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Summary. Interoperability involves solutions at different levels, from concrete data
representation to coordination of actions. These solutions are even more difficult to
handle when the systems being integrated expect to remain autonomous. This is
frequently the case in business processes between different organizations. In order
to work together several technical and organizational issues have to be solved. One
of the most important aspects is coordination and efficient communication. Interac-
tion protocols have been introduced as conversation contracts between participants
in order to solve this. Interaction protocols are very difficult to develop and main-
tain. The present work provides a consolidating model that enables modularity for
interaction protocols design and reuse of solutions by composing them to fit the
different scenarios.
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1.1 Introduction

Interoperability requires that organizations that desire to cooperate in a dis-
tributed process solve problems at different levels. Among concrete problems
like data grounding is the issue of participants coordination in order to achieve
a goal. This is the objective for interaction protocols. Experience has shown[17]
that during the development process, these protocols can become very com-
plex and difficult to manage. The present work is focused on this concrete
problem: how to specify interaction protocols from a global perspective in a
way that is easy and practical to recombine and reuse them.

In this document, a model for representing interaction protocols will be
presented. This model is based on several proposals and contributions of the
multi-agent community. One of the intentions is to consolidate these concepts
in a single model and at the same time enable a mechanism for modularity
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and composition of protocols. Interaction protocols are seen as a finite state
machine (FSM), where states are the different situations a conversation can
have and the transitions are the different actions that the participants can
perform. For each possible state a set of possible actions will be specified,
which are the possible actions in the specific situation that connect the state
of the conversation to the resulting state if the action is performed.

These protocols are intended to be used in complex scenarios, like busi-
ness processes, as contracts, stipulating how the participants are expected to
behave, similar to rules in a game, in order to be interoperable. To make
conversations more predictable and consequently easier to handle, interaction
protocols are introduced. In principle, these narrow down the variability of a
conversation to only those sequences of messages that work towards achieving
the goal of the conversation. For that reason, conversation protocols are a
very important component in interoperability, in which a simple way of coor-
dinating participants to achieve a certain objective is desired. A conversation
protocol is vital, in order to keep complexity demanded from the participants’
behaviours low.

Reuse demands to have different levels of abstraction, in order to use
solutions in different kinds of concrete cases. The present work will provide
a model that can be used at all levels of abstraction, and treats protocols as
first-class objects, which represent concepts from the global point of view and
can be used by designers, but also by sophisticated software agents, in case
they are being used, to reason about protocols.

First, in Section 1.2 a model of the state-action space will be defined,
followed by Section 1.3 which will discuss some specific aspects of propositions
in this model. Based on that, in Section 1.4 the model of conversation protocols
is defined. Section 1.5 specifies how composition of protocols is to be done.
Finally the present work is discussed in Section 1.6 and concludes in Section
1.7.

1.2 Definition of an state-action space model

1.2.1 Model of state space and state descriptions

A model of the state space of a conversation will be defined. Since these
states tend to be rather large and repetitive, a practical mechanism to refer
to a group of states that share properties in common will also be introduced.

Definition 1 Propositions Set P: The finite set of all different atomic propo-
sitions used to describe states in a conversation:

P = {p1, p2, p3, . . . , pn}

with the property

thepi ∈ P ∧ pj ∈ P ∧ i 6= j ⇒ pi 6= pj (1.1)
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It is important to remark, that all propositions are completely distinct
from each other. There are no two propositions in the set P about the same
fact.

Definition 2 State σ: a specific truth value assignation to each proposition
that is part of a Conversation description (to all pi ∈ P ). The set of all States
is Σ. A state σ is a set of elements of the relation T:

T = P → {true, false}

a state σ is defined as:

σ = {〈pi, t〉|〈pi, t〉 ∈ T, i = 1, 2, . . . , n} (1.2)

where:
All propositions have a truth value assigned in each state

∀pi ∈ P,∃〈pi, t〉 ∈ σ, ∀σ ∈ Σ (1.3)

A state cannot have a proposition associated with a truth value and at the
same time the same proposition with the opposite truth value.

〈pi, t〉 ∈ σ ⇒ 〈pi,¬t〉 6∈ σ, ∀σ ∈ Σ (1.4)

Two states σ ∈ Σ are equal if for each of propositions pi ∈ P they have
the exact same truth value assigned:

σ1 = σ2 ⇔ ∀〈pi, ti〉 ∈ σ1 ∧ ∀〈pi, t′i〉 ∈ σ2 : ti = t′i (1.5)

A state is for instance:

σ1 = {〈p1, true〉, 〈p2, false〉, . . . , 〈pn, false〉}

Since different states having differences irrelevant in the context may have
the same meaning or properties from a certain perspective, a way for referring
to such groups of states will be defined.

Definition 3 A state description s is an association of a set of truth value
assignations to some or all propositions of P , that serve as constraints, and a
set of all states that fulfill these constraints. The set of all state descriptions
is called S1.

