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a b s t r a c t

This article presents a new visual–inertial tracking device for augmented and virtual reality applications

and addresses two fundamental issues of such systems. The first one concerns the definition and

modelling of the sensor fusion problem. Much work has been conducted in this area and several models

for exploiting gyroscopes and linear accelerometers have been proposed. However, the respective

advantages of each model and in particular the benefits of the integration of the accelerometer data in

the filter are still unclear. A comparison of different models with special investigation of the effects of

using accelerometers on the tracking performance is therefore provided. The second contribution is the

development of an image processing approach that does not require special landmarks but uses natural

features. The solution relies on a 3D model of the scene that is used to predict the appearances of the

features by rendering the model based on data from the sensor fusion algorithm. The feature

localisation is robust and accurate mainly because local lighting is also estimated. The final system is

evaluated with help of ground-truth and real data. High stability and accuracy are demonstrated also for

large environments.

& 2008 Elsevier Ltd. All rights reserved.

1. Introduction

User tracking is an enabling technology for augmented reality
and is also crucial for immersive virtual reality. If a camera is
rigidly attached to the user, e.g. to a head-mounted display
(HMD), vision-based tracking methods can be applied. As pure
vision-based systems usually handle only relatively slow motions,
the fusion of vision-based and inertial tracking technology has
been proposed several times in the past. Inertial sensors
(gyroscopes and accelerometers) are suited for capturing fast
movements, while the slower vision sensor provides absolute
references to compensate for errors accumulating rapidly when
integrating noisy and biased inertial data (dead reckoning).
General information about the error characteristics of inertial
sensors are given in [1].

While it has been shown often enough in the past that inertial
measurements improve pure vision-based tracking in several
ways [2–6], it is still unclear how to best exploit the information
in the inertial data. In particular, to incorporate accelerometer
data into the estimate of the translational states is often argued to

introduce instabilities rather than support. This is due to the fact
that accelerometers measure not only free acceleration but also
acceleration due to gravity. The gravity component has to be
subtracted using the estimated orientation before double-inte-
grating to position. Hence, small errors in the orientation result in
unbounded position errors. Accelerometers are therefore often
only used to stabilise the camera attitude with respect to gravity
(roll and tilt angle)—rather than estimating the attitude and the
translational states—by modelling the free acceleration as noise
[7]. This is also the common operating mode of the commercially
available orientation trackers, which internally fuse measure-
ments from accelerometers, gyroscopes and magnetometers and
deliver absolute orientation (XSens MTi/MTx, InterSense Inertia-
Cube). In [5] such a device is used to reinitialise the natural
feature registration, if the track has been lost by the vision sensor.

Because of the special nature of the accelerometer measure-
ments, many researchers use only gyroscopes to support vision-
based tracking. In [8] a particle filter is used to fuse gyroscope
measurements and point-based vision tracking. During the
particle generation step the rotation angles are sampled according
to the measured angular velocities, while a random walk is
applied to the translation. In most cases the fusion is done in an
extended Kalman filter (EKF). In [4] an EKF is used to combine
gyroscopes with a line-based vision tracking system. The linear
velocities are filtered from previous vision-based position esti-
mates. The final camera pose is computed solely from the vision
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measurements and is then used as an EKF measurement to
estimate the gyroscope biases. In [9] gyroscope data and
vision measurements from fiducial tracking are fused in an EKF.
The 2D/3D correspondences obtained from the vision sensor are
directly passed as measurements to the EKF without an
intermediate vision-based pose computation step as in [4,7]. In
[10] this approach is extended to outdoor augmented reality by
replacing the fiducial tracking with a system based on natural
line features.

Some systems have also been proposed, which exploit
gyroscopes and accelerometers for the estimation of both
rotational and translational states. Most of them use an EKF to
fuse all measurements uniformly to a pose estimate. The most
popular example is the commercially available InterSense
VIS-Tracker [11], which is based on artificial markers. A theoretical
framework for combining such a system with markerless line- and
point-based tracking technology is provided in [12,13], respec-
tively. However, both works base their experiments on simulated
data. In [14] the model given in [13] is applied to realistic inertial
data and simulated vision measurements, whereas the biases of
the inertial sensors are estimated online as parts of the state
vector. Some recent visual–inertial SLAM (simultaneous localisa-
tion and mapping) systems provide experimental results on
realistic data, but within simple test environments [6,15].

The system described here uses an EKF to combine model-
based tracking of natural point features with inertial sensors. The
sensor fusion core is able to estimate the camera pose, velocities,
accelerations and sensor biases by processing data obtained from
gyroscopes (angular velocities), accelerometers (linear accelera-
tions) and the vision system (2D/3D correspondences). In this
contribution, an in-depth evaluation of different sensor fusion
models with a special investigation of the effects of using
accelerometers on the tracking performance is provided. The
experiments are performed under controlled conditions and in
real world environments and prove the benefits of fully exploiting
the accelerometers for estimating both the rotational and the
translational states.

