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Abstract. Low-cost Unmanned Aerial Vehicles have large potential for
applications in the civil sector. Cheap inertial sensors alone can not pro-
vide the degree of accuracy required for control and navigation of the
UAVs. Additional sensors, and sensor fusion techniques are needed to re-
duce the state estimation error. In the context of this work, the possibility
of using visual information to augment the inertial data is investigated.
The projected image of the ground plane is processed by a homography
constrained optical flow description and used as a measurement update
for an EKF. A simulation environment is used, which models the UAV
dynamics, the rate-gyro and accelerometer errors as well as a low reso-
lution vision system.

1 Introduction

Over the recent years Unmanned Aerial Vehicles (UAV) have received an in-
creased academic, commercial and military interest. A 2004 report by NASA [4]
projects one third of US Airforce aircraft to be unmanned by 2010. UAVs current
main application is in the military sector, and most of the current development
effort is geared towards it. Decreasing costs in Sensor and Embedded System
technology however make UAV technology an interesting prospect for civil use.

In order to be applicable to civil applications, the technology at use must be
safe, reliable and also cost effective. An increased level of autonomy can help
with this. One of the main challenges of operating an autonomous aerial robot is
the sensing and situation awareness part. It combines multi-sensory input into
an internal representation of the current system state and puts it into relation
to known world facts and mission objectives.

Low-cost inertial sensors can provide the basis for a state estimation system.
Due to the nature of the integration process however they are prone to extensive
drift. Often GPS systems provide absolute references to compensate the drift. A
different approach which is also followed by this work is to use visual means to
aid the state estimation process. A method is described which constraints the
optical flow using a homography transformation of the perceived ground plane.
Further, an Extended Kalman Filter is developed where the state transition is
based on a generic rigid body model using the inertial sensors as system inputs,
and the homography matrix is used to perform a measurement update.

The validity of the approach is tested using a simulation environment. A
scenario is presented where the homography based update is compared to inertial
state estimation alone.
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2 Related Work

A number of ways have been investigated to augment inertial navigation with
visual sensors to minimise localisation drift. An important concept in this con-
text is the motion field, which is the projection of 3-D points and their velocity
vectors onto a 2-D plane [9]. Egomotion, the motion of the observer in space,
can be partly recovered due to the nature of the motion field [2]. If the speed
of the observer is known, the motion field can also be used to calculate distance
information, which is very helpful for obstacle avoidance [10]. Optical flow meth-
ods can under certain conditions be used to recover the motion field information.
The optical flow is specified as the vector field that maps the brightness of points
in one image to the brightness values in the next image in the sequence. The
field is under-specified and suffers from what is known as the aperture problem.
Various algorithms can be used to calculate an approximation of the motion
field based on an image sequence. Because of the under-specified nature of the
problem, these methods are recursive in nature and computationally expensive.
A good overview of the different algorithms and their performances is given by
Galvin et al. [5].

A number of different approaches have been used to apply optical flow mea-
surements to UAV navigation and control. Barrows and Neely [1] have proposed
a hardware centred approach in which an array of photoreceptors is used to
measure the optical flow, thus making it possible to be used in micro aerial vehi-
cles (MAV) with a weight requirement of less than a gram per sensor. A similar
approach is used by Stocker [14], who has successfully demonstrated a solution
for a 2D optical flow sensor in silicon.

A simulated environment is used by Muratet et al. [11] to test the application
of optical flow in navigating urban canyons. The simulation assumes the presence
of a sensor array for inertial, GPS and altimeter data. This data is combined with
optical flow information in a traditional control scheme using PID controllers in
order to avoid obstacles.

The previously shown examples for using optical flow information for con-
trolling UAVs were mostly based for collision detection. However, when assum-
ing a camera motion relative to a plane, it is possible to express the optical
flow as a combination of orientation, linear velocity, rotational velocity and
distance to the plane [12]. The optical flow field can thus be expressed as a
3x3 homography matrix, relating the projective coordinates from one frame to
the next.

A homography based approach for landing is used by Bosse et al. [2], who
propose an algorithm to fuse the information with existing state information
with the help of a Kalman filter. The algorithm uses image sequences for which
it calculates the time derivative of the projection matrix, which is equal to the
optical flow. The global smoothness constraint of [8] is replaced by the quadratic
function of image location, relating the optical flow at a certain image point to
the derivative of the projection matrix. The system state values are extracted
using eigenvector decomposition. The system’s current estimate of altitude is
used to solve the scale ambiguities.



334 J. Schwendner

3 Method

The system model is defined by its state transition function f(x) and the mea-
surement function h(x). The environment is modeled as an inertial right-handed
reference frame I = {E1, E2, E3}, with the positive base e2 ∈ E2 pointing up-
wards. A ground plane is assumed to be at position 0 ∈ I with a normal of
(0, 1, 0) ∈ I. The gravity vector −ge2 is assumed constant with g = 9.81m/s2,
friction and air resistance are not part of the model.

