to investigate online video as an alternative
data source for concept detector training. Such video material is publicly available in large quantities from
video portals like YouTubeTM. In our setup, tags provided by users during upload serve as weak ground
truth labels, and training can scale up to thousands of concepts without manual annotation effort. On the
downside, online video as a domain is complex, and the labels associated with it are coarse and unreliable,
such that performance loss can be expected compared to high-quality standard training sets.

To find out if it is possible to train concept detectors on online video, our TRECVID experiments
compare the same state-of-the-art (visual only) concept detection systems when (1) training on the
standard TRECVID development data and (2) training on clips downloaded from YouTubeTM. Our key
observation is that youtube-based detectors work well for some concepts, but are overall significantly
outperformed by the “specialized” systems trained on standard TRECVID’08 data (giving a infMAP of
2.2% and 2.1% compared to 5.3% and 6.1%). An in-depth analysis of the results shows that a major
reason for this seems to be redundancy in the TV08 dataset.



1. Introduction

While the automatic detection of semantic con-
cepts (or “high-level features”) in video streams is a
key component of research prototypes for content-
based video search, a critical burden for its prac-
tical application is that the underlying machine
learning techniques require annotated training sets.
Since target concepts can be visually complex, hun-
dreds of sample shots per concepts may be needed.
Also, the number of concepts required to cover
users’ information needs is high.

For standard training sets, annotations are ac-
quired manually and explicitly for the purpose of
concept detector training. Since this is a time-
consuming (and thus cost-intensive) process, re-
searchers share annotations [13, 17] or organize col-
laborative labelling efforts [2]. This has made it
possible to train detectors for several hundred con-
cepts (e.g., [23]). Yet, several problems remain
with the explicit acquisition of ground truth:

1. One obvious problem is that – to cover users’
information needs – the number of concepts to
be trained must be increased by a further mag-
nitude compared to the state-of-the-art (cur-
rent estimates for a sufficient number of con-
cepts are in the range of 3.000− 5.000 [8]).

2. Current detectors are mostly trained on a
single annotated video collection (often the
TRECVID’05 dataset). The resulting detec-
tors work well on this dataset (or very sim-
ilar ones) but generalize poorly, as has been
demonstrated in [24].

3. Manual annotations are static, and so are the
concept detectors trained on them. In con-
trast to this, the world around us – and with
it its videos and users’ information needs – is
constantly evolving. New concepts of interest
emerge, like “9-11”, “secondlife”, or “Barak
Obama”. Similarly, concept detection systems
should adapt to dynamic user interest, which is
impractical using explicit manual annotations.

To overcome these problems to some extent, we
propose to investigate an alternative data source,
namely online video that is publicly available at a
large scale from portals like YouTubeTM, blinkx,
and many others. These web videos are enriched
with textual descriptions that can serve as weak
annotations in a machine learning framework for
training concept detectors. This way, manual an-
notation effort is shifted to the youtube commu-

nity, and a concept detection system can learn
autonomously by acquiring its readily annotated
training set from the web. This setup offers the ad-
vantages of scalability (it is possible to scale concept
detectors up to several thousands of concepts) and
flexibility (web video content is kept up-to-date by
the community, such that concept detectors trained
on it can keep track of concepts that change or
emerge).

On the downside, the labeling information that
comes with web video clips is of a significantly lower
quality than that of manually annotated datasets
currently used. This is due to several reasons:
first, while in TRECVID videos are labeled on
shot level, youtube tags are given on video level
(and not all shots might be visually related to a
tag). Second, shots are usually annotated accord-
ing to clear visual criteria, like “shots that take
place outdoors at night, but no sporting events
under lights” (LSCOM concept no. 352), tags at
web video portals are often given with an inten-
tion that links the tag only indirectly to the visual
content. Consequently, the training sets acquired
from YouTubeTMcontain relevant material as well
as “junk” frames not visually related to the target
concept. The key question arising from this fact
is: Can concept detectors successfully be trained
on online video?

To give an answer, we participated in
TRECVID’s High-level Features task and present
our experiences with training a concept detection
system for TRECVID’08 on YouTubeTM. For a
quantitative evaluation, our general strategy is to
train a state-of-the-art concept detection approach
(namely discriminative training over bag-of-visual-
words features) on two different data sources: (1)
the standard training set of TRECVID’08 (referred
to as TRECVIDin the following), and (2) a set of
tagged videos downloaded from youtube (called
YOUTUBE). We first describe both datasets (partic-
ularly, the acquisition of the YOUTUBEdataset). Af-
ter this, the concept detection approach is briefly
discussed, and experimental results are provided.
Finally, a discussion of our results is given.