Natural feature detection and tracking are essential research
areas for augmented reality. Many works focus on the develop-
ment of invariant and robust feature detectors, descriptors and
alignment methods, suitable for wide baseline matching [16–19].
In the system described here the problem of feature association is
simplified, as a prediction of the camera pose is always available.
A technique, which exploits the pose prediction in a very elegant
manner, is to predict the appearances of natural features by
rendering a 3D model of the environment. This is sometimes
referred to as analysis-by-synthesis. In [4] a 3D wireframe model
of the target scene is rendered from the predicted camera pose
and a 1D search for local gradient maxima is carried out
orthogonally to the rendered edges at equally distributed sample
points. In [20] this approach is enhanced by learning a visual
appearance state for each sample point during the tracking, thus
achieving increased discrimination. Instead of learning the
appearances of the edge sample points from the images, a
textured CAD model is used in [7].

The vision system proposed here also uses a simplified
textured CAD model of the environment, but in contrast tracks
feature points instead of edges. The contribution in this area is to
develop a technique for registering small patches of a rendered
image in a live camera frame also under severe changes of
illumination. This is mainly achieved by estimating not only 2D
displacements but also local lighting changes using an advanced
Kanade–Lucas feature tracker [21]. The analysis-by-synthesis
technique, that is the technique to use a CAD model for the
registration has many advantages: (1) the graphics hardware can
be used to efficiently generate a rendering from the predicted

pose, (2) the correct level of detail is guaranteed and (3) the
feature tracking is drift-free.

2. Approach

The sensors providing physical inputs to the system, i.e.
the camera and the Inertial Measurement Unit (IMU), are assumed
to be synchronised in hardware and to run at different rates.1

Fig. 1 outlines the system workflow. A frame is captured at
timestep t and the IMU readings from the previous time interval
½t � ðr � 1ÞT ; t� are buffered. T is the sample rate of the IMU and rT

is the sample rate of the camera. The image is resampled to
compensate for distortion effects based on the model of [22]. A
divergence test is then performed on the Kalman filter state, based
on which the system either (re)initialises or processes the
measured angular velocities and accelerations up to timestep t.

The (re)initialisation is semi-automatic. A rough orientation
is obtained from the IMU and it serves as starting point for the
orientation states in the EKF. The XSens MT9-C used for the
experiments delivers besides the measured angular velocities
and accelerations also an absolute orientation (cf. Section 5). The
initial position is entered manually and the user has to move the
camera close enough to this position so that the vision-based
tracking snaps on.

Both (re)initialisation and filter update yield a pose prediction
for timestep t, which is then used to generate a rendering of the
textured CAD model on the graphics card. On demand new
features are extracted in free areas of the rendered image using
FAST (features from accelerated segment test) [23]. They are
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Fig. 1. System workflow.

1 In the experiments, the IMU runs at 100 Hz and provides a trigger signal to

the camera at 25 Hz.
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stored with their 3D positions in a feature map, which is managed
by a set of simple rules. Details are given in [24]. At each timestep,
a fixed-size subset of features predicted to be visible in the given
frame is registered. The 2D/3D correspondences are then used as
vision measurements to update the EKF.

This article is organised as follows. Section 3 describes the
natural feature tracking. Section 4 details the fusion of visual and
inertial measurements presenting four fusion models: model 1
(gyro) only uses gyroscopes to support the camera orientation
estimate, model 2 (gravity) uses additional accelerometers to
stabilise the camera attitude and models 3 (acc) and 4 (acc input)
exploit the accelerometers also for estimating the translational
states. Models 3 and 4 differ by treating the inertial data either as
measurements or as control inputs. Both approaches have been
proposed in the past [25,26]. Moreover, outlier rejection and
divergence monitoring are addressed. Section 5 investigates the
tracking performance and the computational efficiency of the
different state-space models demonstrating that model 4 per-
forms best with respect to both criteria. The high stability and
accuracy achieved by fully exploiting the accelerometer data for
both the estimation of the rotational and the translational states,
is shown in different real environments. Section 6 draws final
conclusions.

3. Natural feature tracking

A natural feature point is tracked by cropping a small window
of its surrounding texture from a rendering of the textured CAD
model and registering it in the live camera image. The position
and perspective distortion of the feature in the rendering can be
assumed very similar to those in the live camera image, a suited
condition for estimating a 2D displacement using an iterative
registration method like the Kanade–Lucas tracker [21]. However,
due to changing lighting conditions and the photometric response
function of the camera used, the entire appearance of the

feature in the rendering can differ significantly from that in
the live frame. An example is given in Fig. 2(a,b). These effects can
be compensated for by using the relatively simple photometric
model proposed in [27].

Let mp ¼ ½x; y�
T be a feature position in an image. Let IðmpÞ be

the intensity value of this position in the rendering and JðmpÞ

the intensity value in the live camera image. We describe the
appearance change of a feature from the rendering to the live
camera image by

IðmpÞ ¼ lJðmp þ dÞ þ d 8mp 2W . (1)

d ¼ ½d1; d2�
T is a 2D displacement vector, l can be regarded a

parameter adjusting the contrast and d as a parameter adjusting
the brightness of a region W around the feature point. The
registration consists in finding the parameter vector a ¼
½d1; d2; l; d�T that minimises

� ¼
X
W

ðIðmpÞ � lJðmp þ dÞ þ dÞ2. (2)

Substituting lJððmp þ dÞ þ d with its first-order Taylor expansion
and setting the derivatives of (2) to 0 with respect to a results
in a linear system Ga ¼ b, from which a can be computed.
Newton–Raphson-style iterations of this procedure are performed
until either a maximum number of iterations is exceeded or the
change in a becomes neglectable. To speed up the convergence,
the illumination parameters l and d are initialised with the mean
and standard deviation of the texture around the predicted feature
position in the rendering and the live image, respectively.
A registration is assumed valid, if the sum of squared differences
(SSD) over the registered feature windows is below a threshold.

