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Abstract—Operating in real-world environments, a robot
will need to continuously learn from its experience to update
and extend its knowledge. The paper focuses on the specific
problem of how a robot can efficiently select information that
is ”interesting”, driving the robot’s ”curiosity.” The paper inves-
tigates the hypothesis that curiosity can be emulated through
a combination of active learning, and reinforcement learning
using intrinsic and extrinsic rewards. Intrinsic rewards quantify
learning progress, providing a measure for ”interestingness” of
observations, and extrinsic rewards direct learning using the
robot’s interactions with the environment and other agents. The
paper describes the approach, and experimental results obtained
in simulated environments. The results indicate that both intrin-
sic and extrinsic rewards improve learning progress, measured
in the number of training cycles to achieve a goal. The approach
presented here extends previous approaches to curiosity-driven
learning, by including both intrinsic and extrinsic rewards, and
by considering more complex sensorimotor input.

Index Terms—Intrinsically motivated reinforcement learning,
interactive robot learning, developmental robotics, epigenetic
robotics.

I. INTRODUCTION

We would like our robots to operate in real-world envi-

ronments. They should assist us at home, in the office, malls

and supermarkets, or even outdoors. The challenge we face

there is that these are perceptually very rich environments.

It is not possible to endow the robot with all there is to

know about such environments – we can in no way guarantee

”omniscience out of the box.” To address this challenge, we

need to make the robot capable of learning what it does not

know yet. Using its experience, it should continuously update

and extend its knowledge.

In this paper we address a specific problem in the wider

context of continuous robot learning. As the robot is able

to obtain rich perceptual input, how can it efficiently obtain

and select information that is relevant or interesting, given

what it is trying to learn? The hypothesis we explore in this

paper is that a robot can focus on interesting learning material

by adopting an active form of exploration. We propose a

combination of active learning, with reinforcement learning

based on intrinsic and extrinsic rewards. The intrinsic rewards
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focus on learning progress, whereas the extrinsic rewards

direct learning based on the robot’s interactions with the en-

vironment and other agents. The combination of the rewards

provide the basis for the robot’s curiosity and motivation to

explore some aspects of the environment further.

The approach we present in this paper combines insights

from active learning mechanisms for speeding up learning

[1], and intrinsic motivation systems for learning [2]. Intrinsic

motivation systems drive the learning process by measuring

how and whether learning makes progress. In addition to

intrinsic motivations, our approach also includes various

extrinsic sources of motivation. Extrinsic sources include the

robot’s interactions with the environment, and other agents.

The intrinsic motivation system we adopt is based on

the idea of successive stages of development. We use a

fusion of the perception and action state spaces to define

a sensorimotor model. At each time step, a tuple consisting

of the current sensorimotor space and the perceptual state

estimation is stored, i.e. a prediction of the consequences

of the actions can be evaluated. We then use the error in

prediction to calculate a measure of learning progress. The

intrinsic rewards used to guide the exploration process are

inversely proportional to the decrease in error rate of the

experts used for prediction. Effectively this means that the

opportunities to learn more are triggered by this mechanism

in an active manner. As basis for our prediction models

we use the memory-based KD-tree algorithm for k-nearest

neighbour search[3]. However, more sophisticated learning

machines should be used for larger training times, in order

to lower the space computational complexity of the problem.

Learning successively enters into more complicated stages

of development by sequentally splitting the sample space of

sensorimotor and prediction features at specific time steps.

In cycles of 250 time steps, the sample space is split based

on its variance, defining cutting values to divide the sample

space. Thus, after some number of splits, prediction machines

become distributed, and start to concentrate on the specific

state space regions for which they yield optimal predictions.

We designed the extrinsic motivation system to include

rewards based on interaction with the environment, and with

a human tutor. The later type of rewards is inspired by the
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experiments of [4]. Types of extrinsic rewards are collision

penalties, evaluation of progress towards a physical goal ob-

ject, and rewards on succesfully executing particular actions

(i.e. when the robot succesfully grips an object). Moreover,

the human tutor is able to interact with the robot by sending

a reward signal whenever he/she finds this appropriate. We

maintain a memory of the more recent rewards that are

relevant on the current sensorimotor context.
Given our hypothesis, the expectation is that intrinsic and

extrinsic rewards help a robot to achieve an expected goal in

a shorter amount of time. To test this, we created a simulated

world (using Player/Stage), and placed a mobile robot in a

room in a larger environment. In the environment, the robot

encounters obstacles that it should be able to avoid or surpass.