S : P(T )→ P(Σ) (1.6)

elements s ∈ S are defined as:

s(〈pa, ta〉, . . . , 〈pb, tb〉) = (1.7)

1 P(X) is the power set of set X.
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{σ ∈ Σ|〈pa, ta〉 ∈ σ, . . . , 〈pb, tb〉 ∈ σ}

for some arbitrary propositions px in [pa, . . . , pb] where:

a ≥ 1 ∧ b ≤ |P |

px ∈ P

tx ∈ {true, false}

In this case it is important again to remark that state descriptions cannot
have contradicting arguments, such state descriptions are empty:

Lemma 1 All state descriptions with contradicting proposition truth value
assignations are empty:

s(. . . , 〈pp, tp〉, . . . , 〈pp,¬tp〉, . . .) = ∅ (1.8)

Proof 1 From (1.4) we know, there are no states with two contradicting
propositions. �

From now on, for brevity, when there is no chance for confusion, mention-
ing a proposition will be synonym to assigning true to that proposition. At
the same time, if the proposition is mentioned prefixed with the ¬ negation
operator, the value assigned to the proposition is false:

pi = 〈pi, true〉
¬pi = 〈pi, false〉

(1.9)

For example, the state

σ1 = {〈p1, true〉, 〈p2, false〉, 〈p3, true〉, . . . , 〈p7, false〉, . . .}

can be written as:
σ1 = {p1,¬p2, p3, . . . ,¬p7, . . .}

Also, for instance, state description s(p1,¬p2,¬p7) can contain, among
others, the following states:

• σ1 = {p1,¬p2, p3, . . . ,¬p7, . . .}
• σ2 = {p1,¬p2,¬p3, . . . ,¬p7, . . .}
• σ3 = {p1,¬p2, . . . ,¬p7, . . . , p9, . . .}
• σ4 = {p1,¬p2, . . . ,¬p7, . . . ,¬p9, . . .}

But it cannot contain for instance the following states:

• σ5 = {p1, p2, p3, . . . ,¬p7, . . .}
• σ6 = {¬p1,¬p2, p3, . . . ,¬p7, . . .}
• σ7 = {¬p1, p2, . . . ,¬p7, . . . , p9, . . .}
• σ8 = {p1,¬p2, . . . , p7, . . . ,¬p9, . . .}
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1.2.2 Model of actions in a state space

In a finite state machine (FSM) and similar transition systems, the evolution
of a system during run-time is modelled as transition over different states of
the state space. The change of one state to another is performed by actions.
For each state in the state space there are only some possible actions. Based
on the model of state space previously defined, a model of actions using the
state descriptions will be defined:

Definition 4 A micro-operation m on a state is an association of a state σ,
an operator of the set {+,−}, a proposition p and a resulting state as follows:

Ω : Σ × {+,−} × P ×Σ

The set of all micro-operations M is:

M = {〈σ, ω, po, σ′〉 ∈ Ω|
∀〈pi, ti〉 ∈ (σ \ 〈po, to〉) : ∃〈pi, t′i〉 ∈ σ′ : ti = t′i ∧
〈po, to〉 ∈ σ′}

(1.10)

where

to =
{
true if ω = +
false if ω = −

For a micro-operation m = 〈σ, ω, p, σ′〉 the first operand σ is referred to
as the starting state and σ′ the target state. The target state is identical to
the starting state with the exception of the element with the proposition po,
which has a value dictated by the operand ω.

A micro-operation is the representation of the concept of bringing about a
fact, making a proposition true, or removing the proposition, making it false.
It can be possible that σ has already the proposition p in true, in such a case
applying the operation will not produce any change and σ′ would be exactly
like σ.

Using the definition of a state description, an operation is defined as a set
of micro-operations over the set of states defined by the state description:

Definition 5 An operation o is an association of a state description s, a
member of {+,−}, a proposition p and a set of micro-operations M ′ that
have initial states belonging to the state description s:

The set of all operations is called O.

O : S × {+,−} × P →M ′ ⊆M

os,±p = {〈σ,±, p, σ′〉 ∈M ′|σ ∈ s} (1.11)

where
±: is a place holder for a member of the set {+,−}.
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Moreover, the specific state σ′ targeted by the operation o, if a specific
initial state σ is provided, is obtained by getting the micro-operation m member
of o that has as starting state σ:

os,±p(σ) = σ′ (1.12)

where
〈σ,±, p, σ′〉 ∈ os,±p

This allows to specify a single operation that applies to several states and
with the operation os,±p(σ) it is possible to know specific cases.

Operations applying to different propositions can be composed in a single
one.

Definition 6 A composed operation cs is a set of different operations which
all refer to the same state description s and to different propositions:

cs ⊆ O

where
os±p ∈ cs ⇒6 ∃os±p′ ∈ cs : p = p′ (1.13)

i = 1, . . . , |cs|

Similarly to simple operations, the specific state targeted by the composed op-
eration can be found using following definition:

cs(σ) = {〈pi, t′i〉| (osωipi ∈ cs ⇒ 〈pi, t′i〉 = ωipi) ∨
(osωipi

6∈ cs ⇒ 〈pi, t′i〉 = 〈pi, ti〉) } (1.14)

where
〈pi, ti〉 ∈ σ

ωi ∈ {+,−}

i = 1, . . . , |cs|

ωipi =
{
〈pi, true〉 if ωi = +
〈pi, false〉 if ωi = −

The resulting state of applying the composed operation is a state which has all
its corresponding propositions unchanged, except those for which an operation
could be found in the composed operation, in which case, the value specified
by the operation will be used.

Since all operations in a composed operation refer to the same starting
state description, an abbreviated form of writing an action is:

cs = {o1 s,±p1 , o2 s,±p2 , o3 s,±p3 , . . . , om s,±pm
} =

{±p1,±p2,±p3, . . . ,±pm}
(1.15)
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For instance, the composed operation cs1 = {+p1,−p3} for any state in
s1 = s(¬p2, p4): performing it will change the current state of the system to
another identical one with exception of p1 which will be definitely true and
p3 which will be definitely false after the applying the composed operation.