In order to increase the convergence radius of the registration,
a coarse-to-fine strategy is applied over an image pyramid. This
enables the system to (re)initialise from a very rough initial pose,
and to continue the tracking, if the pose prediction has drifted
after some frames without features visible.

ARTICLE IN PRESS

Fig. 2. The feature registration process over an image pyramid: (a) shows a live camera image of a simple target object and texture patches cropped around a feature

position from three levels of the image pyramid. (b) shows the rendering, the patch pyramid and the binary masks. The upper two levels of the patch pyramid contain parts

of the black background, which would disturb the registration. The masks on the right side mark exactly these parts as invalid. The registration therefore succeeds. (c)

shows the texture patches from the rendered and live image (bottom level of image pyramid) in comparison. The top row demonstrates the differing appearances of the

patches before the registration. After the registration, both patches look quite similar. In the image on the right side the four registered feature positions are marked, which

have been used to compute the camera pose for the augmentation.
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To make the feature registration as robust as possible, two
other issues, that can arise from the rendering process, are
handled: If the CAD model used for generating the rendering has
holes or does not fill the entire image, the OpenGL background
colour appears and disturbs the registration. As the information of
pixel validity is easily available from the depth buffer, a binary
mask is generated for the feature window in the rendered image
and is used during the registration for masking out invalid pixels
(Fig. 2(b)). A second issue concerns the aliasing effects introduced
by the rendering process. In order to reduce those and to stabilise
the registration, the synthetic image is blurred. The feature
registration process is outlined in Fig. 2.

Fig. 3 demonstrates the potential of the natural feature
tracking as presented here. The affine photometric model given
in (1) allows for tracking the features under significant changes of
illumination. Moreover, the technique of rendering a CAD model
for predicting the feature appearances enables their successful
registration from a variety of different view points, whereas the
tracking remains drift-free.

4. Sensor fusion

The EKF [28–30] is used for fusing the 2D/3D correspondences
from the image analysis and the inertial measurements from the
IMU to a pose estimate. For the sake of completeness, the general
EKF equations are given here. Let

xt ¼ f ðxt�T ;ut ; vtÞ, (3a)

yt ¼ hðxt ; etÞ (3b)

be a nonlinear state-space model, where xt denotes the state
vector, ut denotes a known control input, vt denotes the process
noise, with vt�Nð0;QtÞ, yt denotes a measurement and et

denotes the measurement noise, with et�Nð0;RtÞ. Let x̂t be the
estimate of xt at time t with xt�Nðx̂t ; PtÞ. The equations for the
time update are

x̂tjt�T ¼ f ðx̂t�Tjt�T ;ut ;0Þ, (4a)

Ptjt�T ¼ FtPt�Tjt�T FT
t þ VtQtV

T
t , (4b)

ARTICLE IN PRESS

Fig. 3. Augmented camera images showing the successful feature registration (indicated by the green rectangles) and pose estimation (indicated by the pose of the

augmented coordinate system) under different illuminations and under varying viewing angles and distances with respect to the target object: (a,b) show under- and

overexposed camera images, (c,d) present nearly orthogonal views onto the sides of the target object and (e,f) show the target object from significantly different viewing

distances of 10 and 350 cm, respectively.
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with

Ft ¼
qf

qx
ðx̂t�Tjt�T ;ut ;0Þ, (4c)

Vt ¼
qf

qv
ðx̂t�Tjt�T ;ut ;0Þ. (4d)

The equations for the measurement update are

St ¼ HtPtjt�T HT
t þ EtRtE

T
t , (5a)

zt ¼ yt � hðx̂tjt�T ;0Þ, (5b)

Kt ¼ Ptjt�T HT
t S�1

t , (5c)

x̂tjt ¼ x̂tjt�T þ Ktzt , (5d)

Ptjt ¼ Ptjt�T � KtHtPtjt�T , (5e)

with

Ht ¼
qh

qx
ðx̂tjt�T ;0Þ, (5f)

Et ¼
qh

qe
ðx̂tjt�T ;0Þ. (5g)

St is the innovation covariance, zt the innovation and Kt the
Kalman filter gain.

After introducing the different coordinate systems involved
and the notation used subsequently, the four different state-space
models announced in Section 2 are presented.