We defined several experiments, differing in task complexity

and in what types of rewards were available to the robot.

In each experiment, the goal task is for the robot to grip an

object. Depending on the scenario, this goal object may be in

a room different from the one in which the robot starts. As

robot we use a Pioneer P2-DX equipped with sonar sensors,

fiducial and blob finders, bumpers and a gripper touch sensor.

These sensors are sources of information that can be detected

by the robot as salient events, for instance when directing the

attention to objects. The space of motor actions the robot can

perform is continuous and allows three degrees of freedom,

i.e., it is able to move backwards and forwards, rotate left

and right, and close or open the gripper.
In this paper we show results for three different kinds

of experiments. In the first experiment, only intrinsic moti-

vation is employed. The second one applies also extrinsic

motivation but not interactive rewards, and the third one

includes also interactive rewards. These experiments provide

indications that the use of rewards based on learning progress

is indeed beneficial for reaching the goal object. Adding

extrinsic rewards can help accelerate reaching the goal (again,

on the average) by a 60% – or, combined, intrinsic and

extrinsic rewards can help cut cycles by 80% over a standard

active learning baseline. The experiments also demonstrate

the effectiveness of the intrinsic motivation system when

applied to a sensorimotor space which is more complex

than those explored in related work. The robot manages to

explore efficiently the environment, and explore regions of

the learning space that might be interesting while avoiding

situations of low learning progress.
This paper is organized as follows. The next section

presents a brief overview of current research in intrinsically

motivated systems and interactive learning. In section III, we

explain the learning algorithm in detail. In section IV we

present and discuss the experimental results. We close the

paper with conclusions and discussions of follow-up research.

II. RELATED WORK

The opportunities for exploration and curiosity have been

found to be important mechanisms for animal, humans and

robots to learn (see discussion in [5], [2]). There exists a kind

of intrinsic motivation system which is a source of internal

rewards, in contrast to extrinsic rewards that can be obtained

from the environment or other external agents. Thus, such a

system rewards exploration without the need of immediate

external rewards. The discovery of a new skill is then a

reward in itself. For children it is in fact more important to

autonomously explore the world to gain motor and perceptual

abilities in its first stages of development, although an adult

teacher can help by scaffolding the children’s environment

[6]. This learning process is also active, in the sense that

the opportunities to learn more interesting tasks are progres-

sively chosen by the agent. Different motivation drives have

been considered, such as novelty, surprise, incongruity and

complexity.

Two scenarios were set up in [2] to evaluate this learn-

ing mechanism. In the first experiment, a simulated robot

equipped with two wheels predicts a distance to a toy based

on the consequences of taking some actions and the distances

it senses. The action space is three dimensional and consist of

the speed of motor on the left, on the right and the frequency

of a sound emission. Depending on three different frequency

ranges, in this simulated environment the toy moves either

randomly, or it stops, or jumps into the robot. The actions

to choose are selected according to the maximization of the

expected reward (inverse of error rate decay) in the next time

step, allowing also a random exploration of actions with a

given probability. In this work, typical reinforcement learning

algorithms such as Q-Learning were not considered in order

to avoid the complex issues arising from the consequences

of delayed rewards. However, these techniques are applied in

related works [7] and in general this approach is commonly

known as intrinsically motivated reinforcement learning. It

is important to notice that rewarding learnability punishes

predictability and complex unpredictability. These aspects

have been also considered in [8].

A second experiment involves a Sony AIBO robot in

interacting with toys that can be bitten, bashed or visually

detected. Its sensors can perceive the detection of an object,

the ocurrence of biting an object, and the toys oscillations.

No a priori knowledge of the consequences of actions was

included in the robot programming, apart from proper con-

trol primitives needed for perception. In this more difficult

experiment, the results also show that the robot usually starts

performing random actions, followed by simple tasks and fi-

nally more complex ones. When it finds an interesting source

of learning it spends some time performing the corresponding

action, till there is no more motivation for doing it. Thus, the

robot recognizes affordances, that is, that certain actions are

sufficiently interesting at some point when the robot identifies

the correlations between these actions and its corresponding

perceptions.

