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Abstract

This paper presents a new machine learning framework for

speech-based classification tasks that was developed in conjunc-

tion with the Agender project (age and gender recognition for

telephone applications). The main goal of this framework is to

provide a completely integrated development environment sup-

porting all processes from design over evaluation to deployment

of classification systems. It is intended for both researchers as

well as application developers and specializes in audio signals

as the resource to be classified. We show that the proposed

framework outperforms other tools in several aspects.

1. Introduction

In the last couple of years, speech-based classification meth-

ods have increasingly reached a state of maturity where they

are commonly employed in large-scale application scenarios,

such as in mobile phones or call centers. Therefore, there is

also an increasing need for frameworks that allow both machine

learning (ML) engineers and application developers to design,

test, and deploy their technologies in a way that fulfills their re-

quirements on classification performance, architecture and run-

time behavior. This paper introduces AGENDERIDE, a newML

framework specialized in speech data processing that was cre-

ated to meet this demand and to expand in areas where other

tools are lacking.

AGENDERIDE (AGENDER Integrated Development Envi-

ronment) was started and put forward in conjunction with the

AGENDER speaker classification approach [1], where it served

as a platform to build classification modules for integration in

existing applications. In AGENDER, a person’s recorded voice

is classified according to several characteristics, originally be-

ing restricted to age and gender (hence the name), but mean-

while extended to language, noise context, and to even further

aspects in the future. It has been found a great way to support

user modeling in situations where no or little explicit informa-

tion about the user is available [2]. Analyses of several large

corpora of labeled speakers such as Timit andGlobalPhone have

revealed that there are indeed speech features like pitch, jitter

and shimmer, which convey sufficient information to discrimi-

nate between seven classes (four age groups with two genders,

one age group, children, with no gender discrimination) with

a promising accuracy of 63.5%. Feature extraction was per-

formed with the tool Praat [3], while initially several algorithms

from the WEKA [4] ML library were evaluated.

During the evolution of AGENDER and its integration into

applications, it quickly became apparent that the prototype im-

plementation used for initial testing and demonstration would

not be able to satisfy all of our requirements. To begin with,

all major processes from design to deployment of classification

modules should be accessible from a single tool. The multi-

plicity of tools we used before was difficult to link together, had

diverse requirements and could not be easily ported to other ma-

chines. Moreover, for AGENDER, it should be possible for the

user of a module – in this case the developer of another appli-

cation – to customize the module’s parameters and retrain with

own data, or even create new modules from scratch. Without

the IDE, this was rather unfeasible, in particular because users

were expected to have in-depth knowledge of machine learning

to use the existing tools. Further goals of the IDE were the abil-

ity to build classification modules, the focus on speech data, and

support for high data volumes, which was not given with some

of the tools we used before.

The remainder of this paper is organized as follows: Sec-

tion 2 provides an overview over the IDE system; Section 3 then

focusses on the corpus management and analysis components;

Section 4 details how feature extraction and the representation

of features in done; Section 5 and Section 6 then describe a

central component of the system: the design of individual clas-

sifiers and their compilation into embedded classification mod-

ules; Section 7 details the job execution engine. Finally, Sec-

tion 8 outlines recent extensions of the system as well as future

work.

2. IDE Overview

The main graphical GUI component is a view. A view contains

a set of controls that operate on the same function or a related

set of functions. Views fall into several larger categories that

help in structuring the development tasks: The Corpus category

describes functions that have to do with managing the speech

databases, including meta information such as timestamp, class

labels or segments. The Features category is all about comput-

ing various types of features from the speech data, storing and

managing it. The category Classifiers contains the tools for cre-

ating and testing classifiers, which can work on corpus file lists

or features. Then there is the Module category, which hosts the

Embedded Module designer and compiler. The Project cate-

gory is made up of general settings and configuration tools like

database connection setup. The Jobs category is used to create

and manage background tasks from within the IDE, including

network cluster set-up and monitoring. This paper picks up sev-

eral of these categories in explaining the IDE’s features in detail

in the following sections.

AGENDERIDE uses Multiple Document Interface (MDI)

layout for its GUI, i.e. there is a parent window representing the

whole workspace, and a child window fully contained within

for each specific view. This allows the user to organize the

workspace to provide the best productivity for his or her needs

with respect to the current task. A main menu bar provides ac-

cess to each of the views grouped by category. Fig. 1 displays

AGENDERIDE’s parent window with some views opened.
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Figure 1: Main window of AGENDERIDE with two views opened.