4.1. Notation

The following coordinate systems are used: the world frame, w
(fixed to the target scene model), the camera frame, c (fixed to the
moving camera), the global frame, g (fixed to earth with the x-axis
pointing to local magnetic north and the z-axis pointing opposite
gravity), the sensor frame, s (fixed to the moving IMU), the pixel

coordinate system, p (assumed ideal, as distortion effects are
compensated for before the feature registration) and the normal-

ised image frame, n, which is obtained from p with

mn ¼

1

f x

�s

f xf y

�cxf y þ cys

f xf y

0
1

f y

�cy

f y

2
66664

3
77775 �

xp

yp

1

2
64

3
75. (6)

f x; f y; cx; cy and s are the internal camera parameters. The global
frame is the inertial reference frame of the IMU in the same way as
the world frame is the reference frame of the camera. The IMU
provides an estimate of its absolute orientation qgs with respect to
this frame. The reference frame, in which a quantity is resolved, is
indicated by subscribing the abbreviation introduced above. The
abbreviation is also used for indicating the origin of a reference
frame, e.g. sc is the origin of the IMU, s, given in the camera frame
c. Transformation subscripts contain two letters denoting the
mapping. Unit quaternions are used to parametrise rotations, for
instance qsc describes the rotation from the camera frame c to the
IMU frame s. The corresponding rotation matrix is termed Qsc . The
quaternion product is denoted�. See [31] for more information on
quaternions and the conversion formulae. Fig. 4 illustrates the 3D

coordinate systems and transformations used throughout this
article.

4.2. Model 1 (gyro)

Gyroscopes are used to support the vision-based tracking. The
state vector x comprises

xT ¼ ½sT
w
_sT

w qT
sw xT

s boT
s �, (7)

where sw denotes the position, _sw the velocity, qsw the orientation,
xs the angular velocities and bo

s the gyroscope biases of the IMU.
Note that to simplify the equations the translation sw and

orientation qsw of the IMU with respect to the world frame are
estimated. However, the camera pose is easily obtained from the
state vector using

cw ¼ ðsw þ QwscsÞ, (8a)

qcw ¼ qcs � qsw, (8b)

where qcs and cs are the hand-eye rotation and translation
between the rigidly coupled camera and IMU (cf. Fig. 4). The
hand-eye transformation is calibrated once offline (cf. Section 5).
The motion model assumes constant velocity and constant
angular velocity. The expression for the time update is

sw;t

_sw;t

qsw;t

xs;t

bo
s;t

2
6666664

3
7777775
¼

sw;t�T þ T _sw;t�T þ
T2

2
v€sw;t

_sw;t�T þ Tv€sw;t

exp � T
2 ðxs;t�T þ vx

s;tÞ

� �
� qsw;t�T

xs;t�T þ vx
s;t

bo
s;t�T þ vbo

s;t

2
66666666664

3
77777777775

, (9)

where v€sw;t ; v
x
s;t and vbo

s;t denote the time independent process noise
and

expðvÞT ¼ cos kvk
vT

kvk
sin kvk

� �
(10)

is the quaternion exponential. The noise is assumed uncorrelated
in all components. The gyroscope measurement model is

yos;t ¼ xs;t þ bo
s;t þ eos;t , (11)

where yos;t are the measured angular velocities and eos;t denotes the
measurement noise, which is assumed time independent.

The image analysis initially provides a set of 2D/3D corre-
spondences ðmp;t ;mw;tÞ with measurement noises ec

p;t�Nð0;Rpp;tÞ

and ec
w;t�Nð0;Rww;tÞ, where Rpp;t and Rww;t are diagonal matrices.

The measurement mp;t and the covariance Rpp;t are first trans-
formed to the normalised image coordinate system using (6),
giving ct ¼ ðmn;t ;mw;tÞ with covariances Rnn;t and Rww;t . The
implicit correspondence measurement model is then given by

0 ¼ hðxt ;mn;t ;mw;t ; e
c
n;t ; e

c
w;tÞ

¼ ½I2 � ðmn;t þ ec
n;tÞ�QcsðQsw;tðmw;t þ ec

w;t � sw;tÞ � csÞ.

(12a)

This can be reformulated with additive measurement noise ec
t

using (5a) and (5g):

0 ¼ hðxt ;mn;t ;mw;tÞ þ ec
t

¼ ½I2 �mn;t �QcsðQsw;tðmw;t � sw;tÞ � csÞ þ ec
t , (12b)

where ec
t�Nð0;RtÞ and with ht ¼ hðxt ;mn;t ;mw;t ;ec

n;t ; e
c
w;tÞ

Rt �
qht

qmn;t

qht

qmw;t

� � Rnn;t 02�3

03�2 Rww;t

" # qht

qmn;t

T

qht

qmw;t

T

2
66664

3
77775. (12c)
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Fig. 4. Illustration of the different 3D coordinate systems and how they are related.

Rigid transformations are indicated by solid lines, non-rigid by dashed lines.
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qcs and cs are as in (8). The correspondences are all processed
sequentially.

4.3. Model 2 (gravity)

In the gravity model, accelerometers are used for stabilising
the camera attitude. The state vector comprises additional
parameters for the accelerometer biases ba

s :

xT ¼ ½sT
w
_sT

w qT
sw xT

s baT
s boT

s �. (13)

The motion model assumes constant velocity and constant
angular velocity including the additional equation:

ba
s;t ¼ ba

s;t�T þ vba

s;t , (14)

where vba

s;t denotes the time independent process noise of the
accelerometer biases. The accelerometer measurement model
involves only the estimated orientation qsw;t:

ya
s;t ¼ �ðQsw;tgwÞ þ ba

s;t þ ea
s;t , (15)

where gw denotes the gravity direction in the world coordinate
system and ea

s;t denotes the time independent accelerometer
measurement noise. In this formulation ea

s;t includes also free
accelerations. The gyroscope (11) and the correspondence mea-
surement model (12) are the same.