Rigid Body Dynamics. The position of the centre of mass of the flyer is
given by ξ ∈ I. A second frame of reference, the body frame, is given by
B = {Ea

1 , E
a
2 , E

a
3} its origin is the flyers centre of mass and fixed to the fly-

ers orientation. The orientation of the body frame B is identified by the unity
quaternion q. The systems dynamics are described using Newton’s equations of
motion. [7]

ξ̇ = v (1)
mv̇ = F −mge2 (2)

q̇ =
1
2

[
0
ω

]
q (3)

Iω̇ = −ω × Iω + τ (4)

where v ∈ I is the linear velocity and F ∈ I the external forces acting on the
flyer not including gravity. Furthermore ω ∈ B describes the angular velocity
and τ ∈ B the torque in the body reference frame. I is the inertia tensor in the
body fixed frame B and m the overall mass of the flyer. We consider F and τ to
be unknown noise inputs for now.

Image Sensor. A perspective projection with known image plane distance is
assumed for the optical system of the sensor. The image sensors output is then
G̃ = Gξ,q + nG, with Gξ,q, G̃ ∈ R

w×h
0:1 being a arrays of image brightness values

in the range R0:1 = {x ∈ R|0 ≤ x ≤ 1}, noise term nG and (w, h) the image res-
olution. With the assumption of a constant ground plane texture, the noise free
image Gξ,q is uniquely identified by the sensor position ξ and the orientation q.

To be able to relate consecutive frames, the image brightness constraint states
that for any given point x =

[
x1 x2

]T and an image brightness I(x, t) at time t,

I(x, t) = I(x + δx, t+ δt). (5)

With the ground plane as the only scene object assumed, Bosse et al. [2] give
a method to relate image sequences to the camera state. A perspective image
coordinate m is defined as,

x = ψ(m) =
f

m2

(
m1

m3

)
. (6)

where the focal length f can be assumed unity. We can also define the inverse
of ψ by setting the second component of a three vector to unity.

m = ψ−1(x) =

⎛
⎝x1

1
x2

⎞
⎠ (7)
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Fig. 1. Point on plane related to different camera states

If we now assume a camera with position ξ and an orientation q which is
exerted to a translation of h and a rotation of R the projective transform of a
perspective coordinate can be given as

A =
1
k

(I + phT )R, k = 3
√

1 + pTh (8)

where p is the ground plane surface normal expressed in the reference frame
given by Rq, divided by the distance of the camera to the plane ξ2.

p =
RT

q e2

ξ2
(9)

Because perspective coordinates can be scaled arbitrarily, the k factor makes
sure that det(A) = 1 is normalised.

The transform A allows now to relate the image point x to the projected point
x′ by using (6) and (7). The concept is illustrated in Figure 1.

x′ = ψ(ATψ−1(x)) (10)

The problem is to find the transformation matrix A which fits best for the bright-
ness constraint criterion (5). Given a set of image points X we can formulate
such a constraint easily using (10) and (5).

min
A∈R3×3

∑
x∈X

(
I(ψ(ATψ−1(x)), t + δt) − I(x, t)

)2
(11)

Equation (11) has the geometric interpretation of projecting the image at t+ δt
using the transformation and aligning it with the image at t. Because the problem
is an optimisation of a least square formulation, the requirements for applying
the Levenberg-Marquardt method are fulfilled.

The image sensor provides an array of brightness values. However, the op-
timisation criterion (11) requires a spatially continuous function I(x). This is
achieved by using a bicubic interpolation method [13].
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Sensor Fusion. The state estimation approach is partly based on [6] and [15].
An Extended Kalman Filter with a directly formulated state is used, where the
state vector x consists of

x = (ξ, v, q, ω)T (12)

The state vector carries the angular velocity ω, which is necessary to form the
measurement estimate of the perspective transform for the vision system (8).

ξ̇ = v (13)
v̇ = Rqa+ ge2 (14)

q̇ = −1
2
Ω(ω)q (15)

The derivative of q which for the system description (3) is given as a quaternion
multiplication is replaced with the matrix equivalent Ω(ω) defined for the body
reference frame [3] as

Ω(ω) =
(

0 ωT

−ω −[ω]×

)
=

⎛
⎜⎝

0 ω1 ω2 ω3

−ω1 0 ω3 −ω2

−ω2 −ω3 0 ω1

−ω3 ω2 −ω1 0

⎞
⎟⎠ (16)

This system description is discretised using a first-order Euler update.

pk+1 = pk + vΔt (17)
vk+1 = vk + (Rqa+ ge2)Δt (18)

qk+1 =
(
I(cos(s) + ηΔtγ) − sin(s)

2s
Ω(ω)Δt

)
qk, γ = 1 − |qk|2 (19)

Where γ a Lagrange multiplier term [6], which ensures that q always converges
to unity, with ηΔt < 1 determining the speed of convergence.

