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Abstract—Source IP addresses are often used as a major
feature for user modeling in computer networks. Particularly in
the field of Distributed Denial of Service (DDoS) attack detection
and mitigation traffic models make extensive use of source IP
addresses for detecting anomalies. Typically the real IP address
distribution is strongly undersampled due to a small amount
of observations. Density estimation overcomes this shortage by
taking advantage of IP neighborhood relations. In many cases
simple models are implicitly used or chosen intuitively as a
network based heuristic. In this paper we review and formalize
existing models including a hierarchical clustering approach first.
In addition, we present a modified k-means clustering algorithm
for source IP density estimation as well as a statistical motivated
smoothing approach using the Nadaraya-Watson kernel-weighted
average. For performance evaluation we apply all methods on a
90 days real world dataset consisting of 1.3 million different
source IP addresses and try to predict the users of the following
next 10 days. ROC curves and an example DDoS mitigation
scenario show that there is no uniformly better approach: k-
means performs best when a high detection rate is needed
whereas statistical smoothing works better for low false alarm
rate requirements like the DDoS mitigation scenario.

I. INTRODUCTION

User modeling is an important task for applications to
understand traffic flows and user behavior at the server-side.
The results of user models can be used for a variety of
applications to predict future situations or classify current
states with machine learning technologies. Use case scenarios
include Distributed Denial of Service (DDoS) attack detection
or mitigation [1][2][3][4], quality of service (QoS) [5], click
fraud detection[6] and traffic forecasting in general. In peer-
to-peer (P2P) overlay networks, IP models can also be used
for optimizing request routing [7].

Different machine learning techniques are used to train
a classifier (model) with previously observed data and then
usually an online decision is made by the system based on the
actual traffic. In this context, also outlier detection methods
are often used if only one class is known. If, for example, an
Intrusion Prevention System wants to mitigate DDoS attacks,
it usually has only seen the normal traffic class before and
it has to detect the outlier class from the fact that it behaves
differently.

DDoS attacks are a major menace in the internet today.
Malicious hackers build botnets through infecting a large
number of PCs (bots or zombies). Then, they combine their
bandwidth and computational power in order to overload
a publicly available service and denial it for legal users.

There are multiple strategies with dealing with DDoS attacks,
whereas practically applicable ones are near-target filtering
solutions. An overview of state-of-the-art mitigation research
is given by Dittrich [8] and Mirkovic et al [9].

All near-target solutions have in common, that they try
to estimate normal user behavior based on IP packet header
information. During an attack, outliers are detected and denied.
One parameter all methods have in common, is the source IP
address of the users, which seems to be a highly discriminant
feature for DDoS traffic classification. However, the methods
of storing IP addresses and estimating their density in the
huge IP address space, are different. We give in Section III
an overview, which methods are implicitly or directly chosen.
Furthermore, we introduce two new statistically based methods
in Sections V and VI for IP density estimation: one is based on
k-means clustering and the other is a kernel density estimation
approach.

In Section VII we compare the different methods with a
standard pattern recognition evaluation based on real network
data: given a training set with previously observed IP addresses
we try to predict whether an IP address will be included in
an unknown test set representing future source IP addresses.
Furthermore, we investigate Receiver Operating Characteristic
(ROC) curves in order to compare the adaptivity of the
presented methods.

Although DDoS mitigation is the most important practical
application for IP density estimation, we do not restrict the
following work on this topic. Our generic view on IP density
estimation may be valuable to other applications as well.
One might think of preferring regular customers in overload
situations (flash crowd events), identifying non-regular users
on websites during high click rates on online advertisements
(click fraud detection) or optimizing routing in peer-to-peer
networks.

II. IP DENSITY ESTIMATION

An IP density estimation is a one dimensional density
function of the random variable S over all existing N = 232

IPv4 addresses s0 = 0.0.0.0 to s232−1 = 255.255.255.255.
The density estimation is applicable on IPv6 as well, but
we stick to IPv4 in the following due to a lack of IPv6
datasets. The Probability Density Function (PDF) is used in
the following, which is a normalized density function f(s),



such that ∫ ∞
−∞

f(s) = 1 (1)

or in the discrete IP density scenario
N−1∑
i=0

P (S = si) = 1 (2)

where P (S = si) = pi is the probability of an IP address si to
be a source IP address that will occur in the future. Since we
don’t know the true underlying PDF f∗(s), we try to derive
a good estimation f(s) for all IP addresses using a training
set of observed IP addresses. Later, in Section VII, we use a
test set of IP addresses not used during training and calculate
the deviation from the predicted estimation to compare the
different methods.