4.4. Model 3 (acc)

The acc model uses all information given in the accelerometer
measurements, i.e. information about the camera attitude and
free acceleration as second derivative of the position. The state
vector comprises additional parameters for the free accelerations
€sw:

xT ¼ ½sT
w
_sT

w
€sT

w qT
sw xT

s baT
s boT

s �. (16)

The motion model assumes constant acceleration and constant
angular velocity changing the upper three equations of the time
update to

sw;t

_sw;t

€sw;t

2
64

3
75 ¼

sw;t�T þ T _sw;t�T þ
T2

2
ð€sw;t�T þ v€sw;tÞ

_sw;t�T þ Tð€sw;t�T þ v€sw;tÞ

€sw;t�T þ v€sw;t

2
66664

3
77775. (17)

The accelerometer measurement model also involves free accel-
erations:

ya
s;t ¼ Qsw;tð€sw;t � gwÞ þ ba

s;t þ ea
s;t . (18)

This changes during the EKF measurement update both the
rotational and the translational states. Clearly, this measurement
function requires a certain prior estimate of the orientation,
as small errors in the orientation result in unbounded errors in
the position. Note that this model includes the gravity model. The
gyroscope (11) and the correspondence measurement model (12)
are the same.

4.5. Model 4 (acc input)

Instead of considering the inertial readings to be measure-
ments, as in the acc model, they can be treated as control inputs
uT ¼ ½yos ; y

a
s � to the time update (cf. (4)). Since the angular

velocities xs and free accelerations €sw are then given by the
control inputs, they can be removed from the state vector x,
leading to a reduced dimensionality of the space that has to be

estimated. The reduced state vector comprises

xT ¼ ½sT
w
_sT

w qT
sw baT

s boT
s �. (19)

The motion model is obtained by solving the gyroscope (11) and
the accelerometer measurement equation (18) for xs;t and €sw;t ,
respectively, and replacing these variables in the respective time
update equations in (9) and (17). The resulting expression is

sw;t

_sw;t

qsw;t

bo
s;t

ba
s;t

2
66666664

3
77777775
¼

sw;t�T þ T _sw;t�T þ
T2

2
Qws;t�T ðy

a
s;t � ba

s;t�T � va
s;tÞ þ

T2

2
gw

_sw;t�T þ TQws;t�T ðy
a
s � ba

s;t�T � va
s;tÞ þ Tgw

exp �
T

2
ðyos;t � bo

s;t � vos;tÞ

� �
� qsw;t�T

bo
s;t�T þ vbo

s;t

ba
s;t�T þ vba

s;t

2
6666666666664

3
7777777777775

.

(20)

Note that the measurement noises ea
s;t and eos;t are here included in

the process noises va
s;t and vos;t , respectively. The correspondence

measurement model (12) is the same.
By treating the angular velocities and accelerations as input

signals, six states and two measurement update steps can be
saved. The tuning becomes easier, as fewer noises have to be
adjusted. Moreover, these noises can be determined experimen-
tally from the IMU hardware by looking at the standard deviations
of several seconds of sensor data captured while holding the
device stationary. There are two further ramifications to mention.
As the state space (19) comprises no angular velocities, the
orientation can only be predicted, when inertial readings are
available. Furthermore, the state space comprises no body
accelerations, implying that no correlations are kept between
the orientation and the body acceleration.

4.6. Outlier rejection

The Kalman filter is not robust, a single erroneous measure-
ment can cause total filter divergence. Inertial sensors generally
do not produce outliers, but the image analysis does. As
mentioned in Section 3, Newton–Raphson-style iterations are
used over multiple image resolutions to manage large feature
displacements. This gives the whole system essential robustness,
but also allows outliers, which pass the simple SSD based validity
test after the registration. Since the sensor fusion algorithm
produces a very good prediction of where the features should
occur in the images, a simple w2 test is used for detecting outliers.
Let zi be the innovation computed for the ith 2D/3D correspon-
dence and let Si be its innovation covariance with zi�Nð0; SiÞ. The
outlier test is

zT
i S�1

i zi4w2
a;2, (21)

where si ¼ zT
i S�1

i zi is referred to as normalised squared residual
and a is the significance level. A common value for a is 0.05
yielding the threshold 5.991. During the experiments, this thresh-
old was found to be too tight. Real outliers produced considerably
larger residuals. A much looser threshold 15, corresponding to the
significant level a ¼ 10�4, is therefore applied.

4.7. Divergence monitoring

In order to be applicable a tracking system needs a reliable
failure detection. A failure of the vision sensor is easily recognised
by looking at the number of registered features. However, due to
the inertial sensors the proposed system is able to survive some
frames without any features visible. A reinitialisation is therefore
only desired if the dead reckoning has introduced a drift
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inevitably leading to a filter divergence. Thus, the divergence
check is based on a combination of several simple tests:

	 If the filter diverges, it shows up in the normalised residuals of
measurements providing absolute reference such as the vision
measurements. The quantity computed in (21) for recognising
outliers can therefore be used for the divergence detection
[32], too. The normalised residuals si are low-pass filtered
using g ¼ lg þ ð1� lÞsi with 05lo1 and g is compared to a
threshold. Note that, in combination with the outlier rejection,
g is bounded by the outlier threshold.
	 Obviously, the above test does not detect a divergence, when

no vision measurements are available. However, a lack of
vision measurements results in an increasing state uncertainty.
The Frobenius norm of the state covariance is therefore
computed and compared to a threshold. Values between 3
and 5 were chosen during the experiments.
	 Finally, the norm of the orientation quaternion in the state

vector is monitored. The quaternion is normalised before each
time update to keep it at unit length, as each measurement
update causes a slight change in the norm. A significant change
from unit length indicates an estimation error. The threshold
0.95 was chosen during the experiments. By normalising the
state quaternion, the filter ceases to propagate the conditional
mean. In order to adapt the state covariance appropriately, a
method proposed in [33] is used. Let q
sw;t and P
qq;t be the
quaternion estimate with minimum squared error at time t.
The normalisation step performed after each measurement
update is then given by

qsw;t ¼
q
sw;t

kq
sw;tk
, (22a)

Pqq;t ¼ P
qq;t þ ðqsw;t � q
sw;tÞðqsw;t � q
sw;tÞ
T, (22b)

where qsw;t and Pqq;t constitute the new constrained estimate
used in the subsequent time update.

If at least one of the tests fails, the system is reinitialised.

5. Experimental setup and results

The camera-IMU system used for the experiments is shown in
Fig. 5. It combines a monochrome PGR camera with an XSens
MT9-C IMU in one housing and is subsequently referred to as
CamIMU.

In order to relate the measurements from both sensors, the
hand-eye rotation qcs and translation cs have to be calibrated. qcs

has been calculated using Horn’s method [34] with a set of gravity
measurements from both sensors. These measurements are easily
obtained as a byproduct of the camera calibration [22] by placing
the calibration pattern horizontally or vertically and by recording
several seconds of accelerometer data for each calibration image
while keeping the device stationary. The hand-eye translation cs is
derived from the specifications of the manufacturer concerning
the locations of the different sensors (accelerometers, CCD Chip)
with respect to the outer casing.

Another rigid rotation qgw is given between the global
reference frame and the world coordinate system (cf. Fig. 4). This
quantity is calibrated once online by averaging over several
samples qgw;t ¼ qgs;t � qsw;t , where qgs;t is the orientation estimate
obtained from the IMU and qsw;t is the estimated sensor
orientation at time t. The average qgw is then used during the
system (re)initialisation to predict the initial quaternion state
qsw;t ¼ qsg;t � qgw (cf. Section 2). The accuracy of this quantity is
not critical, as it is only needed for (re)initialisation.

Three different test cases were considered in the experiments,
a small-scale test scenario with movements controlled by an
industrial robot (Desktop), a realistic mid-scale (Room) and a
large-scale scenario (Foyer), both with uncontrolled movements,
where the CamIMU was held in the hand. The textured CAD
models required by the image processing method were created
either manually or semi-automatically from some photos using a
commercial modelling tool. Textured CAD models can also be
generated automatically from an image sequence using structure
from motion algorithms [35,36].

In all test scenarios, the proposed system was able to track the
trajectory of the CamIMU online and stably at 25 Hz on 320� 240
resolution images. The image analysis revealed no problems with
textures from synthetic images or cameras other than the one
used for the tracking. For an in-depth evaluation representative
data sequences (synchronised images and IMU data) were
captured from each scenario. The results are presented in
the sequel. The system parameters and noise settings used during
the experiments are given in the Appendix.

5.1. Test case: Desktop

In order to evaluate the tracking performance of the four
sensor fusion models introduced in Section 4, the CamIMU was
mounted on a robotic arm observing the small two-sided target
object shown previously in Figs. 2 and 3. The robotic arm
performed a continuous movement in the shape of an eight at
various speeds. Fig. 6 shows camera images from the outer points
of this movement. Two data sets were considered for the tests, a
slow sequence and a fast sequence. The estimated accelerations and
angular velocities are shown in Fig. 7.

As the fast sequence contains significant body accelerations,
which violate the assumptions of the gravity model severely, a
simple detection criterion has been applied. Basically, the
accelerometer measurement update is omitted at time t, if

jkya
s;t � ba

s;tk � kgwkj4Da, (23)

where ya
s;t are the measured accelerations, ba

s;t is the latest bias
estimate, gw is the gravity vector in the world frame and Da is a
user-defined threshold. The values are given in the Appendix.
Additional body acceleration detection criteria are given for
instance in [37,38].

The prediction errors of the features in the image plane, that is
the Euclidean distances between the predicted feature positions
and the registered positions, are used as indicators for the tracking
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Fig. 5. CamIMU: integrated camera and inertial sensor package. Both devices are

synchronised in hardware.
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performance. Table 1 shows clearly how the acc and the acc input
model outperform the other models on the fast sequence
producing a significantly smaller root mean square prediction
error. This also becomes apparent in Fig. 8, where the prediction
errors produced by these models remain constant, while the gyro
and the gravity model produced errors that are highly correlated
with the acceleration peaks in Fig. 7. On the slow sequence, all
models perform comparably well, as expected.

Table 1 also shows that the gravity model, which uses
accelerometers to stabilise two angles of the orientation estimate,
gives no improvement to the gyro model on any of the two
sequences. This is explained by the fact that a relatively
high feature density has been used for the experiments, providing
sufficient information about the orientation. Fig. 9 presents
results on the slow sequence, where only two features were
used for the vision-based tracking, thus revealing the benefits
of using the accelerometers in the gravity as well as in the acc
model.

