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Abstract

Segmentation of curled textlines from warped document
images is one of the major issues in document image de-
warping. Most of the curled textlines segmentation algo-
rithms present in the literature today are sensitive to the
degree of curl, direction of curl, and spacing between adja-
cent lines. We present a new algorithm for curled textline
segmentation which is robust to above mentioned problems
at the expense of high execution time. We will demon-
strate this insensitivity in a performance evaluation section.
Our approach is based on the state-of-the-art image seg-
mentation technique: Active Contour Model (Snake) with
the novel idea of several baby snakes and their conver-
gence in a vertical direction only. Experiment on publically
available CBDAR 2007 document image dewarping contest
dataset shows our textline segmentation algorithm accuracy
of 97.96%.

1 Introduction

Document images are usually captured through a scan-
ner. Capturing document images using a camera in an un-
controlled environment is a fast, easy and less expensive al-
ternative as compared to capturing document images with a
scanner. Unfortunately, this capturing mechanism produces
distorted document images. Non-linear warping is one of
the major distortions. It badly affects document readability
and reduces OCR accuracy. We will refer to these types of
images as curled or warped document images.

A number of techniques have been reported in literature
for warped document restoration or dewarping. These can
be classified into two main groups based on the method of
document capture to which they are applied: (i) approaches
in which specialized hardware is needed for recovering the
3D shape structure of warped documents [3, 4, 21], (ii) ap-
proaches in which no auxiliary hardware is needed, and

documents are captured with a hand-held camera in an un-
controlled environment [7, 9, 10, 14, 15, 16, 22]. The ap-
proaches requiring specialized hardware have not come to
widespread use due to the restrictions they impose on doc-
ument capture. Dewarping approaches for documents cap-
tured with a hand-held camera can be further divided into
two categories: (a) approaches based on the document ge-
ometry [14, 16], (b) approaches based on curled textline
segmentation [7, 9, 10, 13, 15, 22]. Accurate segmentation
of curled textline is essential for good performance of the
later dewarping approaches.

The textline detection technique described in [7] pro-
ceeds as follows. First, characters are combined based
on [11] and are referred to as sub lines. A mid point of each
sub line is calculated and the image is thinned. For each mid
point, left and right neighboring points are searched in the
direction of previously calculated slope. A curve fitting al-
gorithm is applied for each set of points. The algorithm [7]
works well only for moderate slope in document images.
The drawback of the algorithm [7] is that a single outlier
point in a thinned image leads to the wrong slope direction
and starts grouping wrong neighborhoods.

The textline detection technique described in [15] uses
morphological operations to calculate the top point, bot-
tom point, and vertical stroke of each character. Neigh-
boring points are searched for each point within a speci-
fied area (based on the function of average height of vertical
strokes and the slope of the already grouped points). This
approach [15] has two problems. Firstly, the selection of the
structuring elements for the calculation of top and bottom
points are based on the document skew (top-left to bottom-
right or bottom-left to top-right). This means it can’t handle
curled documents which have different types of skew. Sec-
ondly, the grouping of neighboring points goes in the wrong
direction if the distance between words is greater than the
distance between the base and top lines.

The textline detection approach described in [10] per-
forms horizontal smoothening [23] to combine characters



into words. Words are then selected in a top down scanning
fashion. For each word having bounding box (x1,x2,y1,y2),
neighboring connected components (in the right direction,
satisfying condition: [y1,y2] intersection [y1

′
,y2

′
] is not

equal to null) are searched. A Component with the small-
est distance is grouped with the selected word. This ap-
proach [10] works well only if the curl is moderate, other-
wise it combines the components that are present in differ-
ent top or bottom lines.

The textline detection approach in [9] calculates words
and textline by using the modified “box hand” [25, 20] ap-
proach. For detecting words, quadrilaterals of equal width
and height are attached to the left and right side of each
character. Letters having overlapping hands are combined
to form words. A Similar approach is used for combin-
ing words into textline, but the slope of the quadrilateral
is based on the slope of the word. The problem with this
approach [9] is that it does not make sure that the hands of
each connected component touch the others even in a mod-
erate line curl. This approach [9] does not work on docu-
ments with high curl.