III. RELATED WORK

In this section we review existing IP density estimation
approaches. Furthermore, we formulate the often implicitly
used ideas in a probabilistic way using the PDF.

A. History-based IP Filtering
Peng et al. [4] first proposed an algorithm called History-

based IP Filtering (HIF), a source IP density estimation for
mitigating DDoS attacks. Therefore, an IP address database
(IAD) contains all frequently previously seen IP addresses.
During an attack, only IP addresses from the IAD are per-
mitted and all others are blocked. The groundwork for this
algorithm was introduced by Jung et al. [10] analyzing IP
addresses from Code Red worm attacks. He found that source
IP addresses from attack traffic have not been seen before and
have a different distribution than the normal user traffic.

According to Peng et al., IP addresses are added to the IAD
if a certain threshold (e.g. a certain number of packets) is
exceeded. Later during an attack, the decision whether an IP
has to be blocked or not is binary. This means, the density
estimation results in a simple step function with only two
values: Zero or a positive value, which is the same for all
IP addresses. The PDF can be calculated as follows:

f(s) =
min(ns, 1)∑N−1

i=0 min(nsi
, 1)

(3)

where ns is the number of occurrences of an IP address s in
the training set. This means, the probability pi is either 1

M if
there are M different IP addresses in the training set or zero
if si has not been observed.

The advantage of HIF is that it is efficiently computable
online, also during DDoS attacks. This comes at the price,
that it cannot be differentiated between users which revisit the
server more often than others and is therefore a less precise
density estimator.

B. Adaptive History-based IP Filtering
Goldstein et al. [1] presented Adaptive History-based IP

Filtering (AHIF) to compensate the shortcomings of HIF:
instead of using the binary decision ”seen or not seen“,
histograms are used for density estimation:

f(s) =
ns∑N−1

i=0 nsi

(4)

where s does not necessarily represent a single IP address,
it rather stands for a range of IP addresses (a bin of the
histogram). So far, constant width networks with fixed network
masks ranging from 16 up to 24 bit are used as source bins.

The actual prediction Cα of the appearance of an IP address
(or an IP range) is done using a threshold α over f(s):

Cα(s) =
{

appears f(s) > α
does not appear otherwise (5)

During attack mitigation, the most appropriate network
mask is chosen such that a maximum numbers of firewall
rules is not exceeded and the attack traffic is reduced to be
below the maximum server capacity. It is shown, that the
adaptive method performs better in terms of predicting user
IP addresses during an attack. However, neighbor relations
(between source networks) are not taken into account.

Kim et al. [2] use a similar approach with fixed bin sizes of
only 16bit prefixes for online packet classification. Compared
to AHIF using smaller bin sizes this method is less accurate,
but uses less resources.

C. Clustering of Source Address Prefixes
Pack et al. [3] introduced algorithms for mitigating DDoS

attacks by filtering source address prefixes. Unlike AHIF,
network masks may be at different sizes. For finding the
appropriate networks, the authors are using a hierarchical
agglomerative clustering algorithm with single linkage. The
used distance measure is defined with respect to network
boundaries, which we will describe later in Section IV-A.

In general, the proposed method takes both into account
– the amount of requests from a source network as well as
neighboring density estimation as a result of using a (general-
izing) clustering method. Unfortunately, hierarchical clustering
methods consume a lot of memory and it was found [1], that
the presented method is not applicable in practice on large
source IP datasets.

IV. IP DISTANCE MEASURES FOR IPV4
ADDRESSES

All density estimation approaches require the definition of
an appropriate distance measure between two IP addresses si
and sj . In the AHIF approach the bin size of the histogram
defines the distance: if two IP addresses have the same prefix
based on the used network mask, the distance is zero. If they
do not fall into the same bin, the distance is infinity.