The results of the experiments demonstrated that the agent
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starts performing actions almost uniformly randomly and

then it focuses on more and more complicated stages, where

the actions consequences depend on more variables. Thus,

the robot avoids situations in which nothing can be learned

and directs its attention autonomously to more complex

situations. It was also shown that this algorithm (Intelligent

Adaptive Curiosity - IAC) is more efficient than simple

random exploration or IAC without exploration.

In [6], [4], an active virtual agent called Sophie learns the

order of steps needed in cooking. These skills are obtained

not only by trial and error tests but also by interaction with a

human teacher, which is able to give feedback as well, based

on sending a reward signal. Experiments conducted with

human tutors (not machine learning experts) demonstrate that

they are able to identify when the agent is making learning

progress, when some feedback mechanism (transparency) is

included in the agent behaviour.

III. APPROACH

As pointed out in section I, the robot interacts in its

environment by using a curiosity-driven behaviour mecha-

nism. We developed an Intrinsic Motivation System, which

is based on the work described in [2]. In order to implement

a curiosity-driven motivation mechanism, we want the robot

to concentrate on situations that are new or interesting for

it. Thus, following the work in [2], the robot is able to

predict the tuple {SM(t − 1),S(t)}, where SM(t) is the

concatenation of the sensor and motor vectors S(t) and

M(t) at time t. We use learning machines to predict the

consequences of taking some action in a given sensory state

at the previous time step. In the first time steps, a learning

machine corresponding to a first region R1 is created. All

sensorimotor perceptions found are considered to be part

of this region. In our experiments, a region is split into

2 regions after 250 time steps, as described in [2]. The

sensorimotor context is partitioned by using a measure of the

variance of the instances in the region, and a cutting value and

cutting index in the sensorimotor space is used as splitting

criterion. In this way, this information-based procedure is

used to partition efficiently the state space. Thus, the learning

machine Mn, corresponding to a region Rn, specializes in

some sensorimotor context.

The error rate en(t) is tracked for successive time steps

in order to measure an average error rate. The decrease in

error rate is obtained and this quantity is used to calculate the

learning progress, that is, an error rate reduction corresponds

to an increase in learning progress. The intrinsic reward rl
n(t)

is then the calculated learning progress quantity.

As previously sketched, we also make use of extrinsic

rewards in order to guide the robot to reach the goal. These

are a penalty for collisions rc
n, a reward for the gripping event

rg
n and a reward rf

n when an approximation to a distance

goal is measured by using the fiducial finder. Moreover, the

interactive reward mechanism rint
n can be employed by the

human tutor. The overall reward mechanism is then:

rn(t) =
∑

i

αir
i
n(t), (1)

where αi is the weight of the i-th reward applied in the

region Rn. In our experiments, we gave similar weights for

all the rewarding techniques, except for the collision penalties

that get lower values. When the robot collides with the goal

object, we notice that this situation is also interesting from

the point of view of the goal we want the robot to achieve.

The learning procedure is performed as follows. A first re-

gion is created and the previous sensorimotor state SM(t−1)
is registered, together with the current sensory state S(t).
Then, a learning machine is used to learn this training

instance. The sensorimotor vector is normalized with val-

ues ranging from 0 to 1. Afterwards, the vectors Hn =
{Cn,Gn, In} of recent rewards are updated according to

the sensing information, where Cn,Gn and In correspond

to collision, gripping and interactive rewards respectively. In

this case, a history of 15 events is stored. For each reward

vector Kn ∈ Hn, the corresponding current reward ri
n is

calculated as:

ri
n(t) =

∑

t≥tn

ϕt−tnKtn
n , (2)

where ϕ is a discount factor, typically 0.99. The fiducial

finding based reward rf
n is calculated as a sum of the

differences between the successive x and y distances to the

goal object.

Then, a new action should be selected that maximizes

the expected rewards. For this purpose, a sample of 100000
possible actions is generated and the expected learning

progress Ln(t) ≈ rl
n(t − 1) and expected extrinsic rewards

E{ri
n(t)} ≈ ri

n(t − 1) for the current Region Rn are

calculated. So, the maximum value for all generated actions

A for some regions R is calculated:

max r(t) = arg max
A,R

∑

i

αir
i
n(t− 1) (3)

for some region n ∈ R. The corresponding action is

executed by the robot. When selecting translational actions,

we assure that the robot does not perform dangerous actions

like approaching hastily the walls. Moreover, we used a

near(ε)-greedy action selection rule with ε = 0.3 to allow

random actions and permit additional exploration sources.