The textline detection technique proposed in [13] based
on the “Level Set” algorithm is also one of the popular im-
age segmentation techniques but different from the “Active
Contour Model: Snake” algorithm. In [13] the level set al-
gorithm is applied to handwritten documents which can’t be
directly applied to printed curled textline documents.

The dewarping technique proposed in [22] is based on
local textline approximation using RAST [2]. It works on
an assumption that the line spacing is the same between all
lines. Therefore finding paragraphs is one of the preprocess-
ing steps in [22]. There is no information about the global
approximation of textlines.

Most of the above approaches are highly sensitive to the
directions and degrees of page curl. Our approach can han-
dle high degrees of variable curls. It is based on the state-
of-the art image segmentation technique, Active Contour
Model (Snake) [12].

The rest of this paper is organized as follows: Section
2 deals with the technical details of active contour mod-
els (Snakes), novelty of our algorithm and its description.
Section 3 highlights the performance evaluation and results.
Section 4 comprises the discussion about future goals.

2 Textline Segmentation using Baby Snakes

2.1 Active Contour Model: Snakes

Active contour models [12], are curves which are defined
via points over an image and can slither under the influence
of internal and external energies. Internal energy tries to
keep the curve points together and external energy tries to
move the curve points toward the boundary of the image or

other desired features/object. These energies are defined in
such a way that move the curve continuously toward the ob-
ject and at the end curve will align itself over the object. The
behavior of the active contour model is dynamic because it
always minimizes its energy function. The active contour
model is also called ”Snake” because of the way it slithers
while minimizing its energy. Snakes are used in both com-
puter vision and image processing fields for edge-detection,
shape modeling, segmentation, and motion tracking.

There are two general types of active contours models:
Parametric active contour [12] and Geometric active con-
tour [5]. We will use the parametric active contour model in
our algorithm.

2.1.1 Parametric Snake Model

Parametric active contour models were introduced by [12].
In the parametric active contour model, snake is a curve
S(s) = [x(s), y(s)], where s ∈ [0, 1], that moves through
the spatial domain of an image to minimize the energy func-
tion:

E =

1∫
0

[Eint{S(s)}+ Eext{(S(s)}ds (1)

E =

1∫
0

1
2
[α{S

′
(s)}+ β{S

′′
(s)}] + Eext(S(s))ds (2)

E is the energy function (i.e. the sum of the snake’s inter-
nal and external energies). α and β are weight parameters
that control the snake’s tension and rigidity or stiffness, re-
spectively, and S

′
(s) and S

′′
(s) denote the first and second

derivatives of S(s) with respect to s. The snake that mini-
mizes E must satisfy the Euler equation [6]:

αS
′′
(s)− βS

′′′′
(s)− ∂/∂sEext = 0 (3)

Equation 3 yields two independent Euler equations:

αx
′′
(s)− βx

′′′′
(s)− ∂/∂xEext = 0 (4)

αy
′′
(s)− βy

′′′′
(s)− ∂/∂yEext = 0 (5)

Let, ∂/∂xEext = fx and ∂/∂yEext = fy

The external energy function (or external force) fi is de-
rived from the image so that it has smaller values at the
image object. Traditional external forces are ’Gradient’ and
’Gradient of Gaussian’, but they have two main problems.
Firstly, the range of these external forces is very limited and
only exist near the object boundary. Therefore snake should
be initialized near the object otherwise it will not converge
towards the object. Secondly, at the boundary of concavi-
ties these forces are parallel and in opposite directions pre-
vent the snake from moving inside the concavity. Gradient
Vector Flow (GVF) [24] is another type of external force



(a) (b)

Figure 1: (a) Smeared word block. (b) GVF external forces of smeared word block is presented in a vector form.

that solves both the above problems of traditional external
forces. It is calculated as a diffusion of gradient vectors of
an object. We will use GVF as an external force in our algo-
rithm because of its advantages over gradient and gradient
of Gaussian.