The most common way of a distance measure is to use the
Euclidean distance, which is in the one dimensional IP domain
simply the absolut value of the difference between two 32bit
integer values:

∆Eucl(si, sj) = |si − sj | (6)

A. Xor
The IPv4 address space is partitioned into multiple variable

length subnets, which are individually assigned and routed
to customers. Therefore one can assume that IP addresses
in the same subnet are more similar to each other than
two IP addresses in different networks. For example, if a
department runs the network 131.246.10.0/24, the IP addresses
131.246.10.1 and 131.246.10.3 are naturally more similar than
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Fig. 1. Different distance measures for the IP address 131.246.10.180

the IP addresses 131.246.9.255 and 131.246.10.1 although
their Euclidean distance is smaller.

Taking this fact into account during IP density estimation,
we used the distance measure proposed by Pack et al. [3]:
Xor the two IP addresses in integer notation together and
keep the highest order bit set and set all lower bits to 0.
This results in a maximum of 32 different distances ranging
from 20 to 231. For example, the distance of 346 and 365 is 32:

346 101011010
365 101101101

32 000100000

To be more formal, the distance can be calculated using
Equation 7:

∆Xor(si, sj) = 2blog2(si⊕sj)c (7)

B. Xor+
A possible downside of using the Xor distance mea-

sure might be the fact that distances within a spe-
cific network mask are always constant, regardless of
variation within this subnet. For example, the IP ad-
dresses 131.246.9.0 and 131.246.10.0 have the same dis-
tance (29 = 512) as the addresses 131.246.9.0 and
131.246.10.255. To get a smoother distance measure, the Xor+
distance is introduced: First the Xor distance is calculated and
then the Euclidean distance is added:

∆Xor+(si, sj) = 2blog2(si⊕sj)c + |si − sj | (8)

This results in a linear increase between two network based
distance jumps as illustrated in Figure 1. Referring to the
example above, the first distance is 768 and the second is
1023.

V. USING K-MEANS FOR IP DENSITY
ESTIMATION

In order to perform clustering of IP addresses in practice on
large real world data sets, the memory consumption has to be
reduced. Using hierarchical clustering methods yield to store
distance matrices in memory, which are usually O(M2) having

M source IP addresses. The k-means algorithm [11] seems to
be more appropriate for the density estimation scenario, which
cuts down the memory requirement to O(M ·K), where K is
the number of cluster centers. Also, the quadratic runtime of
hierarchical algorithms is reduced to linear complexity.

K-means was also used in a similar scenario by
Agrawal et al. [7] for identifying nearby host clusters in peer-
to-peer overlay networks. Instead of estimating densities from
cluster centers, they are used to optimize P2P request routing.

Algorithm 1 shows the pseudo-code of the used k-means
algorithm.

Algorithm 1 The k-means algorithm
1: Input
2: S = s1, . . . , si: training data source IP addresses
3: k: initial number of clusters
4: ∆(si, sj): Distance function for IPs si,sj
5:
6: Output
7: C = c1, . . . , ck: cluster centroids
8: B = b1, . . . , bk: number of IPs belonging to ck
9:

10: function K-MEANS(S, k,∆())
11: C ←random set of S
12: while m has changed or iter < maxiter do
13: for all si ∈ S do
14: m(si)← arg min

j∈{1...k}
(dist(si, cj))

15: for all cj ∈ C do
16: cj ← average(∀sjwith m(sj) = cj)
17: Remove duplicates from C
18: iter ← iter + 1
19: for all si ∈ S do
20: bm(si) ← bm(si) + 1
21: return C,B

Since source IP addresses usually show up more than
one time, a caching technique was used in order to speed
up the distance and the centroid calculation (not shown in
Algorithm 1). For the distance measure ∆, the Xor distance
measure from Section IV-A or the Euclidean distance can
be used. Using a non-Euclidean distance measure like Xor,
one has to take care of the average function, which is in
fact a problem using Xor+. Since k-means is an expectation-
maximization (EM) algorithm, the average must be calculated
with respect to the distance function. Otherwise, the expec-
tation and maximization steps may have no common target
value and the algorithm may oscillate. Luckily the arithmetic
mean (based on the Euclidean distance) is the same as the
mean based on the Xor distance measure. Since this fact has
not yet been formally proven, we assume that it is at least a
sufficient estimation.