2. Datasets

To investigate how well a state-of-the-art con-
cept detector performs when trained on online
videos, we compare the same approach for two
sources of training data: first, the standard
TRECVID’08 development data with annotations
provided by the Chinese Academy of Sciences



Table 1. Queries for Training Set Acquisi-
tion from youtube.

concept youtube query youtube
category

Classroom classroom & school
-secret

-

Bridge bridge -crossing -ship Travel&Places
Em. Vehicle emergency & vehicle

-driver -ride
Autos&Vehicles

Dog dog Pets&Animals
Kitchen kitchen -knife -remodel Howto&Style
Airplane flying airplane & flying

-jefferson -indoor
-school -kids

Autos&Vehicles

Two people two & people -sleepy
-questions

People&Blogs

Bus bus -van -suv -vw -ride Autos&Vehicles
Driver car & vehicle & driver

-simulator
Autos&Vehicles

Cityscape cityscpae -slideshow
-emakina

Travel&Places

Harbor harbor & industry
& ship

-

Telephone phone & device -
Street street & paved -
Dem. Or Prot. protesting -
Hand hand & daft -
Mountain mountain & panorama Travel&Places
Nighttime by & night Travel&Places
Boat Ship ship & (queen | free-

dom | royal)
Autos&Vehicles

Flower flower & ( bouquet |
bloom )

-

Singing singing & (gospel |
choire)

-

(TRECVID). Second, a dataset of video clips was
downloaded from YouTubeTM, whereas video-level
annotations for training are taken from video de-
scriptions provided by youtube users during upload
(YOUTUBE).

A first interesting question is whether a suffi-
cient quantity of training data can be obtained from
YouTubeTM. While the portal offers a tremen-
dous overall amount of video data (83.4 Mio. clips
by April 2008 [25]), it is not clear a priori how
much training material is actually available for typ-
ical target concepts, since the distribution of con-
cepts is highly biased towards popular tags (e.g.,
“funny”, “love”, or “girl”). To investigate how
much material is available for standard concepts,
we downloaded meta-data for up to 1000 video
clips per concept (this upper limit is imposed by
youtube). From these clips, the number of shots
obtained per concept was estimated by assuming
4.79 shots per minute. Figure 1 plots the result for
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Figure 1. Estimated quantity of training
shots obtainable from YouTubeTMfor the
20 TRECVID’08 concepts.

the 20 concepts used in the TRECVID’08 evalua-
tion. It can be seen that a fair number of shots can
be obtained for most concepts (9146 on average).
This quantity is significantly higher than for the
TRECVID’08 standard set (avg. 481 annotations
per concept). Two outliers can be observed: for
the concept “emergency vehicle”, only 2654 shots
are estimated. For the concept “two people”, 21337
shots are obtained.

For our concept detection experiments, clips
from youtube were acquired by simulating queries
to the youtube API1. To improve the quality of the
downloaded material, two refinements were done
manually (the exact list of final queries is given in
Table 1):

1. Videos at YouTubeTMare organized in
categories like “Pets&Animals” or “Au-
tos&Vehicles”. For some concepts, a canonical
category was picked, and the download was
restricted to this category. For example,
by restricting the download for “bridge” to
“Travel&Places”, the music video “Bridge
over troubled Water” by Simon&Garfunkel is
excluded from the training set.

2. The queries were refined according to a brief
qualitative analysis of youtube search re-
sults. For example, for “mountain” the term
“panorama” was added, or for “kitchen” the
term “knife” was excluded.

1http://www.youtube.com/dev



Figure 2. An illustration of randomly selected key frames from TRECVID(top) and
YOUTUBE(bottom) for the concepts “mountain”, “cityscape”, “singing”, and “telephone”. While
the TRECVID dataset shows high annotation quality, the material downloaded from youtube
contains a significant amount of junk.

To reduce the data load for training, we only
downloaded 100 videos per concept of up to 3
minutes length. This gave a training set of 42
hours. Sample keyframes for both training sets
(YOUTUBEand TRECVID) are illustrated in Figure 2.
Generally, it can be seen that the YOUTUBEdata
contains relevant material together with signifi-
cant amounts of junk. Also, a difference between
concepts can be observed: our impression is that
training from YouTubeTMworks best for concepts
that youtube users find interesting enough to film,
edit, and upload. For example, for the concept
“mountain” the YOUTUBEdataset contains lots of
panoramic views that make good training samples,
while for other concepts like “cityscape” lots of junk
frames can be found. For the concept “telephone”,
youtube videos tagged with the concept tend to
show close-ups of phones, whereas TRECVIDshots
show people telephoning. Here, though the con-
cept is represented well in both training sets, the
appearance differs due to a domain change between
both sets. Overall, however, it seems reasonable to
assume that at least some concepts can successfully
be learned from youtube material.