2.2 Baby Snakes

Snake is used for detecting the edge boundary of object
in an image. It is a closed curve of points and usually ini-
tialized around the edge map of the image object. External
forces of the edge map cause the snake to move towards
the edge map and internal forces keep the snake’s points to-
gether, while updating horizontal and vertical components
of the snake’s points. At the end it encloses the edge bound-
ary of an object. Our approach using snakes in textline seg-
mentation is novel in four respects:

1. Concept of straight line snake : Closed curve snakes
can’t be used in our situation due to the topology of
textlines. Here we introduce the concept of straight
line snakes initialized over each connected compo-
nents. We call them ”baby Snakes” (see Section 2.3.3).

2. Slop-aligned baby snakes : We want to converge the
straight line baby snakes in such a way that causes
the adjacent baby snakes to stick to each other or to
the adjacent connected component that help in textline
segmentation. For straight textlines, it would be suffi-
cient to initialize a horizontal snake at each connected
component. Page curl distortion introduces a slope in
each word depending on the amount of page curt at
that position. Therefore, we initialize slope-aligned

baby snakes over each connected component (see Sec-
tion 2.3.3).

3. Updating only vertical components of snake’s
points : If we update both the horizontal and the ver-
tical components of a straight line snake’s points, it
will converge to a single point after some iterations.
Therefore, we update only the vertical components of
a snake’s points during each iteration through internal
and external forces.

4. Calculating external forces from smeared image ob-
ject: Usually external forces are calculated from an
edge map of the image [12, 24]. Our experiments
showed that using the smeared image for computing
GVF instead of an edge map gave more stable results
for our purpose. Figure 1a shows a smeared word.
GVF external force vectors of this image are presented
in Figure 1b. Notice the direction of all vectors; they
are pointing towards the line passing through the center
of the smeared word. This property ensures the joining
of the slope-adjacent snakes on the left and right of the
image component.

2.3 Textline Segmentation Algorithm

In our approach, slope-aligned baby snakes (parametric
active contour models) are initialized over each connected
component of a smeared document image. Only vertical
components of baby snakes are deformed using GVF as an
external snake force. Due to this deformation, slope-aligned
baby snakes are joined together which results in segmented
textlines. The basic steps of the algorithm are given below:



Figure 2: Input-image: A part of camera-captured docu-
ment image is used for the demonstration of steps of algo-
rithm.

1. Image smearing

2. Finding connected components

3. Initialization of slope-aligned baby snakes

4. Transformation of baby snakes into father-chains.

5. Extraction of textlines

Each step is discussed in detail in the following subsec-
tions.

2.3.1 Image Smearing:

The smearing technique is applied to join adjacent letters
into words. These words or smeared components are candi-
dates for baby snake initialization. The smearing approach
is based on a combination of binary morphological opera-
tions, i.e dilation of an image followed by hole-filling and
then erosion. Figure 2 and 3 show a document image sam-
ple and its corresponding smeared image respectively.

2.3.2 Noise Removal

Connected components of the smeared document image are
calculated (Figure 3). Very small components (e.g. punctu-
ation marks) or very big components (e.g. noisy page bor-
ders in camera captured documents) are considered as noise.
These noisy components are not taken into account for baby
snake initialization. Small noisy components may be part of
a textline (some small noisy components are shown using
blue circles in Figure 3). All noisy components are removed
from the smeared document image. A record of small noisy
components is maintained. In the last step of this algorithm
we will check the association of these small noisy compo-
nents with the segmented textlines using minimum distance
criteria. The given thresholding criterion is used for finding
noisy components:

Figure 3: Result of image smearing. Small noisy compo-
nents are marked with blue circles.

Let,
CC: set of connected components.
FCC: set of filtered connected components.
SNC: set of small noisy components.
LNC: set of large noisy components.

SNC = { x ∈ CC : width(x) < median(width{CC}).a and
height(x) < median(height{CC}).b }

LNC = { x ∈ CC : height(x) > document-height.c or
perimeter(x) > document-perimeter.d }

FCC = CC - (SNC + LNC)

Where a, b, c and d are the free parameters and their values
are set according to the desired thresholding. In our case
their values are 0.25, 0.25, 0.10 and 0.25 respectively.

2.3.3 Slope-aligned baby snakes initialization

Baby snakes are initialized over each connected component
in such a way that each snake has the same slope as the com-
ponent and pass through the middle of a component with
some extra length on both sides of a component. The algo-
rithm for the initialization of baby snakes is given below:
For each connected component repeat the following steps:

1. Decide the length of a snake based on a function of
the component’s width, average width of components
and minimum and maximum widths among all com-
ponents.