Once the cluster centers are calculated, a variable surround-
ing area has to be defined. Within this surrounding area the
model predicts to see the IP address again in the test set.
Outside of the area (far away from the cluster centers), the
model assumes no source IP addresses. Pack et al. [3] suggests
to define the area by reducing the prefix length. This method



again adopts the area to the natural IP network partitions like
the Xor distance measure.

Besides this area growing algorithm we suggest a second
heuristic method. Since centroids might contain a different
number of training data points, they can be differently im-
portant. Our modification of the area growing algorithm takes
this into account and grows the areas around the centroids
with a weighting factor wj which represents the amount of
data points of the specific centroid directly calculated from B
in Algorithm 1:

wj =
bj∑k
i=1 bi

(9)

This weighting yields to larger surrounding areas in high-
density clusters and smaller areas in less dense clusters. This
easy heuristic yields to better density estimation although it is
not proven to be statistically optimal.

VI. SUBNET BOUNDARY SENSITIVE
SMOOTHING

Applying the idea of using kernel density estimation for
IP density estimation we introduce Subnet Boundary Sensitive
Smoothing (SBSS). First, a normalized histogram count of IP
addresses is created like in AHIF. Then, the histogram is
smoothed using a kernel density estimator [12]. Again, the
structure of the IP address space can be taken into account by
using the Xor or Xor+ distance measure. The first estimation
of the probability density function f(s) over the address space
is based on the number of occurrences ns0 , . . . , nsN−1 of every
single IP address s and equivalent to AHIF (see Section III-B):

f(s) =
ns∑N−1

i=0 nsi

(10)

and pi = f(si) is the probability that the next occurring IP
address is si.

Now we assume that if an IP address s is likely to occur
next, IP addresses in a defined neighborhood close to s can
also occur next with a quite high probability, which is due to
the undersampling of the large IP address space. Therefore
the probability of all IP addresses si in the neighborhood
around s are increased dependently from the probability ps
and the distance ∆(s, si). Every probability ps of each single
IP address influences the new probabilities of the IP addresses
in its neighborhood and vice versa.

The Nadaraya-Watson kernel-weighted average [12]
with a kernel Kλ is used for smoothing:

p̂s =
∑N−1
i=0 Kλ(s, si)pi∑N−1
i=0 Kλ(s, si)

(11)

The new probability p̂s of s is the weighted and normalized
sum of all probabilities of every IP address si. The actual
values for the weights are defined by the kernel Kλ.

A. The Kernel
The kernel Kλ is basically a function over the distance

∆(s, si) of two data points s and si and uses a predefined
window size λ of the distance:

Kλ(s, si) = D

(
∆(s, si)

λ

)
(12)

The actual kernel function D can be different and depends
on the true underlying unknown distribution. Typical kernels
are the Epanechnikov quadratic kernel, the Tri-cube and the
Gaussian kernel:

Epanechnikov: D(t) =
{

3
4 (1− t2) |t| ≤ 1
0 otherwise (13)

Tri-Cube: D(t) =
{

(1− |t|3)3 |t| ≤ 1
0 otherwise (14)

Gaussian: D(t) =
1

λ
√

2π
e−

1
2 t

2
(15)

For Gaussian kernels the window size λ is equivalent to the
standard deviation σ of the Gauss function. All three kernels
count observations closer to the target point s with higher
weights: the higher the distance of the second data point si
to s, the smaller its influence. Experiments with the different
kernels have shown that the kernel function itself plays a minor
role in terms of classification performance (see Section VII-D).

As a distance measure ∆(s, si) of two IP addresses the
Xor and the Xor+ measures as well as the Euclidean distance
are used (see Section IV). In Figure 2 it is observable that
the Euclidean distance measure generates a more continuous
density estimation function in contrast to the distance measures
based on the Xor operation that reflect the subnet structure of
the IP address space in a better way.

P
(s

)

IP address

unsmoothed
Distance Measure ∆Xor

Distance Measure ∆Xor+
Distance Measure ∆Eucl

Fig. 2. Different distance measures using a Gaussian kernel with window
size λ = 4

Finally, the window size λ controls how large the neigh-
borhood (which influences p̂s) is. If it is very small, only IP
addresses si closed by influence p̂s and the overall smoothing
effect is not striking. When using a window size that is too
big, this may lead to an oversmoothed result and may not
represent the given data proper. In general it is a challenge
to find the correct kernel window size. Turlach [13] shows
different methods, whereas we evaluated multiple sizes.

