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Introduction

Overview

I Predict whether a source IP of a new incoming connection is
likely to appear

Applications

I Quality of Service (QoS)

I Click fraud detection

I Optimizing request routing in P2P networks

I DDoS Mitigation
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Introduction

Overview

I Training phase: filter data, compute density estimation

I Test phase: classify new connections
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Introduction

Density Estimation
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Reviewing Existing Methods

I Models are often used implicitly

I Compute the probability density function (PDF):

N−1∑
i=0

P(S = si ) = 1 (1)

where P(S = si ) = pi is the probability of an IP address si to
be a source IP address that will occur in the future
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Reviewing Existing Methods

History-based IP Filtering [Peng et al., 2003]

I Motivation: “Code Red Worms” [Jung et al., 2002]

I Normal operation: 17.1% - 53.3% new IPs

I During Code Red Worm Attack: 86.0% - 99.4% new IPs
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Reviewing Existing Methods

History-based IP Filtering [Peng et al., 2003]

I Mitigating DDoS attacks

I Store all source IPs during training in an address database

I Classification rule: seen previously or not

I No density estimation

I PDF:

f (s) =
min(ns , 1)∑N−1

i=0 min(nsi , 1)
(2)
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Reviewing Existing Methods

Adaptive History-based IP Filtering [Goldstein et al., 2008]

I AHIF uses histograms with bin size of network masks
(/16 ... /24)

I Similar ideas with fixed bin sizes (e.g. /16 in PacketScore)

I Density estimation by bin width and counting

I Adaptivity by selecting proper network mask and PDF
threshold

I PDF:
f (s) =

ns∑N−1
i=0 nsi

(3)
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Reviewing Existing Methods

Clustering of Source Address Prefixes [Pack et al., 2006]

I Uses hierarchical clustering to estimate densities

I Adaptivity by stopping aggregation at a certain point

I But: too compute intense since all distances must be
calculated

I Not applicable on our data set (1.3 m IPs → 3TB)
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Distance Measures

Euclidean distance

I ∆Eucl(si , sj) = |si − sj |
I Does not take network boundaries into account

I e.g. 1.1.1.1 and 1.1.1.3 have a larger distance than
1.1.1.255 and 1.1.2.1
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Distance Measures

Xor Distance

I Introduced with hierarchical clustering [Pack et al., 2006]

I Takes network boundaries into account

I ∆Xor (si , sj) = 2blog2(si⊕sj )c

I Xor the two IP addresses together and use the highest order
bit set as distance

I Example:

346 101011010
365 101101101

32 000100000

I Distances within a specific network mask are constant

Server-side Prediction of Source IP Addresses using Density Estimation 12 March 16, 2009



Distance Measures

Xor+ Distance

I Takes network boundaries into account

I Use euclidean distance in addition within the same network
mask

I ∆Xor+(si , sj) = 2blog2(si⊕sj )c + |si − sj |
I Distance function is not continuous, but still is a

(mathematical) metric

I Mean is still computable
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Distance Measures
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Density Estimation: k-means

I K-means cuts down memory requirements from O(M2) to
O(M · K )

I After finding the cluster centers (in dense areas), a variable
surrounding area has to be defined.

Area Growing

I Reduce network prefix length [Pack et al., 2006]
I Same size for dense and less dense areas

Weighted Area Growing

I Grow areas with respect to the number of IPs belonging to
that cluster

I wj =
bjPk
i=1 bi
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Subnet Boundary Sensitive Smoothing

Idea

I Use kernel density estimation to smooth the undersampled IP
space

I Create normalized histogram of source IPs

I Apply Nadaraya-Watson kernel-weighted average

p̂s =
PN−1

i=0 Kλ(s,si )piPN−1
i=0 Kλ(s,si )

I Kernel: Kλ(s, si ) = D
(

∆(s,si )
λ

)
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Subnet Boundary Sensitive Smoothing

Kernels

Epanechnikov: D(t) =

{
3
4 (1− t2) |t| ≤ 1
0 otherwise

Tri-Cube: D(t) =

{
(1− |t|3)3 |t| ≤ 1
0 otherwise

Gaussian: D(t) =
1

λ
√

2π
e−

1
2
t2

I Selection of kernel depends on true distribution (unknown)
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Subnet Boundary Sensitive Smoothing

Kernels
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Subnet Boundary Sensitive Smoothing

Example of different Distance Measures
P

(s
)

IP address

unsmoothed
Distance Measure ∆Xor

Distance Measure ∆Xor+
Distance Measure ∆Eucl
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Evaluation

Datasets

I Public datasets contain anonymized IP addresses

I Neighborship relations have to be destroyed to guarantee
anonymity

I We have to use our own datasets for evaluation

Xvid.org

I 100 days logfile data (90 for training, 10 for testing)

I 53,828,308 accesses from 1,284,213 different IPs

I challenging dataset due to many new “one time visitors”

I ROC evaluation with detection rate and false alarm rate
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HIF and AHIF Results

Different Prefixes
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k-means Results

Different Area Growing
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(b) Weighted area growing
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k-means Results

Distance Measure and Stability
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(c) Distance Comparison
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SBSS Results

Window Sizes and Kernel Types
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SBSS Results

Different Distance Measures
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Method Comparison

All Methods
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Evaluation

DDoS Attack Mitigation

I Efficiency: correctly denying illegal requests
efficiency = 1 - false alarm rate

I Collateral damage: denying legal users
collateral damage = 1 - detection rate

Policy

Choose efficiency as low as possible but as high as necessary for
the server to serve requests in reasonable time. This minimizes
collateral damage.
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Evaluation

DDoS Attack Mitigation

90.0 95.0 99.0

AHIF
• 32bit prefixes 77.15 81.44 85.87
• 20bit prefixes 4.13 18.71 65.04
• 16bit prefixes 9.43 28.25 71.17

SBSS
• window size λ = 4 23.51 24.81 61.68
• window size λ = 32 4.53 14.88 61.81
• window size λ = 128 3.58 14.88 61.52

k-means
• 100 centroids 33.75 60.45 91.40
• 5000 centroids 16.45 37.34 80.52
• 20000 centroids 12.29 30.17 77.07
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Conclusion

Distance Measure

I The different distance measures play a minor role
(regardless of the method)

Method

I There is no uniform better method, selection depends on the
application

I k-means works worse then SBSS, but usefull if very high
detection rates are required

DDoS Mitigation

I SBSS works best

I AHIF also appealing if low computational effort is required

Server-side Prediction of Source IP Addresses using Density Estimation 29 March 16, 2009



Thank you

Online Demo
SBSS Online Demo for creating DDoS Firewall rules
http://demo.iupr.org/ip-density

Thank you for your attention!

http://netsec.iupr.com
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