The descriptions for the discrete dynamics (18) both still contain the mea-
surement noise vectors na and nω, which can easily be extracted.

vk+1 = vk + (Rqã+ ge2)Δt+ pa (20)

qk+1 =
(
I(cos(s) + ηΔtγ) − sin(s)

2s
Ω(ω̃)Δt

)
qk + pω (21)

with

pa = RqnaΔt, pω =
− sin(s)

2s
Ω(nωΔt)qk (22)

The noise vector na and nω are given in the continuous time domain. However,
for the discrete filter a discretised form of the noise vectors is required. We specify
n̄a and n̄ω to be the discrete versions of na and nω. The covariances of n̄a and
n̄ω can actually be measured and are given by

n̄a ∼ N(0, Pa), n̄ω ∼ N(0, Pω) (23)
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For the filtering process however, we need the covariance of the direct noise terms
pa and pω.

Qv = cov(pa) = RqPaR
T
q Δt

2 (24)

The case is not as straightforward for pω. However, it is possible to find a solution
for the equation pk = Γ (q)ω by defining Γ (q) as

Γ (q) =

⎛
⎜⎝

q2 q3 q4
−q1 q4 −q3
−q4 −q1 q2
q3 −q2 −q1

⎞
⎟⎠ (25)

so that we can give the covariance of pω as

Qq = cov(pω) = Γ (qsk)PωΓ (qsk)T , qsk =
− sin(s)Δt

2s
qk (26)

The covariance of the angular velocity is of course equal to that measurement
covariance of the gyro sensors, Qω = Pω . Further, the cross covariance of Qq and
Qω is given by

Qq,ω = Γ (qsk)Pω (27)

so that we can give the complete process noise covariance matrix Q as

Qk =

⎛
⎜⎝

0 0 0 0
0 Qv 0 0
0 0 Qq Qq,ω

0 0 QT
q,ω Qω

⎞
⎟⎠ (28)

Recalling that the measurement for the filter is the projection matrix given
in (8), we need to formulate h(x) to map to the projection matrix A based on
the current state vector x.

As =

(
I +

RT
qk
e2(vkΔt)T

ξ2

)
e[ωk]×Δt (29)

The matrix exponential can be expressed in the closed form as

e[ωk]×Δt = I +
sin(s)
s

[ωΔt]× +
1 − cos(s)

s2
[ωΔt]2×, s = |ωΔt| (30)

the measurement function is then given by the matrix in (29) normalised to
unity.

h(x) =
1

3
√

det(As)
As (31)

The covariance of the measurement noise is specified by Rk. This matrix is
directly calculated from measurements with known ground truths and not ana-
lytically derived.
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Fig. 2. Evaluation scenario position comparison

4 Experiments

To verify the results of the EKF implementation a simulated environment based
on the rigid body and image sensor description given in the previous section
is used. The accelerometer and gyro noise has been modelled to be similar in
properties to that of low-cost sensor components. A raytracer is used to simulate
the image sensor output, and an additional pixel noise term is added. The ground
texture wich is used is a grayscale random pattern.

Figure 2 shows a plot of the position errors for an evaluated example scenario,
where the simulated UAV was made to perform a rectangular movement on a
tilted plane. The start and end position are the same.

The overall error is significantly smaller for both plots in δξ2 than for the
other two components. This is related to the fact that the e2 component of the
accelerometer has a lower noise part to reflect the same situation in an already
implemented real system. For all three components of the position vector, the
aided EKF offers a better performance than the inertial sensors alone. Figure 2
(b) gives a direct comparison of the position and allows a spatial interpretation
of the results. For a total distance of about 5m the INS (Inertial Navigation
System) solution has an error of more than 1m, where the aided estimation is
around 5cm. A similar trend is visible in other evaluated scenarios.

5 Conclusion

The results of the simulation are very promising, as they show that the com-
bination of the visual information and the inertial sensors can for particular
situations perform better by a factor of 20 when compared to simple integration
of low-cost inertial sensors. Previous works using similar methods did not use
the projection matrix directly as a measurement. They extracted the state infor-
mation from the matrix and relied on third sensors to solve the ambiguity in the
velocity and height data. The proposed approach is able to handle this situation
without the need for additional reference information and is stable even if the
state estimate is inaccurate. The proposed method uses the constant brightness
constraint method for relating consecutive images. Another possible solution is
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to perform feature extraction and relate the features of consecutive images. For
this approach to work, the image requires enough visual information so that fea-
tures can accurately be identified. A combination of the two approaches could
potentially solve a wider class of problems. The sensor fusion method applied
in the context of this work uses the Extended Kalman Filter, which has known
problems with highly non-linear systems. An alternative approach which might
have advantages in this area is the class of Unscented Kalman Filters.
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