If the window size λ is close to 0 meaning that no IP
address influences another and therefore no actual smoothing
is performed, this method is equivalent to the AHIF approach
discussed in Section III-B.



B. Prediction
In order to evaluate this approach we finally have to predict

if an IP address appears in the test set or not. This decision is
done similar to the AHIF method by using a threshold α over
the smoothed probability density function from Equation (11):

Cα(s) =
{

appears p̂s > α
does not appear otherwise (16)

The actual evaluation of this approach including the dis-
cussion of the influence of the parameter α can be found in
Section VII-D

C. Pseudo Code
Unoptimized pseudo code of the SBSS approach is listed

in Algorithm 2. A lot of runtime improvements can be
achieved by a proper implementation, which first checks in
which IP ranges smoothing makes sense at all before actually
performing it. However, it is obvious that the runtime increases
with a growing window size λ since more neighboring points
have to be taken into account.

Algorithm 2 The SBSS algorithm
1: Input
2: ∆(a, b): Distance function for IP addresses a, b
3: Kλ: Kernel
4: λ: Window size
5: N = n0, . . . , n232−1: No. of occurrences of IPs
6:
7: Output
8: C = c0, . . . , c232−1: Predictions of IP addresses
9:

10: function SBSS(α)
11: σ ← 0
12: for all IP addresses s do
13: σ ← σ + ns
14: for all IP addresses s do
15: ps ← ns/σ

16: for all IP addresses s do
17: p̂s ← Smooth(s)
18: if p̂s > α then
19: cs ← appears
20: else
21: cs ← does not appear
22: return C
23:
24: function SMOOTH(s)
25: p̂ ← 0; v ← 0
26: for all IP addresses si around s do
27: calculate Kλ(s, si) with ∆(s, si)
28: p̂ ← p̂+Kλ(s, si) · psi

29: v ← v +Kλ(s, si)
30: return p̂/v

VII. EVALUATION

A. Dataset
Logged IP addresses of users are very sensitive data since

they allow inference of user behavior or even user identi-

fication. Therefore all public available data sets anonymize
IP addresses such that the original one is not disclosed. All
methods securely anonymizing IP addresses have to destruct
neighborhood relations [14], which makes it impossible to
evaluate the proposed approaches in this paper with a public
dataset.

The evaluation presented in the following relies on a Apache
log file obtained by the webserver www.xvid.org. It contains
53,828,308 requests from 1,284,213 different IP addresses
from 200 countries over 100 days. The complete dataset was
divided into 90 days of training data for creating the IP density
estimator and 10 days of test data to evaluate the perfor-
mance of the model. In particular, the training set contains of
48,634,123 requests from 1,168,293 different sources and the
test set contains 5,194,185 requests from 135,265 IP addresses.

The 90-10 division of the data set may not be representative
for all application scenarios (e.g. DDoS attacks do usually not
last 10 days), but for having a statistical significant evaluation,
this partitioning is required. If a shorter evaluation period is
used, collateral damage is usually much lower. This is due
to the fact that test data close to the training data is better
predictable than trends in the future.

Based on the test set, receiver operating characteristic
(ROC) curves are computed and plotted. The detection rate
(true positive rate) and the false alarm rate (false positive rate)
are defined as follows:

detection rate =
true positive

true positive + false negative

false alarm rate =
false positive

false positive + true negative

In this context, true positive are source addresses which
were predicted by the model to appear and are part of the test
set whereas true negative are predicted not to appear and also
actually don’t appear. If an IP address is predicted to appear
but it actually doesn’t this is counted as a false positive. A false
negative is an IP occurring in the test set but was predicted to
be absent.

From the ROC curves it can be directly derived
whether a density estimator is uniformly better than another.
For more quantitative comparison, the area under curve (AUC)
is also computed.

It is possible that a ROC curve is incomplete because the
function is not defined for every value pair of false alarm rate
and detection rate. At the bottom left point (0, 0) the method
predicts no IP address to occur resulting in a perfect false
alarm rate with the worst possible detection. By changing the
parameter of the used method (e.g. decreasing the threshold
α for SBSS) more IP addresses are classified to appear, but
causing also a higher false alarm rate. If the parameter is set
to its limit (e.g. α = 0 in SBSS), no more IP addresses can
be predicted to appear causing the ROC to end at this point.