3. Approach

The purpose of our TRECVID experiments is
to evaluate the same state-of-the-art concept de-
tection system when training on the standard
TRECVID development data and training on clips

downloaded from YouTubeTM. Thereby, the core of
the concept detection system used is a standard ap-
proach (SIFT visual words + discriminative train-
ing). This approach has been demonstrated to work
well in several visual recognition tasks [7, 15, 9, 6],
including concept detection [21]. Further, in Runs
2 and 4, a weighted sum fusion with other feature
modalities (color+texture and motion) is used. De-
tails are outlined in the following.

3.1 Keyframe Extraction

Instead of using only a single keyframe per shot,
we capture intra-shot diversity due to scene changes
and camera motion using an adaptive two-step ap-
proach (for further information, see [3]):

1. For the YOUTUBEdata, shot boundary detection
is performed using an adaptive thresholding
over color descriptor differences [10]. For the
TRECVID data, the standard shot boundary
reference was used.

2. Within each shot, a K-Means clustering is per-
formed over MPEG7 Color Layout Descrip-
tors [12] extracted from all frames. For each
cluster, the frame closest to the center is ex-
tracted as a keyframe. The number of clusters
is determined using the Bayesian Information
Criterion (BIC) [16], which balances the num-
ber of keyframes explaining the shot versus the
fitting error.



Using this method, we obtain ca. 3 keyframes on
average per shot, which corresponds to an overall
of 35.943 keyframes for the YOUTUBEtraining set,
112.867 for the TRECVIDtraining set, and 112.301
for the TRECVID’08 test set.

3.2 Features

From all keyframes the following visual features
are extracted:

1. Visual Words (SIFT): Visual words are ex-
tracted by performing a dense regular sam-
pling of SIFT features [11] at several scales,
obtaining ca. 3600 features per keyframe. Fea-
tures are clustered to 2000 visual words us-
ing K-Means. The resulting “bag-of-visual-
words” descriptors are combined with discrim-
inative SVM and maximum entropy classifiers
(see Section 3.3), forming the core of all sub-
mitted runs.

2. Color+Texture: Optionally, a combination
with other feature modalities can be included.
For this purposes, simple descriptors for color
(8 × 8 × 8 RGB histograms) and texture
(histograms over Tamura features [18]) were
extracted and concatenated in an early fu-
sion. These features are combined with nearest
neighbor matching (see Section 3.3)

3. Motion: To capture discriminative motion
patterns, tiled histograms over MPEG-4 mo-
tion are extracted using the codec XViD2. Like
color+texture descriptors, these features are
combined with nearest neighbor matching (see
Section 3.3). For more details, please refer to
our previous publications [19, 20].

3.3 Statistical Models

Three different statistical models are used:

• Support Vector Machines: As one statis-
tical model, support vector machines (SVMs)
are used. These are a standard approach for
concept detection and are used in numerous
systems [22, 23]. We used the LIBSVM [4]
implementation with a χ2 kernel, which has
empirically been demonstrated to be a good
choice for histogram features [26]:

K(x, y) = e
−

d
χ2 (x,y)2

γ2 (1)
2www.xvid.org

where dχ2(., .) is the χ2 distance between his-
tograms. γ and the SVM cost of misclassifica-
tions C were estimated separately for each con-
cept using a grid search over the 3-fold cross-
validated average precision. A problem is that
training sets are imbalanced, i.e. the number
of negative samples outnumbers the number
of positive ones. Those setups cause problems
for many classifiers, including SVMs [1]. To
overcome this problem, the dominant class is
subsampled to obtain roughly balanced train-
ing sets. For the TRECVIDbased runs, 5 SVMs
were trained on small-scale training sets with
400 negative samples randomly sampled from
the TRECVIDset, and the results were fused us-
ing a simple averaging. For the youtube-based
runs (where significantly more positive train-
ing samples were available), we used 3000 pos-
itive and 6000 negative training examples from
the YOUTUBEdata set.

In all cases, SVM scores were mapped to prob-
ability estimates using the LIBSVM standard
implementation.

• Maximum Entropy: As an alternative to
SVMs, we also test a different discriminative
approach based on the maximum entropy prin-
ciple, which has successfully been applied to
object recognition before [5]. The posterior is
modeled in a log-linear fashion:

P (t|x) ∝ exp

(
αt +

500∑
c=1

λtch
c(x)

)
, (2)

where hc(x) is entry number c in the visual
word histogram for frame x. The parameters
{αt, λtc} are estimated from a training set of
tagged frames using an iterative scaling algo-
rithm [5].