σ1 = {p1,¬p2, p3 p4} ∈ s(¬p2, p4)

cs1(σ1) = {p1,¬p2,¬p3, p4}
also:

σ2 = {¬p1,¬p2, p3 p4} ∈ s(¬p2, p4)

cs1(σ2) = {p1,¬p2,¬p3, p4}
In the specific state σ1 applying the operation cs1 will produce the state

{p1, ¬p2, ¬p3 p4} since all propositions not mentioned in cs1 (p2 and p4)
remain the same, p1 also remains as previously, since it was already true an
the operation specifies +p1, the opposite case happens with σ2, where p1 was
negative and turns positive. p3 is the only one changing in both, since in σ1

and σ2 it was true and the operation says −p3, therefore it will be set to false.
In other words, in σ1 the composed operation cs1 brings about only p3, since
p1 is already valid and in σ2 the composed operation cs1 brings about both,
p1 and p3.

Definition 7 The state description that describes all states targeted by the
composed operation cs can be found using the function S(cs):

S(cs) = s(〈p, t〉| (+p ∈ cs ∧ t = true) ∨ (−p ∈ cs ∧ t = false)∨
(±p 6∈ cs ∧ 〈p, t〉 ∈ s))

(1.16)

The targeted state description s′ can be calculated by setting all the propo-
sitions as specified in cs and keeping all other propositions not mentioned in
cs as they were in s. Note that in this situation being ±p 6∈ cs part of a con-
junction, it is also interpreted as a conjunctional abbreviation meaning that
neither of both cases of ±p are elements of cs.

Lemma 2 All calculated states from the state s using the composed operation
cs are in the state description calculated by the function S(cs):

cs(σ) ∈ S(cs) ∀σ ∈ s (1.17)

Proof 2 That all states obtained by applying cs on a state in s are part of
the state description S(cs) can be proved by contradiction:

∃σ ∈ s : cs(σ) 6∈ S(cs)
⇔ ∃〈p, t〉 ∈ cs(σ) : ¬

(
(+p ∈ cs ∧ t = true) ∨
(−p ∈ cs ∧ t = false) ∨
(±p 6∈ cs ∧ 〈p, t〉 ∈ s)

)
⇔ ∃〈p, t〉 ∈ cs(σ) : ¬ (+p ∈ cs ∧ t = true) ∧

¬ (−p ∈ cs ∧ t = false) ∧
¬ (±p 6∈ cs ∧ 〈p, t〉 ∈ s)
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+p and −p can be rewritten as osωp using (1.15) summarizing the first two
operands of the conjunction to one that expresses both cases at the same time
with the same format as done in (1.14):

⇔ ∃〈p, t〉 ∈ cs(σ) : ¬ (os,ω,p ∈ cs ∧ 〈p, t〉 = ωp) ∧
¬ (±p 6∈ cs ∧ 〈p, t〉 ∈ s)

which is clearly the contradiction of Definition 6 for targeted states cs(σ)
of a composed operation(1.14). �

In order to model the application of a sequence of composed operations,
the following operator over composed operations will be defined:

Definition 8 The binary operator “chain” represented by “→” is defined as
the association of 2 composed operations (c1s, c2s′) and a third resulting one
(c3s) such that:

• All states resulting of the application of the first composed operation are
part of the state description s′ of the second composed operation

• The third (resulting) composed operation c3s is the set of operations of
the first composed operation overridden by the operations of the second
composed operation: all operations of the second set of operations c2s′ are
part of the result together with all those of the first set c1s that refer to
propositions not mentioned in c2s′

c1s → c2s′ = c3s s.t :
S(c1s) = s′

c3s = {osωipi
∈ c1s|os′ωjpi

6∈ c2s′}
⋃
c2s′

where
ωx ∈ {+,−}, x = 1, . . .

(1.18)

Lemma 3 The specific state targeted by a chain operation is the same as the
state targeted by the second operand of the state targeted by the first operand
of the chain operation:

(c1s → c2s′)(σ) = c2s′(c1s(σ)) (1.19)

Proof 3 By applying recursively (1.14) we obtain:

c2s′(c1s(σ)) = σ′′ :

∀〈pi, t′′i 〉 ∈ σ′′ :


os′ω′

ipi
∈ c2s′ ⇒ 〈pi, t′′i 〉 = ω′ipi

os′ω′
ipi
6∈ c2s′ ⇒

{
osωipi

∈ c1s ⇒ 〈pi, t′′i 〉 = ωipi
osωipi 6∈ c1s ⇒ 〈pi, t′′i 〉 = 〈pi, ti〉

which can be rewritten as:
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∀〈pi, t′′i 〉 ∈ σ′′ :


os′ω′

ipi
∈ c2s′ ⇒ 〈pi, t′′i 〉 = ω′ipi

os′ω′
ipi
6∈ c2s′∧

osωipi
∈ c1s ⇒ 〈pi, t′′i 〉 = ωipi

os′ω′
ipi
6∈ c2s′∧

osωipi 6∈ c1s ⇒ 〈pi, t′′i 〉 = 〈pi, ti〉

which can be rewritten as:

∀〈pi, t′′i 〉 ∈ σ′′ :
{
oxω′′

i pi
∈ Q⇒ 〈pi, t′′i 〉 = ω′′i pi

oxω′′
i pi
6∈ Q⇒ 〈pi, t′′i 〉 = 〈pi, ti〉

where
x ∈ {s, s′}

Q = c2s′
⋃
{osωipi

|os′ω′
ipi
6∈ c2s′ ∧ osωpi

∈ c1s}

ω′′i =
{
ω′i if osω′

ipi
∈ Q

ωi if osωipi
∈ Q

which can be rewritten as:

∀〈pi, t′′i 〉 ∈ σ′′ :
{
oxω′′

i pi
∈ Q ⇒ 〈pi, t′′i 〉 = ω′′i pi

ox,ω′′
i pi
6∈ Q⇒ 〈pi, t′′i 〉 = 〈pi, ti〉

where
Q = c2s′

⋃
{osωipi

∈ c1s|os′ω′
ipi
6∈ c2s′}

using (1.18) it is clear that Q = c1s → c2s′ :

∀〈pi, t′′i 〉 ∈ σ′′ :
{
oxω′′

i pi
∈ c1s → c2s′ ⇒ 〈pi, t′′i 〉 = ω′′i pi∨

oxω′′
i pi
6∈ c1s → c2s′ ⇒ 〈pi, t′′i 〉 = 〈pi, ti〉

which is the definition for states that are target of (c1s → c2s′)(σ) by using
(1.14). �

Using operations a definition of an action is proposed based on three im-
portant aspects of an action:

• In which states it applies
• Its label
• The operations (+ or -) it applies on different propositions

Definition 9 Action Descriptions are a mapping of a state description, a
label and a set of operations over some propositions to a set of possible states.
Action descriptions must follow a principle of effectiveness, therefore the set
of targeted states cannot be the same as the starting state description. The set
of all actions is called A:

∆ : S × V × C × S
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A = {〈s, v, c, s′〉 ∈ ∆|s 6= s′} (1.20)

Moreover, the specific state targeted by an action starting from a specific state
σ is obtained by using the corresponding c(σ) operator :

as,c(σ) = cs(σ) (1.21)

1.2.3 State-Action model extension to include Roles

A conversation involves always at least two participants. In an abstract de-
scription of a conversation like the one proposed here, these participants are
represented as roles (r) members of a set called r ∈ R. With the intention of
modelling conversations using the state-action model, the concept of roles is
integrated in this section.

Every action in our model is always performed by a role and is targeted
at another role. In the present model, actions represented as operations over
propositions mean that an agent is performing an action of communicating
information to another agent, in other words, sending a message. Therefore
the definition of action will be enhanced with the sender and receiver roles of
the actions:

Definition 10 A speech act ar is an association of a role, an action as de-
fined in Definition 9 and a different second role, they are all members of the
set AR:

AR : R×A×R (1.22)

where
ai = 〈rxi, 〈si, li, ci〉, ryi〉
∀ai ∈ AR : rxi 6= ryi

For instance, the speech act

ar = 〈r1, 〈s(p1), ”respond”, {−p1}〉, r2〉

represents the action labeled as “respond” that can be sent by role r1 when
p1 is true to the role r2 and defined as removing the fact p1.

For simplicity, the term action will be used from here on for both con-
cepts, action description as in Definition 9 and speech act as in Definition 10,
whenever there is no chance for confusion.

1.3 Special kinds of propositions

Even though the present model is intended to be of general domain, some
particular kinds of propositions are frequently needed when modeling interac-
tion protocols. In the present model three of them will be defined, timeouts,
commitments and operational propositions.
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1.3.1 Timeouts

Protocols are mechanisms to rule actions over time. Sequencing and turn
taking are problems that are solved with the present model, but there are
certain cases where concrete time-windows are to be specified. For this purpose
timeouts will be defined.

Definition 11 A Timeout T (tp, a) ∈ T , where a ∈ AR, T ⊆ P , is a propo-
sition member of the set of timeout propositions T that states that the action
a will be performed after a certain period of time tp that starts to count after
the action that brings about the timeout is performed. Action a in a timeout
is not necessarily performed by the sending role mentioned in a, but instead it
can be an assumption the receiver of a can make. Also, this action will always
have implicitly the operation −T (tp, a) declared, hence, timeouts are removed
automatically after a is performed.

For instance, the action a says, that after performing call for proposals, M
will send the message “done” after a period of size td, after which proposition
requested (p r) will not longer hold:

a = 〈M, 〈s, cfp, {+p r,+T (td, 〈M, 〈{p r}, done, {−p r}〉, B〉)〉, B〉},

1.3.2 Commitments

Singh [16] and his group have proposed an algebra for commitments [18] which
provides the advantage of allowing better modularity in the design of processes
[8]. Taking advantage of the similarities of this algebra and the proposed op-
erations in the previous section, the concept of commitment will be integrated
to the state-action model.

Definition 12 Commitment C(ad, ac, p, c, t) ∈ P is defined as the commit-
ment of the debtor agent ad to the creditor agent ac to bring about the propo-
sition p ∈ P under the condition that the proposition c ∈ P becomes true.
After the condition c becomes true, agent ad is expected by agent ac to per-
form some action that produces p to be true. This action is to be performed
before timeout t that represents the time limit is enabled. This timeout starts
to count as soon as the condition is brought about.

Definition 13 Unconditional Commitment C(ac, ad, p, t): As an abbreviation
the following notation will be taken:

C(ad, ad, p, true, t) = C(ac, ad, p, t) (1.23)

Meaning simply that agent ac expects ad to bring about the proposition p within
the time period specified in t.
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Timeouts t in commitments are not restricted to any specific purpose, but
the main intention to include them in the definition of commitments is to
provide the semantics of what will happen if the commitment is not satisfied.

It is important to note that the commitments are part of the set of propo-
sitions P , they are part of the propositions that can also be used for specifying
state descriptions and actions. They are also operands for the defined oper-
ators + and -. The detailed semantics of these two operators specifically on
commitments will be defined next:

Definition 14 Commitment creation: +C(ac, ad, p, c, t). Creating a commit-
ment means that after the creation of it, agent ad is committed to agent ac to
bring about p under the condition c. An action specifying this operation states
that after the action is performed, the specified commitment starts to exist.