A possible procedure for completing the missing part of
the curve to the point (1,1) is to iteratively select more and
more IP addresses randomly an predict them to appear. This
procedure leads to a straight line continuing the curve. This is
useful for (1) determining if an approach is uniformly better
than another and (2) to compute the AUC for this method. In



the following we will omit plotting this interpolation for the
sake of visualization clarity.

B. Evaluation of HIF and AHIF
For evaluating the AHIF approach ROC curves for different

network sizes were created by varying the decision threshold
α of Equation (5). Since the simpler HIF method does not
use a variable threshold, the result of its evaluation is not
a ROC curve but a single point. It is equivalent to the top
right point of the according ROC curve of the AHIF approach.
This illustrates that the AHIF approach achieves at least the
performance of HIF but provides more flexibility since HIF is
limited to one pair of values of detection rate and false alarm
rate.
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Fig. 3. Using smaller network prefixes for HIF and AHIF increases the
detection rate with the downside of having a higher false alarm rate

C. Evaluation of K-Means
1) Different Area Growing Algorithms: In Section V two

growing algorithms for the surrounding area were introduced:
(1) constantly shrinking the network bitmask of the centroid
and (2) taking a weight factor into account that represents
the number of IP addresses belonging to a cluster centroid
based on the first method. Varying these parameters a ROC
can be calculated. Figure 4(a) illustrates the results using
(1) and 4(b) using (2). Using a different number k ∈
[100, 1000, 5000, 10000, 20000] of initial centroids result in
different performance. Using more centroids obviously leads
to better results, but coming at the price of longer runtimes.

The k-means algorithm either runs until no changes of
cluster belongings were detected or maxiter = 40 was reached
as listed in Algorithm 1.

2) Distance Measure ∆: The results based on the Xor
distance measure can be obtained from Figure 4. Further-
more, Figure 5 gives a direct comparison of both distance
measures based on the weighted area growing method for 100
and 20,000 initial centroids. Surprisingly, the Xor distance
measure performs not as good as the Euclidean version. A
possible explanation for this observation might be the fact,
that distances calculated with the Xor method can be quite
large – leading to few changes in data points belonging to a
centroid.
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Fig. 4. Running k-means with different initial number of centroids based on
the Xor distance measure.
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3) Stability: One possible drawback of using k-means
is the random initialization of the initial centroids. Within
the expectation maximization loop unfortunate initial chosen



centroids may cause the algorithm to stuck into a local minima
and thus not returning the optimal result. In order to test this
effect on the results of density estimation, we performed 10
experiments running the most error prone setup with 100 initial
centroids and the Xor distance measure. The results with the
weighted area growing algorithm are illustrated in Figure 6
and show that the approach is quite stable.
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D. Evaluation of SBSS
SBSS was also evaluated with multiple distance measures

(Xor, Xor+, Euclidean), different kernel types (Epanechnikov,
Tri-Cube, Gaussian) and window sizes. The shown ROC
curves were computed by varying the classification threshold
α of Equation (16).

1) Effect of the Window Size λ: As described earlier the
window size affects the quality of the smoothing algorithm.
As illustrated in Figure 7, a larger window size causes higher
detection rate with a small increase of false alarms compared
to the procedure of randomly selecting IP addresses. But in
contrast increasing the window size too much leads to worse
performance in total.

2) Influence of Kernel Type Kλ: Another parameter of the
SBSS algorithm is the kernel type used for the weighted
average. Figure 8 shows that all three kernel types obtain
almost the same ROC at balanced window sizes.

3) Distance Measure ∆: Three distance measures were
evaluated: the Xor and Xor+ distance measure as well as
the Euclidean distance (see Section IV). Similar to the kernel
type, this parameter has only minor influence to the prediction
performance.