Finally, Table 1 shows that the acc and the acc input model
yield comparable results, indicating that the missing correlations
between the orientation and the body acceleration in the acc
input model do not impact the tracking performance. The acc
input model yielded equally stable and precise estimation
results as the acc model, but with significantly reduced computa-
tional costs. Fig. 10 shows the processing time needed by both
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Fig. 6. Desktop: two frames of the image sequences, where the CamIMU was nearest to (a) and farthest from (b) the target object.
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Fig. 7. Desktop: free linear accelerations and angular velocities of the slow and the fast sequence as estimated by the proposed system running in the acc mode.

Table 1
Desktop: root mean square prediction errors in pixels for the different sensor

fusion models given as mean [std].

Gyro Gravity acc acc input

Fast sequence 3.82 [4.04] 3.83 [4.05] 0.91 [0.59] 0.77 [0.45]

Slow sequence 0.51 [0.47] 0.50 [0.47] 0.59 [0.37] 0.69 [0.40]
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models for the EKF time and measurement updates. Using the
acc input model reduced the computational costs by a factor
of 2.7.

The experimental results presented so far allow the following
conclusions. The gravity model is superior to the gyro model by
reducing the number of features needed for correcting the drift in
the gyroscopes, but both models show—as expected—a poor
tracking quality in the presence of changing linear velocities. The
acc and the acc input model also reduce the number of features
needed and provide significantly higher prediction quality. Under
slow movements, where the constant acceleration model is
actually overparameterised, they still perform just as well without
introducing instabilities. Moreover, treating the inertial data as
control inputs significantly reduces the computational demand,
while keeping the tracking quality.

In order to give an idea of the absolute accuracy of the overall
system under quick motions, the reference trajectory of the robot
has been transformed into the spatial and time reference of the
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Fig. 8. Desktop, fast sequence: the prediction errors of the registered features

show clearly the superiority of the acc and the acc input model. The outliers are

already removed.

Fig. 9. Desktop, slow sequence: after 22.32 s of tracking with only two features, marked by green crosses, the gyro model (a) has drifted significantly, while the gravity and

acc model (b,c) show comparably stable results. This can be seen from the pose of the augmented coordinate system.
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without accelerometer bias estimation. This has been measured on a 2.2 GHz

laptop. Note that the processing time varies due to a varying number of vision

measurements per frame. The three peaks are explained by frame misses, where

the IMU buffer contained twice as many IMU readings (cf. Section 2).
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fast sequence and compared to the camera trajectory produced by
the acc and the acc input model. The average Euclidean position
error obtained from this comparison was 1 cm and the average
error in the Euler angles 0:76�. Note that the transformations used

to synchronise the trajectories contribute to the measured
estimation errors, so that the actual accuracy can be assumed
higher.

Finally, the online bias estimation has been investigated on the
fast sequence using the acc model. The result is shown in Fig. 11.
The gyroscope bias estimates—initialised to zero—converge
quickly and stay constant over the short duration of the
experiment, while the accelerometer bias estimates change with
the orientation. This indicates that the gyroscope biases are
estimated reliably, while other errors such as calibration or model
errors tend to show up incorrectly in the accelerometer bias
parameters. As a matter of fact, the online accelerometer bias
estimation caused repeated instabilities in the tracking without
significantly improving the overall tracking performance as long
as corrective vision measurements were available. Table 2
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Fig. 11. Desktop, fast sequence: gyroscope and accelerometer biases as estimated

by the acc model.

Table 2
Desktop: root mean square prediction errors in pixels for the acc model with and

without accelerometer bias estimation given as mean [std].

w/ bias estimation w/o bias estimation

Fast sequence 0.908 [0.586] 0.913 [0.589]

Slow sequence 0.586 [0.373] 0.725 [0.412]

Fig. 12. Room: the CAD model used for the feature registration (a) and some overlaid frames demonstrating the range of possible movements (b–d). Note that the wall

observed in (d) is not part of the model. However, the augmentation in the lower left corner stays in its place.

0
0.5

1
1.5

2
2.5

3

−2.5
−2

−1.5
−1

−0.5

1.2
1.4
1.6
1.8

2

x [m]
y [m]

z 
[m

]

Fig. 13. Room: camera trajectory in world coordinates as estimated by the

proposed system. The coordinate systems denote the camera orientation for every

50th frame.
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presents the root mean square prediction errors for the features
with and without online accelerometer bias estimation and shows
that the performance gain is minor. Moreover, the proposed
system was found to be very sensitive to the accelerometer bias

process noise. These observations and the fact that the gyroscope
biases are the dominant sources of error, not only for the
rotational, but—if the acc or the acc input model is used—also
for the translational states, are the reasons, why only the
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Fig. 14. Room: some overlaid frames demonstrating the stable operation of the system under occlusion (a) and changing illumination (b,c). In (a) the green crosses indicate

registered features and the red ones mark features where the registration failed due to the occlusion.

Fig. 15. Foyer: (a) CAD model used for the feature registration and virtual objects, (b) rectified live image with feature positions and augmentations, and (c) another live

image with significant motion blur where features were nevertheless registered.
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gyroscope biases were estimated online during the subsequent
experiments. This implies a reduction of the state vector by three
states and hence further computational savings, which are
visualised in Fig. 10 as well.