Length = ComponentWidth + ExtraLength

where,

ExtraLength = AverageWidth.(1+((ComponentWidth-
minWidth)/(maxWidth-minWidth)))

2. Initialize horizontal top and bottom straight line
snakes’ points for a component.



Figure 4: Slope-aligned horizontal Initial baby snakes over
each connected components.

3. Compute gradient vector flow (GVF) of a component.

4. converge both snakes and update their y coordinates
in each iteration using the active contour convergence
approach with GVF as an external force and high stiff-
ness parameter(β).

5. Approximate top and bottom lines from converged top
and bottom snakes’ points and find their slopes and y-
intercepts.

6. Compute average straight line snake based on average
of y-intercepts and weighted average of slopes of top
and bottom lines. Average slope can be calculated as:

AverageSlope = w1.SlopeOfTopLine +
w2.SlopeOfBottomLine

Where w1 and w2 are equal to 0.5 if both slopes are
equal. w1 = 0.75 and w2 = 0.25 if SlopeOfTopLine
< SlopeOfBottomLine. w1 = 0.25 and w2 = 0.75 if
SlopeOfTopLine > SlopeOfBottomLine.

Slope-aligned baby snakes are presented in Figure 4.

2.3.4 Transformation of baby snakes into father-
chains

In the previous step, baby snakes are initialized for each
component. A mechanism is needed that joins together
each baby snake with its slope-adjacent left and right neigh-
borhood components and/or baby snakes making one con-
nected chain for each textline. We call such a connected
chain as father-chain. This is achieved by calculating the
GVF of the smeared image (smeared image is shown in Fig-
ure 3) and allows all baby snakes to converge with a very
low stiffness parameter (β) in the vertical direction only.
This GVF external force with a very low stiffness parame-
ter (β) allows each baby snake to converge towards its left
and right (slope-adjacent) neighborhood components and/or

Figure 5: Baby snakes are converged by using an active con-
tour convergence approach with GVF as an external force.

Figure 6: Father-chains: Black pixels are drawn in place of
all baby snakes’ points on a smeared image.

baby snakes. Converged baby snakes are shown in Figure
5. For all baby snakes’ points black pixels are drawn on
the smeared image. An example result is shown in Figure
6. Each connected chain of components, which is shown in
Figure 6, is referred to as father-chain.

2.3.5 Textline extraction

It is clearly visible in Figure 6 that each father-chain is com-
posed of all the components of a single textline. Father-
chains are extracted using a connected component algo-
rithm. The result is shown in Figure 7 (different connected
components are represented by different colors).

All the pixels in the original document image (Figure
2) are compared with father-chains and the corresponding
value of father-chains are assigned to them. This compar-
ison results in segmented textlines shown in Figure 8 with
different colors.

It is noticeable in Figure 8 that some small components
(i.e. ’,’ and ’.’ in lines 2 and 3 respectively, represented by
blue circles) are not a part of segmented textlines. This is
because they were counted as noisy components in step 2
of the algorithm and were removed from the smeared im-
age. The record of their locations is already maintained in



Figure 7: Segmented father-chains are represented by dif-
ferent colors.

Figure 8: Different colors represent segmented textlines.
Some small connected components, which are considered
as ’noise’, are marked with blue circles. These components
are not part of any segmented textlines.

step 2. Minimum distance criteria (based on a specified area
equal to the median area of FCC (Filtered connected com-
ponents), calculated in step 1) is used to find the association
of these noisy components with segmented textlines. The
Final output of an algorithm is presented in Figure 9

3 Performance Evaluation and Results

To demonstrate the performance of our algorithm on
real-world documents, we evaluated it on the data set
used in the CBDAR 2007 document image dewarping con-
test [17]. This data set consists of 102 documents (approx-
imately 3020 textlines) captured with a hand held camera
in an uncontrolled environment. The ground truth images
are given in a color coded format i.e. different textlines are
represented by different colors. Snake-segmentation results
are also represented in the same format.