E. Performance Comparison of (A)HIF, SBSS and K-means
In Figure 9 the comparison of all presented methods is

illustrated. Since HIF produces only a single point in the
ROC plot, this method cannot be directly compared. For all
other methods, the best parameter setting was chosen each. In
particular, AHIF used a 20bit network prefix mask, SBSS was
calculated using a Gaussian kernel with Euclidean distance
and a window size of 128. K-means was computed using

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

D
e
te

c
ti

o
n
 R

a
te

False Alarm Rate

SBSS (Window Size λ=1)
SBSS (Window Size λ=128)

Fig. 7. A larger window size in SBSS can increase the detection rate
dramatically with just a minor increase of false alarm rate (here using a
Gaussian kernel and the Xor distance measure).
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Fig. 8. Different kernel types for SBSS achieve almost equal performance
at balanced window sizes (here using the Xor distance measure).

20,000 initial centroids, the weighted area growing and also
the Euclidean distance. It can be obtained, that SBSS works
slightly better than the not smoothed AHIF and k-means
performs worse than AHIF and SBSS. However, in the area
where SBSS and AHIF are not defined and estimated by a
staight line, k-means performs better (detection rate > 0.97).
If a small false alarm rate is required, (< 0.24), SBSS should
be preferred.

Table I compares the overall performace (AUC) of the
presented approaches. It can be seen, that SBSS performs in
general better than k-means.

F. DDoS Performance Comparison
DDoS flooding attacks using forged source IP addresses

such as SYN attacks, ICMP or UDP packet floods can-
not be blocked with simple firewall rules in many cases.
If a DDoS attack is targeting a name server with forged
DNS requests, it is not possible to filter requests with port
or protocol parameters. Instead, an IP density estimation
model can be used to filter malicious requests. In this con-
text, the terms efficiency (correctly blocking illegal sources)



TABLE I
COMPARING AUC VALUES OF AHIF, SBSS AND K-MEANS WITH

OPTIMAL PARAMETER SETTINGS

Method AUC
AHIF
(20bit prefix)

0.962

SBSS
(Kλ=Gaussian, ∆Eucl, λ = 128)

0.970

k-means
(20000 centroids, ∆Eucl, weighted)

0.954

and collateral damage (denying legal users) are used to
evaluate the quality of a DDoS mitigation system. Since
this is the complementary event of (legal) IP density esti-
mation we can define efficiency = 1 - false alarm rate and
collateral damage = 1 - detection rate

Goldstein et al. [1] suggests to run the server right below its
maximum capacity in order to minimize collateral damage and
mitigate the attack. In Table II we compare typical effectivity
target rates of 90%, 95% and 99% and compare the results.
We do not consider the IP address density estimation as a full
DDoS mitigation method, it rather is a better estimation of
one feature. For example, it could be easily plugged into the
PacketScore framework by Kim et al [2].

TABLE II
VALUES OF COLLATERAL DAMAGE IN PERCENT FOR CERTAIN REQUIRED

EFFICIENCIES (90%, 95% AND 99%) AS EXAMPLES FOR DDOS
SCENARIOS

90.0 95.0 99.0
AHIF
• 32bit prefixes 77.15 81.44 85.87
• 20bit prefixes 4.13 18.71 65.04
• 16bit prefixes 9.43 28.25 71.17

SBSS
• window size λ = 4 23.51 24.81 61.68
• window size λ = 32 4.53 14.88 61.81
• window size λ = 128 3.58 14.88 61.52

k-means
• 100 centroids 33.75 60.45 91.40
• 5000 centroids 16.45 37.34 80.52
• 20000 centroids 12.29 30.17 77.07
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Fig. 9. Comparison of the ROC curves of HIF, AHIF, k-means and SBSS

VIII. CONCLUSION

As shown in the previous Section, there is no uniformly
better approach. Depending on the application and desired
target variable, either SBSS or k-means clustering is the
right choice in terms of performance. In the example DDoS
mitigation scenario with forged source IP addresses one might
prefer SBSS as the method of choice.

However, computational complexity might also be an im-
portant factor as well. If, for example, the model must be
computed in almost real time, AHIF should be preferred.
Smoothing is a very compute intense task and one has to
decide if the small benefit of SBSS is worth the computation
time. For example, if running on router hardware in a time
critical environment, AHIF might be the first choice. On the
other hand, if precision is more important than computation
time and the detection rate must be high (like one would expect
in the click fraud detection scenario), k-means might be the
better choice.

In general it was found, that a specific distance measure
taking internet subnet partitioning into account does not im-
prove results significantly. Using k-means as density estimator,
it was even contra productive. Xor in particular seems to have
the drawback of generating too large and therefore insuperable
distances.
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