5.2. Test case: Room

In this scenario a person walks in a room of base area 5� 4 m
and carries the CamIMU. Three walls of the room are modelled as
shown in Fig. 12(a). The captured data sequences contain a
significant range of rotations and translations demonstrated in
Fig. 13 and some other challenging parts, which are all handled
robustly by the proposed system running in the acc or the acc
input mode. Two 360� rotations were performed whereas one wall
was not included in the CAD model. The tracking survived these
periods of pure dead reckoning as indicated in Fig. 12(d). When
the user moved the camera very close to the target scene seeing
only few features, the augmentation still remained in its place
(Fig. 12(c)). Finally, some fast movements with free accelerations
up to 12:9 m=s2 and rotations up to 9:6 rad=s were tracked
successfully. Fig. 14 demonstrates the stable operation of the
system under occlusion and severe lighting changes.

5.3. Test case: Foyer

In this scenario a person carrying the CamIMU is standing on
the first floor of a building behind a handrail looking down into a
large open foyer. A part of the opposite wall (4:5� 8:5 m) at a
distance of approximately 7 m is used for the natural feature
registration. Fig. 15 shows the textured CAD model and some
augmented live camera images. Note that the features on the
posters look quite similar due to the big viewing distance. A very
precise prediction is therefore crucial to maintain the tracking.

This sequence could not be processed using the gravity or the
gyro model, although the camera movements were indeed mainly
rotational. However, the rotations were off-centre and hence
produced also high linear accelerations. Fig. 16 shows the
estimated free linear accelerations and angular velocities based
on the acc model, which tracked robustly throughout the whole
sequence.

Fig. 17 presents the prediction errors for the features with the
detected outliers marked by stars. The root mean square
prediction error over the whole image sequence was 1.42 pixels

with 1.47 pixels standard deviation. Some increased displace-
ments between time 60 and 70 are explained by vision data
repeatedly missing for up to half a second. Without vision data the
pose was based solely on dead reckoning.

6. Conclusion

This article presents a markerless visual–inertial tracking
system that works robustly in small- and large-scale environ-
ments, under varying lighting conditions, fast camera movements
and even short periods without vision data.

A markerless image processing method based on the analysis-
by-synthesis technique has been developed, which in the most
efficient way exploits a running pose prediction by first rendering
a simplified textured 3D model of the environment for predicting
the feature appearances and second registering the features in the
live camera images by estimating their 2D displacements and
local illumination.

Moreover, different sensor fusion models have been evaluated
under controlled movements, showing clearly the benefits of fully
exploiting all information given by the accelerometer measure-
ments. The benefits are better tracking quality and reduced
demand for vision measurements. These results were also verified
under uncontrolled movements in realistic mid- and large-scale
environments.

By combining the developed image processing algorithm with
the fusion strategy of the acceleration input model, a very efficient
and robust final system is obtained.

It is important to note that, due to the image processing
approach used, the proposed tracking system is suitable for
environments containing richly textured planar regions and walls.
However, the analysis-by-synthesis technique has also been
applied successfully to poorly textured environments by exploit-
ing prominent contours, see for instance [39–41]. The developed
system allows for a smooth exchange of the image processing
algorithm, thus making it easy to extend its applicability to such
scenarios.

Model-based approaches provide stable tracking and are
suitable for a wide range of applications. However, the model
generation and maintenance can be time consuming and the
assumption of a static environment is often violated. Future work
will therefore consist in expanding the system with real-time
SLAM capabilities.
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Fig. 16. Foyer: free linear accelerations and angular velocities as estimated by the

proposed system running in the acc mode.
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Appendix A

This appendix provides the settings for the system parameters
and the noises—given as standard deviations and assuming equal
noise in all dimensions—used during the different experiments.
The noise affecting the feature registration has been determined
experimentally by looking at the change in the 2D pixel locations
while the camera was stationary. The 3D model coordinates,
which are obtained from the target scene model, were assumed
certain.

The settings for the test case Desktop are given below. Note that
the process and measurement noise settings related to the
accelerations differ significantly between the models and data
sequences. In order to assure meaningful evaluation results,
appropriate settings were derived for each model from the model
assumptions and the reference trajectory of the robot.

Gyro Gravity acc acc input

Fast sequence

v€sw;t 4 4 0.1 –

ea
s;t – 0.84 0.14 –

Da – 0.4 – –

Slow sequence

v€sw;t 0.19 0.19 0.1 –

ea
s;t – 0.28 0.14 –

Da – – – –

Both

va
s;t – – – 0.14

vos;t 0.1 0.1 0.1 0.01

vbo

s;t 1� 10�5 1� 10�5 1� 10�5 1� 10�5

vba

s;t 1� 10�5 1� 10�5 1� 10�5 1� 10�5

eos;t 0.01 0.01 0.01 –

en
t 7� 10�3 7� 10�3 7� 10�3 7� 10�3

The subsequent table provides the settings for the test cases
Room and Foyer, where the acc model was used.

Room Foyer

v€sw;t 0.1 1

vos;t 0.1 0.1

vbo

s;t 5:5� 10�4 5:5� 10�4

ea
s;t 0.04 0.18

eos;t 0.023 0.06

en
t 7� 10�3 7� 10�3
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