AGENDERIDE heavily relies on the concept of scripts to fa-

cilitate its extensibility. Many kinds of operations allow differ-

ent implementations from which the user may choose one, and

which should be extensible without modifying the IDE’s source

code. At runtime, the user will be able to select the actual script

to be used from all available classes that implement the corre-

sponding interface. There are many scripts already included in

the application, but the prominent ability of AGENDERIDE is

that scripts can also be written using a code editor from within

the application in either C# or Visual Basic .NET.

Results of analysis functions or logs of lengthy operations

are made available to the user as reports. They can be plain

text or HTML, and optionally contain images and other attached

files. The IDE has an internal HTML viewer that allows the user

to read reports, navigate between them and export them.

3. Corpus Management and Analysis

Before any analysis can be done, the speech needs to be avail-

able. A speech corpus is a database of related wave samples

with annotations. For example, one might create corpora based

on the origin of the data or the recording conditions.

A deficiency encountered prior to the introduction of the

AGENDERIDE was the absence of a common file format for the

speech corpora, so that the audio files often had to be converted

manually between different formats multiple times. The IDE

imports and converts the files from several popular formats such

as raw LPCM, AU, a-law, and NIST Sphere. If a tool requires

audio data in a different format, the corpus system will handle

the conversion automatically.

Meta data is the information associated with a single speech

sample beyond the actual digitized PCM signal. Basic meta

data are fields like a unique ID, timestamp, and length. This

information is present for all files. Static meta data are anno-

tations or class labels provided by an external database and do

never change. Dynamic meta data differs from Static meta data

only in the way it is computed, namely using a script function

that may be based on one or more other fields. For example,

the static field BirthDate may contain the exact date of birth of

the speaker and RecordingDate the date when the sample was

recorded. To obtain a representation more suitable for classifi-

cation, a dynamic meta field Age is created and computed from

the other two fields using a simple script.

Corpus file filters based on meta data represent an efficient

way of selecting subsets of corpus files, e.g. for feature extrac-

tion or classification. They are implemented as filter rules that

restrict the choice of corpus files by certain conditions. For ex-

ample, if we want to consider only adult speakers between 25

and 60 years, a meta-based filter rule could be written as:

age >= 25 AND age <= 60

4. Feature Extraction and Storage

Features are the pieces of information on the basis of which a

classifier makes its decisions, hence choosing the right features

is a key in creating a good classifier [5]. The basic storage unit

for features both in-memory and on disk is called a feature ta-

ble. A feature table has one column for the primary key and one

column for each feature that it contains. The type of primary

key varies depending on the semantics of the features extracted,

and can for instance be the file ID, class label or segment ID.

Feature tables also support null values in their records, which

denote a missing feature value.

As there can be many files and feature tables, the amount of

information that has to be processed and stored can become very

large. To handle this volume, AGENDERIDE supports multiple

feature storage providers. A storage provider handles the fol-

lowing aspects of feature access: storage of table descriptions,

storage of the actual feature data, listing and retrieval of feature

tables, and caching of feature data. There are several advan-

tages to multiple storage providers. First, the performance of a

storage provider depends on the structure and amount of feature

data and the physical platform used for storage. For example,



some storage engines work well with many features but are not

suitable for storing a lot of records. Also, some feature extrac-

tions like n-gram builders do not produce a fixed vector, so they

cannot easily be stored in a normal database table.

The feature extraction is done by running scripts. AGEN-

DERIDE can run executables, integrated and custom scripts.

For executables, command line parameters can be defined,

which may also be feature values, script-generated values, tem-

porary files, input files or output files. Besides that, an output

parser can be specified, which parses the information returned

by the tool into a table. AGENDERIDE is able to handle dif-

ferent script call semantics, e.g. whether the script is called for

each record or handles all records in one call. This affects the

input sent to the script and how the output is treated.

A feature extraction configuration consists of one or more

predefined feature extraction scripts and parameters for each

script. The input to a script can either be a set of audio files

on disk, an existing feature table or the output of another script.

When using files on disk, the file format, audio format and addi-

tional transformations can be specified. For the output, a storage

provider can be chosen by the user. The order in which scripts

are executed is derived from dependencies between scripts.

Large feature tables do not only pose challenges to storage,

but also to retrieval of their contents. Some popular ML frame-

works like WEKA require all features of a table to be kept in

memory for processing. This can limit the type of experiments

that can be performed with these tools considerably. Neverthe-

less, it usually is the fastest way of accessing features. To com-

bine both aspects, feature tables in AGENDERIDE support two

ways of data retrieval: table-based and enumerator-based. The

table-based method reads all records into a single table struc-

ture. Traversal of its rows is extremely fast, especially because

data is kept in RAM. The uni-directional enumerator-based ap-

proach maintains a pointer to the only record that is kept in

memory. Although it is up to several times slower because the

data structures need to be updated for each record, a number of

optimizations have been made to counter this.