Definition 15 Commitment canceling: −C(ac, ad, p, c, t). If the commitment
exists, performing the operation - on it cancels it, makes it a false proposition,
meaning that it does not longer exist, ad is no longer expected by ac to bring
about p. An action specifying this operation states that after the action, the
specified commitment, including its timeout, does not exist anymore.

Definition 16 Bringing about the condition c enables the commitment. If the
condition is true, the commitment is transformed to an unconditional commit-
ment: the conditional commitment is canceled and the unconditional commit-
ment is created enabling the timeout countdown:

c ∧ C(ad, ad, p, c, t)
c ∧ C(ac, ad, p, t) ∧ ¬C(ad, ad, p, c, t)

(1.24)

Any state where a conditioned commitment and its condition are at the same
time true are automatically transformed to a state where the condition still
exists, but the commitment has been replaced by an unconditional commitment.

Definition 17 Commitment discharge: Bringing about the commitment ob-
jective p before the timeout t has been enabled cancels created commitments
that have p as objective automatically, including their timeouts.

p ∧ C(ad, ad, p, c, t)
p ∧ ¬C(ad, ad, p, c, t)

(1.25)

Any state where a commitment to bring about a proposition p and at the same
time the condition p are true are automatically transformed to a state where
the condition p still exists, but the commitment has been canceled and does
not exist any more.

In Singh’s proposal [16], there are two more operations on commitments
that will be included, but integrated as actions part of our model. These are
namely, delegation and assignation of commitments. These will not be extra
defined, but instead two examples of how these operations are present in the
model are presented:
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• Delegation: The action d, labeled delegates, changes the debtor of a com-
mitment C from agent ad1 to ad2:
d = 〈s(C(ac, ad1, p, c, t)), “delegates”, {−C(ac, ad1, p, c, t),
+C(ac, ad2, p, c, t)}〉

• Assignation: The action a, labeled assigns, changes the creditor of a com-
mitment C from agent ac1 to ac2:
a = 〈s(C(ac1, ad, p, c)), “assigns”, {−C(ac1, ad, p, c, t),+C(ac2, ad, p, c, t)}〉

Speech acts can also be used with commitments, an example of such an
action can be sending the acceptance of a role r1 to r2 whenever p1 is not true
(for instance p1:box 1 is in slot A) to commit doing something to make p1 to
be true if the fact c1 (for instance c1: there is nothing on top of box 1) is true:

a = 〈r1, 〈s(¬p1), ”accept′′, {+C(r2, r1, p1, c1, t1)}, r2〉

1.3.3 Operational propositions

In order to have better control over conversations and to specify specific ways
a role is allowed to decide or react, some propositions will have to be more
complex than simple statements about the environment. Some of these propo-
sitions are arithmetic propositions, like counters or variables holding values,
others are conditional logic statements that can produce other propositions
given some specific condition. Another kind of operational proposition that
will be mentioned specifically is the binding of specific concepts used in the
action model to variables.

In the case of variables, the most crucial aspect is to manage their scope.
Variables can exist one for each conversation, or one for each instance of a role
or even a single global variable that is the same instance in all conversations
in the protocol.

The aspect of how to use and define propositions will be discussed in fur-
ther depth later in this paper, at this point, only these aspects of representing
propositions or connecting them to more concrete concepts will be presented.

An example of an action with the three different kinds of propositions is
the following, where a bidder B bids to an auction manager M the value bid:

〈B, 〈{a a, v = x, }, bid, {bid, bid > v ⇒ v = bid,
−C(M.W,M, pay, win, tw),
+C(B,M, pay, win, tw),M.W = B}〉,M〉

where:
a a: auction active
v: current winning value in the auction
M.W : Winner role holding variable in M
bid: the bid given by B

A conditional proposition will tell how the manager is expected to react: if
the bid is bigger than the current value v, v will be assigned the new value of
bid, any previous commitment to a winner is removed and a new commitment
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with the sender of the bid B is created, finally this bidder is assigned the role
of the winner M.W .

1.4 Definition of a conversation protocol

Using the proposed model of a conversation based on actions sent between
roles participating in a conversation, the following section will provide the
mechanisms to compose these actions in such a way that they describe how
complex conversations are to be performed.

Protocols represent specific ways that it allows over the whole state-action
space. The different ways a protocols can take are known as a runs. In the con-
crete case of an agent performing a protocol with more than one participants,
there will be several instances of the protocol, called conversations, each of
which will take its own run, some of them will have the same run. Figure 1.1
illustrates the relation between these 3 concepts. In synthesis a protocol is a
specification of a set of runs, each of which represent at the same time a set of
conversations. The cardinality of runs is limited by the amount of actions that
are enabled for the same state description. The cardinality of conversations,
on the other hand is to be ruled by an amount that is associated with each
action:

Fig. 1.1. Protocol (boxes and white arrows) composed of 3 runs (thick lines) and
some conversations as instances of runs (dashed thin lines)

Definition 18 The set CA, the set of cardinality constraints for actions and
the set CS, the set of cardinality constraints for states, will represent the
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minimal and maximal cardinality of conversations associated to each action
or state respectively:

CA : N× N×Ar (1.26)

where
∀〈p, q, a〉 ∈ CA : p < q

∀a ∈ Ar : 〈p, q, a〉 ∈ CA

CS : N× N× S (1.27)

where
∀〈p, q, s〉 ∈ CS : p < q

∀s ∈ S : 〈p, q, a〉 ∈ CS

For brevity and agility, the following abbreviated version of a cardinality
constraint will be used:

〈p, q, a〉 =q
p a (1.28)

Also in cases where the cardinality of actions is free: minimum is 0 and maxi-
mum not bound, represented with N , the cardinality constraints can be omit-
ted:

〈0, N, a〉 = a 〈p,N, a〉 =p a 〈0, q, a〉 =q a (1.29)

For instance, the following cardinality association means that the action
called “inform” can be sent from the role r1 to the role r2 a maximal of 7
times and a minimal of 1 times from states in s.