Performance evaluation of our algorithm is based on the
metrics which are defined in [8, 18, 19].

Descriptions of performance evaluation metrics for
textline segmentation based on [18, 19] are as follows. Con-

Figure 9: Small noisy connected components become a part
of the nearest segmented textline. This is the final seg-
mented output of an algorithm.

sider we have two segmented images, the ground truth G
and hypothesized snake-segmentation H. We can compute
a weighted bipartite graph called “pixel-correspondence
graph” [1] between G and H for evaluating the quality of the
segmentation algorithm. Each node in G or H represents a
segmented component. An edge is constructed between two
nodes such that the weight of the edge equals the number of
foreground pixels in the intersection of the regions covered
by the two segments represented by the nodes. The match-
ing between G and H is perfect if there is only one edge
incident on each component of G or H, otherwise it is not
perfect, i.e. each node in G or H may have multiple edges.
The edge incident on a node is significant if the value of
(wi/P ) meets some thresholding criteria, where wi is the
edge-weight and P is the number of pixels corresponding
to a node (segment).

On the basis of the above description the performance
evaluation metrics are:

• Total oversegmentations (Ntos): the total number of
significant edges that ground truth lines have, minus
the number of ground truth lines.

• Total undersegmentations (Ntus): the total number
of significant edges that segmented lines have, minus
the number of segmented lines.

• Oversegmented components (Noc): the number of
ground truth lines having more than one significant
edge.

• Undersegmented components (Nuc): the number of
segmented lines having more than one significant edge.

• Missed components (Nmc): the number of ground
truth components that matched the background in the
hypothesized segmentation.

Similarly, the description of performance evaluation
metric for textline segmentation based on [8] is:



Table 1: Performance evaluation results

Number of ground truth lines (Ng) 3020

Number of segmented lines (NS) 3227

Total oversegmentations (100 ∗Ntos/NG) 8.91%

Total undersegmentations (100 ∗Ntus/NH ) 4.52%

Oversegmented components (100 ∗Noc/NG) 5.43%

Undersegmented components (100 ∗Nus/NH ) 3.63%

Missed components (100 ∗Nmc/NG) 0%

Match-score (100 ∗ Smatch) 97.96%

• Match-score (Smatch): the sum of maximum signifi-
cant edge-weight of all ground truth lines divide by the
total number of ground truth lines.

Performance evaluation results of our textline segmen-
tation algorithm, based on the above metrics, are given in
a Table 1. The results show that our algorithm achieved a
match-score of about 97.96%, implying high segmentation
accuracy of curled textlines in the CBDAR 2007 contest
dataset. Our algorithm can handle several complex cases
in which other segmentation algorithms usually fail. Our
approach can do a proper segmentation in the case of a high
degree of document curl, as shown in Figure 10a. It can
correctly segment textlines in a two (or more) column doc-
ument image. Most of the textline segmentation algorithms
are unable to segment margin notes correctly. Our algo-
rithm is capable enough of handling this situation as shown
in Figure 10b. Our approach can handle small line spacing
properly as shown in Figure 10c. Document images with
variable font size and variable line spacing are also handled
as shown in Figure 10d. Variable spacing within a line pair
is also solvable as shown in Figure 10e. Segmentation re-
sult of the algorithm on a sample document from CBDAR
2007 dataset is shown in Figure 11.

4 Discussion

This contribution presented an algorithm for the segmen-
tation of curled textlines from camera-captured documents.
Most of the curled textline segmentation techniques in lit-
erature are highly dependent on document-language. The
algorithm we present has a high potential of becoming gen-
eral textline segmentation algorithm which is independent
of document-language. After some modifications, our al-
gorithm can be used for segmenting handwritten document
images. Our future goal is to make our algorithm document-
language independent and make it equally applicable to
handwritten documents as well.

(a)

(b)

(c)

(d)

(e)

Figure 10: Proper segmentation efficiency of algorithm in
complex situations. (a) High degree of curl. (b) Text-note
aligned left to paragraph. (c) Small line spacing. (d) Vari-
able font size with variable spacing. (e) Variable spacing
within adjacent line pair.



Figure 11: Segmentation result of the algorithm on sample
document from CBDAR 2007 dataset.
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