When working with features, it is often not sufficient to use

the tables in the form they were created. For this reason, there

is a special compound feature table, which is accessed like any

other feature table, but is dynamically created from other ta-

bles. It does not contain any actual data, but rather retrieves

and parses the data from the underlying tables on-the-fly while

it is being read. It is also possible to build compound tables on

top of other compound tables, which is similar to the concept of

operator chaining known from YALE [6].

AGENDERIDE supports horizontal (or feature) joining and

vertical (or instance) joining of feature tables. Horizontal join-

ing is performed when multiple tables contain different features

of the same instances, while vertical joining occurs when sev-

eral tables store identical features, but differ in primary keys.

It is also possible to cope with advanced combinations of both,

which may require specification of some rules for conflict res-

olution. Joining of feature tables is done incrementally when

using the enumerator-based access and with complexity O(n).
This is possible because all feature tables are sorted by their

primary keys.

A topic that is sometimes neglected in other tools is that

of data archival. Doing this manually is both error-prone and

time-consuming. Even if done carefully, a feature table con-

tains much meta information that is essential for describing its

contents that a single label such as the filename cannot hold it

all, and all too often the user has to look at the actual data to

determine – or sometimes guess – its attributes. As we consider

data management an important subject, AGENDERIDE has am-

ple built-in support for it. First of all, when a feature table is

created, a cache of meta information, e.g. creation date, source

corpora and files, and audio format, is stored with it. To browse

features, the Feature Explorer depicted in Fig. 1 provides an

explorer-like UI where features can be scanned and selected.

There is also a search function for looking for features with spe-

cific criteria across all storage providers.

5. Classifier Design

Based on features, classifiers can be trained and evaluated from

within the GUI. AGENDERIDE distinguishes between Design-

Time classifiers and Runtime classifiers. Design-time classifiers

are only part of the development framework and implemented

as .NET scripts, while runtime classifiers are the ones that

are embedded into the final application as C++ code and con-

trolled via their API. Runtime classifiers are created from ex-

isting design-time classifiers and use the stored model. Design-

time classifiers support a more sophisticated interface, includ-

ing conversion into runtime classifiers and serialization.

For every classification problem, a design-time classifier is

created. Before it can be trained, the features have to be selected

from all available data sources using the Feature Explorer. It is

also possible to apply dynamic post-processing steps such as

normalization and custom scripts, and to filter files based on

corpus and meta properties. There are also some filters which

work purely on the file list, e.g. to select random sets for cross-

evaluation. Then, the class property is picked from the list of

corpus meta properties. Finally, the classification algorithm is

chosen.

AGENDERIDE allows custom classification algorithms to

be written in the integrated editor. There are two types of clas-

sifiers: Binary classifiers, which can only decide on the class

membership of an instance for a single class label, and multi-

label classifiers, which decide between multiple labels of class.

The difference between the two is mostly a semantic one, but

nonetheless important, especially for evaluation and visualiza-

tion. However, a multi-label wrapper can be created for a set

of binary classifiers. The interface for a classifier is depicted

in Fig. 2. As can be seen from this UML chart, the classifica-

tion method returns an array of arrays of floating-point numbers.

The inner array stores scores for the individual classes, with bi-

nary classifiers only using a single element, and the outer array

encompasses the test samples for use with batch classification.

The IDE features a basic set of evaluation functions for clas-

sifiers. Both design-time classifiers as well as runtime classi-

fiers can be evaluated. The latter is especially useful because it

enables the user to benchmark the classification performance of

the final application.

Evaluation results are archived in the same way as feature

data. From the results, reports in different formats (e.g. text

and HTML) can be created, which include a detailed confusion

matrix, precision, recall, error rate, ROC curves [7], and other

statistics.

During evaluation, a so-called score normalization can be

performed. This is useful when classifier scores need to be post-

processed in an interoperable manner, i.e. using the normalized

range [0; 1].

The evaluation results can also be written to a new fea-

ture table. This offers the possibility to create n-th order meta-

classifiers, which are trained on the results of other classifiers.

For example, to support the gender-dependent aging concept

from AGENDER, one could create two classifiers for age, one



Figure 2: Interface which is implemented by all classification algorithms.

for gender, and then train a third “final” age classifier on the

evaluation results of the other three classifiers, using the true

age as class label.

6. Embedded Module Development

The idea of Embedded Classification Modules was already de-

scribed in related work [8]. It is born from the need for a fast,

compact and portable solution for classification modules. Not

only are the modules embedded in the sense that one file con-

tains all program code and models, but they are also optimized

for use in embedded scenarios such as mobile devices an auto-

motive scenarios.