7
1〈r1, 〈s, “inform′′, o〉, r2〉

Protocols will be specified similarly as in [6], in terms of the propositions
required to start it, called preconditions and propositions describing the effects
it has in the context of the conversation, called post-conditions. Protocols, like
actions, will be also labeled.

Definition 19 A protocol π is an association of preconditions in the form
of one or more state descriptions, a label, post-conditions in the form of one
or more state descriptions and a set of speech acts. Pre-, post-conditions and
speech acts are associated to cardinality constraints, the set of all protocols is
called Π:

Π : P(CS)× Vπ × P(CS)× P(CA) (1.30)

where Vπ is the set of labels for protocols.
Protocols have cardinality constraints associated to their starting and end-

ing state descriptions as follows:
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∀π ∈ Π :
where
π = 〈S, l, E ,A〉
A = {q1p1〈rx, 〈s1, v1, c1〉, ry〉, . . . ,

qh
ph
〈rx, 〈sh, vh, ch〉, ry〉}

all actions sharing a starting state of the protocol qa
pa
sa ∈ S as precondition

must satisfy the cardinality constraints, which are the cardinality constraints
associated to the state description sa: pa and qa :

∀(qi
pi
〈rx, 〈si, vi, ci〉, ry〉 ∈ A|sa = si) : pi ≤ pa ∧ qi ≥ qa

where
i = 1, . . . , |S|

(1.31)

all actions that result in a state description that matches an end state
description of the protocol qe

pe
se ∈ E must have the same cardinality constraints,

which are the cardinality constraints associated to the end state description pe
and qe:

∀(qi
pi
〈rx, 〈s, v, c〉, ry〉 ∈ A|S(cs) ∈ E) : pi ≥ pe ∧ qi ≤ qe

where
j = 1, . . . , |E|

(1.32)

A protocol cannot have disconnected actions in its definition:

∀r ∈ R ∃ss ∈ S ∧R′ ⊂ R : si = si−1(ci) for 0 < i ≤ k (1.33)

where:
r = 〈rx, 〈s, v, c〉, ry〉
R′ = {r0, r1, . . . , rk}
r 6∈ R′
ri = 〈rxi, 〈si, vi, ci〉, ryi〉 for 1 ≤ i ≤ k
r0 = 〈rx0, 〈ss, v0, c0〉, ry0〉

This more relaxed approach facilitates different composition mechanisms
for protocols and reflects the multi-directional nature of conversations. The
set of actions of the protocol are also called rules as used in dialogue games
[10].

Protocols that have the same pre- and post- conditions are not necessarily
the same, but are expected to fit in a protocol composition well according to
the semantics treated in the present work.

The nature of conversations makes the task of modeling and structuring
them very hard. It is the intention of this work to provide mechanisms of
organization and modularization of complex conversations without restricting
them unnecessarily or in such a manner that ends up being unnatural for
practical purposes. Therefore a technique for composing protocols using rigid
structures that not always fit the nature of conversations will not be pursued
here. Such structures found commonly in similar approaches are probably
inherited from other programming structures, like if. . . then. . . else. . . , while
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loops and specially strict joining associated to a previous split in the transition
system. Even though this approach allows such structures, it is by far not
restricted to them. Even so, some basic structures that appear in conversation
models will be described next using the model for protocols:

1.4.1 Atomic protocol

An atomic protocol is the most basic protocol possible, in essence a speech
act. Its preconditions is the state description and its post-conditions is the
composed operation of the action. The cardinality constraints associated to
the starting and ending state description is the same as the ones for the action.

Definition 20 The atomic protocol for the roled action q
pa =q

p 〈rs, 〈s, v, c〉, rr〉
is:

π = 〈{qps}, l, {qps(c)}, {qp〈rs, 〈s, v, c〉, rr〉}〉 (1.34)

1.4.2 Protocol sequence

A protocol sequence is a protocol which seen from the outside will have only
one possible run, which means it has only one starting and one ending state
description with identical cardinality constraints.

Definition 21 Protocol sequence is a protocol π such that:

π = 〈{qps}, l, {qpe}, R〉 (1.35)

All atomic protocols are hence protocol sequences.

1.4.3 Protocol splits

Protocols splits represent the most common situations found when modelling
conversations. These are the situations in which a protocol has a set of rules,
all of them sharing the same starting state description.

Splits are the situations in which different runs are created, therefore a
very relevant aspect of splits in a protocol is the definition of cardinality
constraints for each run. This same procedure is also used in several previous
approaches, for instance in Agent UML [3].

Definition 22 A protocol split π is composed of more than one rule, all of
which share the same starting state description.

π = 〈{qs
ps
s}, l, {q1p1s(cs1),q2p2 s(cs2), . . . ,qn

pn
s(csn)}, {a1, a2, . . . , an}〉 (1.36)

where
n > 1

ai =qi
pi
〈rxi, 〈s, li, csi〉, ryi〉

Protocol splits can be, in principle, of two kinds: a choice or a parallel
split.
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Choice:

These are situations in which choosing one action, where all the actions have
the same sending role, will disable the other ones, making it impossible to
perform other actions that start at the splitting state description. This is a
situation where the role in turn is expected to decide which of the options
it will take, choosing this way the path in the protocols to be taken. π is a
choice split if

∀ai : s(csi)
⋂
s = ∅ ∧ rxi = rx (1.37)

In a choice, different runs are created, but each conversation can follow only
one of them.