Thus, a random action is selected with a probability of 0.3.

IV. EVALUATION

A. Evaluation setup: Scenarios & methods

In this work, the PlayerStage simulator was employed to

perform experiments. A Pioneer P2-DX robot was included
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in the world, plus two objects that are used as obstacles and

a last object to be gripped by the robot. This object owns a

fiducial that is detected by the robot when the object stands in

the robot vision range. The robot acts in a room environment

surrounded by walls and a hole to pass to a next room (see

Figure 1).

Fig. 1. The scenario in the initial state. The robot (right-hand side) is
expected to surpass the obstacles in the middle and reach and grip the goal
object (left-hand side).

At each time step in the learning loop, the robot senses its

environment using the following sensors:

• 16 sonars distributed around the robot, whose values

range is [0.0, 5.0].
• 3 bumpers at right, left and front sides of the robot, with

values 0 and 1, the latter corresponding to a collision

detection.

• 2 gripper sensors, corresponding to a touch sensor and

a gripper status.

• 1 fiducial finder sensor detecting x and y relative coor-

dinates from the robot to the detected object.

• 1 blob finder sensor detecting area and object position

in the x coordinate in the vision range of the robot.

Thus, a sensor context S(t) measured in time step t is a

25-dimensional continuous vector, since the robot is able to

detect at most 3 objects at a given time using the blob finder.

The motor context M(t) in time step t is a 3-dimensional

continuos vector of:

• translational velocity values ranging in the interval

[−0.5, 0.5].
• rotational velocity values ranging from −0.1 180

πω to

0.1 180
πω , where ω is the wheel diameter of the robot,

where ω = 24 for a Pioneer P2-DX. These quanti-

ties were found to allow more stability in the robot

behaviour.

• 3 gripper motor values corresponding to the actions

open, close and no action.

Three different settings are considered in this investigation.

In the first place, only intrinsic motivation mechanisms are

used. Secondly, extrinsic motivations are also included and

finally also interactive rewards. Moreover, different scenarios

where the state space of actions and sensors is restricted were

set up, in order to analyse more carefully the whole system

by studying its different components.

In each of these cases the learning progress is taken

into account, because the system is mainly based on this

curiosity-driven mechanism. When the robot performs actions

corresponding to a specific region Rn, we observe increases

and decreases of the learning progress.

In order to analyse the different sources of reward indepen-

dently, we performed several experiments on a restricted state

space. The first scenario involves the robot moving in circles

around its own axis and a gripable object. With this setting

(gripping scenario), we want to check that the robot enters

in a stage of learning progress, when it finds the gripping

action interesting, i.e., when succesfully gripping the object.

The second scenario involves a robot in front of the object

at a certain distance. In this setting (reach goal scenario),

we want to test the effectiveness of the extrinsic rewarding

techniques in order to reach the goal.

B. Results

As explained in the previous section, we made preliminary

analyses of the data by restricting the state space of the

robot. In the gripping scenario, the robot only performs

rotational and gripping actions. In Figure 2 we can observe

a correlation between the learning progress and the increase

in the frequency of actions that are interesting for the robot,

e.g., closing the gripper to grip the object.

The reach goal scenario involves a target object and the

robot performs only translational actions in front of it at

a certain distance. Figure 3 shows that the use of fiducial

finding based rewards and interactive rewards accelerates

the task of approaching the object. 5 different runs of the

experiment were performed for 3 different cases. In average,

∼ 100 steps are needed to reach the goal for the scenario

without extrinsic and interactive rewards; ∼ 40 for the

scenario with extrinsic rewards and ∼ 20 with extrinsic and

interactive rewards.

The last scenario, whose initial state is the one we show in

Figure 1 is evaluated with the whole motivation system. In

Figure 4, one possible path taken by the robot is shown.