Classification modules support several interfaces, most of

which are optional. The “core” interface, which is the most

compact version of the code, can be statically compiled into C

or C++ programs and is 100% embedded into the host applica-

tion. The DLL interface is made up of a single .dll file that can

be called from C, C++ or any other language supporting DLL

calls. In addition, wrappers for .NET and Java are available.

A module consists of components, which are created and

plugged together in the IDE. Components can be classifiers, fea-

ture extractors, pre- and post-processing components and so on.

The dependencies that are introduced by connecting the mod-

ules will determine how the final classification pipeline looks.

Once the module design is complete, a fully automated build

process generates and compiles the code and the desired inter-

faces.

7. Job Execution Engine

In Machine Learning, we often encounter processes like fea-

ture extraction, classifier training, and classifier evaluation, that

need a considerable amount of time to complete, either because

they involve large amounts of data or because they are computa-

tionally expensive. In AGENDERIDE, a job execution engine is

responsible for executing these so-called jobs and for distribut-

ing the commands to different nodes on a cluster, which allows

time-consuming computations to be passed to other machines1.

Moreover, it allows the user to configure and plan several pro-

cesses in advance and then run them sequentially.

Remote execution is facilitated through the AGENDERIDE

Cluster Service, which is essentially a platform-independent

TCP server implemented in .NET. It has been successfully em-

ployed on a Linux cluster with theMono runtime. When the job

execution engine receives new commands, it waits until a node

is idle and then sends the command to that node. The result of

the command is returned to the engine using a back-channel in

the service. As operating system and file paths may differ be-

tween the IDE and nodes, command lines cannot be transferred

1:1. Therefore, the IDE applies a command packaging method.

1Currently, only executable commands can be run remotely.

8. Recent Extensions and Future Work

Recently, the system has been extended to support the

GMM/SVM Supervector approach, which is nowadays com-

monly applied in speech classification research. Again, as a

prototype application, it has been used for speaker age recogni-

tion. However, results on that study have not been published yet

by the time of writing.

The GMM-SVM supervector approach was proposed by

[11] and later adopted for speaker recognition. It was first ap-

plied to the problem of speaker age recognition by [12]. The ap-

proach combines the strengths of the generative Gaussian Mix-

ture Model with Universal Background Model (GMM-UBM)

approach and the discriminative power of large-marginal meth-

ods like the Support Vector Machine (SVM).

The version of the GMM-SVM Supervector system sup-

ported by IDE is displayed in Figure 3. From training and back-

ground data, frame-by-frame features are extracted. For each

sample a GMM is trained. A single, large GMM is trained for

all background data. The class-specific GMMs are not trained

on the relatively short training data alone but derived from the

background model using the Maximum A Posteriori (MAP)

method. The resulting GMMs are never applied (tested) in the

conventional sense. Instead, the stacked means are extracted

and used as input features for the backend SVM. In this way,

for the every class, one feature vector of dimensionality number

of mixtures times number of coefficients is obtained. To com-

pensate inter-class variability, certain ”nuisance” dimensions

of the resulting supervector space are projected out. This is

done on the basis of a the ratio between the within-class and

between-class variance of all dimensions. Features are after-

wards normalized. One SVM is trained for every acoustic event

in a one-against-all fashion i.e. training vectors from one class

(e.g. CHILDREN) is used as positive examples and the train-

ing vectors of all other events are used as negative examples.

The bias resulting from a larger negative training set is com-

pensated by weighing the training errors on the positive cases

higher. The development test set one and two as well as later

the blind evaluation data is processed analogously from the fea-

ture extraction step until the normalization step. Scores from all

SVMs are obtained. The highest score is taken to determine the

”winner”-class for the objective function accuracy.

In the previous sections we have seen many of the features

that comprise AGENDERIDE and make it an excellent platform

for speech-based classification. Although all of the described

parts are working, the application itself is still in a state of de-

velopment as more feedback from other projects is needed to

improve usability. One such area for improvements is the de-

signer GUI for configurations such as that of Embedded Mod-

ules and feature extractions. Early responses indicate that a

graphical designer, i.e. one that supports dragging and drop-

ping of components and connecting them via lines, would be



Figure 3: The version of the GMM-SVM supervector approach for speaker age recognition supported by out IDE.

preferred over the current list-and-buttons-style interfaces for

ease of use and improved readability. In addition, there are still

some technical features which have not been implemented yet,

but are closely considered for further enhancement resulting in

additional value of the framework. Examples are unsupervised

learning methods, meta classifiers, and integration of existing

classifier packages likeWEKA.
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