Parallel:

These are situations in which actions belonging to the split do not disable
themselves reciprocally or have different senders, making it possible to perform
one or more of these actions. In the present model only one action is possible to
be performed at the same time, but the enabling conditions for other actions
in a parallel split are still valid after an actions is performed, making it still
possible to perform the other ones. π is a parallel split if

∀ai, j ≤ n ∧ j 6= i : s(csi) ⊂ s ∨ rxi 6= rxj (1.38)

In a parallel, different runs are created as well, but a conversation can follow
one or more paths.

Protocol Merges

In opposite to protocol splits, where new runs are created, there are also
situations where different runs merge into the same path.

Definition 23 A protocol merge π is composed of more than one rule all of
which share the same ending state description.

π = 〈{qs1
ps1
s1,

qs2
ps2

s2, . . . ,
qsn
psn

sn}, l, {sf}, {a1, a2, . . . , an}〉 (1.39)

where
n > 1

ai =qsi
psi
〈rx, 〈si, li, csi〉, ry〉

s(csi) = sf
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1.5 Protocol composition

Protocol composition is the creation of new conversation protocols by con-
necting other protocols together.

Definition 24 Two protocols π1 and π2 can be composed to a new protocol
π3, if there is at least one ending state description s1 in π1 that is subset of a
starting state s2 in π2 and at the same time, cardinality constraints in s1 are
equal or more restrictive than in s2. Propositions and roles have to be bound
together to establish the semantic connection between the two protocols π1 and
π2, by specifying which roles and propositions in the first protocol will take the
roles and replace the propositions in the second protocols respectively:

π1 = 〈S1,
′′ π′′1 , E1, A1〉

A1 = {〈x11, a11, y11〉, 〈x12, a12, y12〉, . . . , 〈x1n, a1n, y1n〉}
cq1
cp1s1 ∈ E1; s1 = {p11, p12, . . . , p1f}
π2 = 〈S2,

′′ π′′2 , E2, A2〉
A2 = {〈x21, a21, y21〉, 〈x22, a22, y22〉, . . . , 〈x2m, a2m, y2m〉}
cq2
cp2s2 ∈ S1; s2 = {p21, p22, . . . , p2g}

where
g < f
cp1 ≥ cp2

cq1 ≤ cq2
a specific binding of roles is specified:

x1i = x2j
y1i = y2j
1 ≤ i ≤ n; 1 ≤ j ≤ m

and a specific binding of propositions:

p1k = p2l
1 ≤ k ≤ g
1 ≤ l ≤ g

⇒ s1 ⊆ s2

π3 = 〈S1

⋃
S2,
′′ π′′3 , E1

⋃
E2, A1

⋃
A2〉 (1.40)

1.5.1 Protocol example

As an example, the case of a specific kind of auction will be observed. Figure
1.2 shows a graph representing the protocol. A manager M can send any time
a message called cfp1 to a set of bidders represented by the role B, which
can be 0 to the maximum possible (N). cfp1 creates the conversations making
some propositions valid: that the auction is active (auc act), a timer is created
that after a period ta will enable the action done. The value v is created with
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the starting value of the auction, say 0 and finally a commitment is created
C(B,M,bid,T(tb, reject)) that states that the bidder B will be committed to
the manager M to bid within a period tb, after which, if no replies are received,
it will be assumed that the Bidder has performed the action reject. B has to
decide to send either a reject message, which practically takes him out of
the auction, removing all propositions including auc act or to bid, providing
a bid value called bid which in case it is greater than v will have further
effects: v will have the value of bid, a commitment to a previous winner of a
auction round M.W will be removed (has no effect in the first iteration) and a
commitment with the same terms is created for the bidder of bid in which it is
committed to pay an amount pay in case it wins the auction: win. This leading
bidder is then bound to the winning role. Notice that after each iteration, M
informs M.W that it won the round. Finally the timeout for done is enabled
finishing the auction: M sends done to all participants which removes the
fact auc act finishing the auction and to the winner M.W it sends a different
kind of done which also brings about the final value of the auction v, the fact
that the receiver won: win which automatically transforms the the conditional
commitment created with the winner bid to an unconditional commitment of
the bidder to the manager to pay within the timeout tp. Also the commitment
of M to B to make delivered true within the timeout td in case pay is brought
about is created. This would be the ending state of the auction, with another
ending state for the rejected bidders and non winner bidders.

As an example of protocol composition, a very simple protocol π2 is defined
which has a starting state matching the end state of the auction. The first an
only possible action is pay which automatically discharges the commitment
from B to M and frees the commitment of M to B of its condition. After
that, the only possible action is deliver which discharges the last commitment
ending the protocol in a state where delivered is true. This example has the
same propositions and roles which makes the binding explicit. The states are
connected and a new protocol π3 is created that resolves the commitments.

The protocols π1 and π2 look like this:
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Fig. 1.2. Example of a protocol modelling a composition of an auction and a simple
commitment resolution

π1 = 〈{}, π1, { s(¬auc act), s(¬auc act, v, win,
C(M.B, pay, tp), C(M,B, delivered, pay, td))},

{〈M, 〈 {s(tb < ta)}, cfp1, {+auc act,+T (ta, done),+v,
+C(B,M, bid, T (tb, reject))}〉, B〉,

R
0 〈B, 〈 {s(auc act, C(B,M, bid, T (tb, reject)))}, reject,

{−C(B,M, bid, T (tb, reject),−auc act,
−T (ta, done))}〉,M〉,

N−R
N−R〈B, 〈 {s(auc act, C(B,M, bid, T (tb, reject)), v}, bid,

{+bid, bid > v ⇒ v = bid,−C(M.W,M, pay, win, tp)),
+C(B,M, pay,win, tp),+(M.W = B)}〉,M〉,