We found that when using additionally extrinsic rewards,

the average number of steps needed for the robot to attain

the goal (∼ 3000) does not decrease. This might be due

to the fact that the fiducial rewards are not always accesible,

because there are different ways to surpass the obstacles. The

other rewards are sometimes not relevant enough for reaching

the goal. This was also the case for interactive rewards and

the reason might be that given that each reward is related

to a specific region and this region might correspond to a

rich sensorimotor state (when different actions are allowed),

this reward might be causing unexpected effects for actions

we want to reward and not to punish. This mechanism is,

however, useful when the robot gets stuck at certain regions

that have been well learned after some time, for instance the

regions bordering walls. Figure 5 shows the contours of some

perceptions of the robot until it reaches the goal object.
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Fig. 2. The robot manages to grip the object and close the gripper at a higher
frequency than the average at the time step ∼ 1050. The learning progress
in the corresponding context region 9 increases. By “other perception” we
mean bordering walls, looking at obstacles, among others.

C. Result analysis

The results show the effectiveness of the active learning

mechanism to explore the environment and recognize inter-

esting sources of learning. However, the results presented

here are preliminary and we have to perform more analyses in

order to understand the nature of the learning progress. Since

the perceptions of the robot change quickly because of the

nature of the motion, it is more difficult to establish when the

creation of successive stages of development is relevant for

achieving some goal. For instance, some regions are created

but the robot perform actions very rarely in such state spaces.

Additionally, sometimes the robot escapes quickly from a

recent created region.

In spite of this, observations of the learning curves show

that the robot in fact learns from the environment. One

example is when the robot manages to reach the obstacles

by going forward and backwards, detecting a salient event.

We have observed peaks in these actions when the robot finds

these sources of learning.

There are also some issues related to the effectiveness
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Fig. 3. Figure (a) shows the gripping event by only using learning progress
reward. Figures (b) and (c) show that the fiducial based rewards permit
the robot to reach the goal in ∼ 25 time steps. (d) and (e) show that
the interactive rewards accelerate more the goal reach. The memory of 15
rewards also allows the robot to reach the goal more frequently.

of the reward mechanism. Since the rewards are related

to a specific region, it is possible that when some regions

generalize over many different types of actions the rewarding

mechanism might be counterproductive. In the next section,

we discuss different approaches to these problems.
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Fig. 4. A path taken by the robot using intrinsic motivation. In this figure,
it is observed that the robot first focus on trying to learn the region around
the walls, and then identifies a salient event such that the obstacles and reach
them. After this, it also finds the goal twice and experiments with the walls
in the left in between. The box at the left-hand side of the image shows the
blob finder sensor data.
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Fig. 5. One run of the experiment, when we observe some abstract
perceptions of the robot in the scenario with obstacles and gripable objects

Because of some limitations in the speed simulation al-

lowed by the software, we were not able to perform as much

experiments as needed, which is also important to obtain

additional data to be analysed more carefully.

V. CONCLUSIONS AND DISCUSSION

In this paper, we describe a curiosity-driven based mech-

anism for exploration of a mobile robotic environment.

Regions of interest arising from the partition of the state

space are successively created, allowing the robot to select

proper actions given a specific sensor context. Interesting

results were found and it is recognized that the robot is

able to explore and learn from the environment using an

intrinsic mechanism. Moreover, other external sources of

rewards were also investigated, as well as interactive rewards,

which are found to be sometimes useful when the robot gets

stuck at some not interesting regions or to accelerate the

approximation to a target objective.

The robot is able to attain goals, i.e., to reach some

obstacles, surpass them and then reach and grip a goal

object. However, much work remains to be done in order to

understand the robot behaviour and improve the rewarding

techniques.

Moreover, it is also an open issue how the agent can

retain temporal information and use hierarchical mechanisms

to abstract simple tasks into more complex ones, when it

is put in an autonomous setting. This has been studied

for reinforcement learning configurations specially using the

concept of options for the generalization of tasks [9], [6],

[10], [11].
It might be useful to explore alternatives like exploration in

specific state spaces using some kind of invariance [8]. More-

over, one can consider automatic construction of Markov

models after an efficient exploration using intrinsic motivated

approaches [7], [12], [13], which use more sophisticated

reinforcement learning algorithms like Q-Learning but have

not been tested in real robotic environments. Moreover,

prediction of motivational drives or rewards has also been

investigated and other sources of motivation like predictabil-

ity or familiarity may also be taken into account [8], [6],

including more complex motivational systems.
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