• Nearest Neighbor Matching: For the
color+texture and motion features a nearest
neighbor matching is used: given a training
set of features representing tagged keyframes
Y , we find the nearest neighbor x′ :=
arg miny∈Y ||y − x||2 for keyframe x, and the
score for a tag t equals a vote for the tag of
this neighbor (to realize fast nearest neighbor
matching, an approximate search using a kd-
tree is used [14]):

P (t|x) := δ(t, t(x′)) (3)
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Figure 3. Quantitative results for all IUPR runs (the first four runs are trained on the TRECVID’08
standard data, the last two on youtube). Left: per-concept results. Right: the mean inferred
average precision per run.

3.4 Late Fusion

Finally, scores obtained from several keyframes
for each shot and feature scores for each keyframe
(in Runs 2 and 4) are fused (no inter-concept fusion
is done):

• Having several keyframes for each shot, the
corresponding scores are simply averaged, pro-
viding a single score for each shot and feature.

• For fusing different features, we perform a
weighted sum fusion whereas concept-specific
weights are learned using a grid search maxi-
mizing average precision on the TRECVID2007
test set, using the TRECVID2007 devel set
as training set. After re-training on the
TRECVID2008 devel data, these weights are
used to fuse the different features into a final
concept score.

4 Results

We submitted a total of 6 runs: 4 runs trained on
the TRECVIDdata, 2 runs trained on data obtained
from YouTubeTM:

1. A IUPR-TV-M In this run, we used the
maximum entropy approach in combination
with SIFT visual word features.

2. A IUPR-TV-MF For this run, we fused the
scores from Run 1 with results of nearest neigh-

bor matching on color+texture and motion
features.

3. A IUPR-TV-S In contrast to Run 1, the
maximum entropy model was replaced with
SVMs.

4. A IUPR-TV-SF The scores from Run 3 are
fused with the results of NN matching on the
color+texture and motion features.

5. c IUPR-YOUTUBE-S Same as in Run 3
but using YOUTUBEdata as a training source.

6. c IUPR-YOUTUBE-M Same as in Run 1
but using YOUTUBEdata as training source.

Quantitative results are illustrated in Figure 3.
The youtube-based detectors perform comparable
to standard detectors for a few concepts like “air-
plane” or “mountain”, but are overall outperformed
by the “specialized” systems trained on the stan-
dard training set, giving infMAPs of 2.1% (Max-
Ent) and 2.2% (SVMs) as opposed to 6.1% and
5.3% given by the standard training sets. An in-
depth look at the detections of the specialized de-
tector reveals the reason for this: for “dog”, the
concept for which the difference between youtube
and standard detectors is the most significant, de-
tection results of a standard detector are illustrated
in Figure 4. It can be seen that the TV08-based de-
tector uses redundant material appearing in both
training and testing and thus significantly outper-
forms the youtube-based detector. Obviously, for



Figure 4. Top: Detection results for the
concept “dog” for a TV08-based detector.
Bottom: “Dog” training samples in TV08.
Obviously, the detector makes use of re-
dundant material appearing in both train-
ing and testing, which is why it signifi-
cantly outperforms the youtube-based de-
tector.

the TV08 data similar findings hold as for the TV05
data, where 20% of the shots in are claimed to have
duplicates in the training set [22]. This reveals that
a major reason for the higher performance of the
specialized detector is redundancy in the underly-
ing video dataset.

Figure 5 illustrates top detection results of the
youtube-based detector. For all concepts, it can be
seen that the detectors are attracted by material
similar to the training samples in Figure 2. For
example, for “mountain” panoramic scenes are de-
tected and detector performance can be considered
good (quantitative results for this concept are com-
parable to the TV08 detector). For “telephone”,
the system is attracted by close-ups of devices and
computer screens, which is similar to the training
content but gives poor quantitative scores.

5 Discussion

Our key result from our participation in
TRECVID’08’s High-level Features task is that
youtube-based detectors give reasonable detection
results for some concepts, but are significantly out-

Figure 5. Top detections of the youtube-
based detector for the concepts “moun-
tain”, “cityscape”, “singing”, and “tele-
phone”.

performed by the “specialized” systems trained on
the standard training set. We argue that the major
reason for this is that standard detectors trained on
TV08 make use of annotations in the target domain
and exploit redundancy in the dataset.

This raises the question how YouTubeTMvideos
compare to standard training sets if applying con-
cept detectors to novel target domains unseen
in training. We currently investigate this ques-
tion in further experiments, as well as another is-
sue, namely whether the generalization capabil-
ities of detectors can be improved by enriching
current standard training sets with material from
YouTubeTM.
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