〈M, 〈 {s(auc act, T (ta, done), tb < ta)}, cfp2,
{+C(B,M, bid, T (tb, reject)), }
−won round,+v}〉, B〉,

1
1〈M, 〈 {s(M.W = B), inform, {+wonround}〉, B〉
N−1
0 〈M, 〈 {s(auc act),¬M.W = B}, done, {−auc act}〉, B〉,
1
1〈M, 〈 {s(auc act),M.W = B}, done, {−auc act,

+v,+win,+C(B,M, pay, tp),
+C(M,B, delivered, pay, td)}〉, B〉}〉
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π2 = 〈{ s(C(B,M, pay, tp), C(M,B, delivered, pay, td))}, π2,
{s(delivered)},

{〈B, 〈 s(C(B,M, pay, tp), C(M,B, delivered, pay, td)), pay,
{+pay,+C(M,B, delivered, td)}〉,M〉,

〈M, 〈 {s(pay, C(M,B, delivered, td), deliver,
{+delivered}〉, B〉,

1.6 Discussion

The usage of propositions in this approach is crucial, since it decouples the
actions of their effects, allowing other actions or protocols that can have the
same effects to be used instead, making the approach modular and protocols
that have been predefined reusable. How successful a model is, will depend
significantly on how the scenario being approached is modeled using propo-
sitions. In Section 1.3.3 some basic connections between the domain and this
propositions was proposed, still how the effects of the actions are modelled is
left free to the protocol designer. The options are between, on one side, the
most trivial approach: making a proposition for each action that simply states
that the specific action was performed, working similarly to not declarative
approaches like [1] and, on the other side, very accurately selected proposition
that are based on the effects several actions or protocols have in common. In
the first case, the development will be very simple, but the protocols might
end up rigid or difficult to recombine. The more flexible approach will take
advantage of modularity, but at the same time, participating roles might be
demanded to cope with very complex reasoning. A well balanced model would
be the most suitable solution in most of the cases. It is clear that the minimum
requirement to take advantage of this approach for modularity is to choose
propositions that represent the effects of the actions, using them in all actions
that semantically have the same effect.

The first part models the exhaustive state space, solving the Frame Prob-
lem [11] with a model of state descriptions and actions based on these de-
scriptions and operations, to focus only on the relevant facts. Then actions
are defined based on state descriptions and using composed operations that
specify effects relative to their current state. This model helps to consolidate
various contributions of the multiagent community using very heterogeneous
models in a single comprehensive model.

1.6.1 Related work

A survey of current approaches to interaction protocol models is provided
by [14]. The reader is referred to it to get more insight on proposals in the
community.

The present work has as main objective to allow for formal modularity
of protocols as was initially intended in FIPA [7]. The FIPA approach was
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not successful due to various issues, but one of the main causes was that the
FIPA speech acts were defined always from the perspective of the sending
agent, which contrasts with the global perspective required for conversation
protocols of this kind. This objective was, in principle, only tried by Singh
et. al. [5]. As mentioned in Section 1.3.2, the same technique has been used
here to model commitments, making some adaptations and modifications to
integrate it concretely with the state-space model.

Timeouts are used by [2] as a “system” event. In the present approach
timeouts are declared as propositions representing some facts about the en-
vironment. The concept of a global system [15] has been completely avoided,
since it would not fit in an open system, as it is intended here. Timeouts have
to be interpreted in the realization of roles, they are to be managed normally
by the creating roles and simply represent facts about the conversation and
things expected from roles.

This approach focuses only on the scope of a conversation, what is allowed,
expected and demanded from participants in the conversation, it goes a bit
beyond simple dialogue games [9] focusing not only in the actions that can be
performed but also in their consequences. General norms and commitments
of a scope outside the conversation are not treated in this model.

The present model is another alternative to give semantics to modelling
techniques like in UML. For instance [4] proposes a Petri-Net for this pur-
pose. Our approach has strong similarities, but has enabled the possibility to
integrate critical concepts like commitments and the usage of propositions to
connect better actions between each other and to the domain.

The way composition is approached, based on the state-action space model
allows a more detailed specification of how composition can be done, compared
to [12, 13] and some similar approaches, having the state-action space model
serves better to achieve more detailed specifications, like propositions and
cardinality constraints that give deeper insight about the conditions of the
conversation.

1.7 Conclusion

A comprehensive and consolidating model for interaction protocols has been
proposed. It provides a solution for modularity and composition of protocols
for complex conversations. It involves many ideas proposed by the multi-agent
community. The model discusses many issues about interaction protocols, the
most important one is how to achieve modularity. Decoupling of actions and
their effects is a fundamental advantage for this purpose. By separating this
two concepts, it is possible to formalize a model that enables modularity, based
on the simple fact that actions (an protocols) that share the same effect can
replace, or at least be considered to replace each other. The model goes further
and specifies, what has to be taken into account and how does a composition
of protocols have to be.
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Future work will be to extract out of a conversation protocol as presented
here the set of rules and expectations for each participating role, also known
as the projection of the protocol. This model has been proposed in an abstract
level and shows how complex it can be to model protocols. It will be important
to produce modelling tools that follow the concepts shown here in order to
tame complexity and take advantage of reuse and composition.

The model proposed here can be used at different levels of abstraction,
depending on how the propositions the model is based on are defined. This
model can also be used to reason about the different concepts in the protocol,
to help systems make decisions during conversations. They are modeled as
first class objects, they can be used by designers but also by software agents
to reason about them and first choose which protocol to use and second which
path in the conversation to take.
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