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Abstract

We present a simple but efficient model for object
segmentation in video scenes that integrates motion and
color information in a joint probabilistic framework.
Optical flow is modeled using parametric motion with
Gaussian noise. The color distribution of foreground
and background is described by histograms or Gaus-
sian mixture models. Optimization is carried out using
an efficient graph cut algorithm.

In quantitative experiments on a variety of video
data, we demonstrate that the proposed approach leads
to significant reductions in error rates compared to a
state-of-the-art motion-only segmentation.

1. Introduction

Segmentation has been an intensively studied prob-
lem in computer vision for decades, but yet continues to
be a challenge [8]. For still images, pixels are usually
grouped into regions of coherent appearance [9, 11] that
cannot be assumed to correspond to meaningful objects
in general.

For video, an attractive alternative is to segment
frames into layers of coherent motion. The resulting
regions can be associated with rigid objects (or rigid
components of articulated objects). However, the es-
timation and grouping of motion is based on assump-
tions that are often violated in practice [1]: (1) the color
of moving pixels is assumed to be constant, (2) the reli-
able estimation of motion demands the presence of tex-
ture, (3) spatial coherence of motion is assumed, which
is violated at motion boundaries, and (4) the foreground
motion must be discriminable from the background mo-
tion. Though workarounds for some problems exist,
motion segmentation remains a challenging problem.

While motion and color clues individually do not
provide reliable segmentations, we present a simple and
efficient combination of both. Our approach decom-
poses a scene into a foreground and background layer.
For each layer, a parametric motion model and a Gaus-
sian error model are assumed, and the color distribution
is modeled by histograms or Gaussian mixture models.
Cost terms are formulated for assigning each pixel to
foreground or background depending on how well it fits
the associated motion and color. The pixel costs are in-
tegrated with a smoothness prior, and optimization is
carried out using a graph cut algorithm.

2. Related Work

Starting with the work by Horn and Schunck [4], mo-
tion estimation and motion segmentation have been in
the focus of computer vision research since the 1980’s.
Though problems like lack of texture and illumination
changes still pose challenges, the robustness of motion
segmentation could be increased by explicit models for
motion discontinuities [13], robust error measures [1],
and joint flow estimation and segmentation [3]. From
the view of motion segmentation, our approach can be
seen as an enhancement of a state-of-the-art method [3]
with color clues.

Similar to our work are also recently introduced
sprite-based methods [6, 7]. These decompose a scene
into layers associated with template images (“sprites”).
Each frame is explained by mapping sprites into the im-
age domain while handling their occlusion. Sprites can
be seen as precise pixel-wise color models. In con-
trast to them, the simpler models presented here do
not provide pixel accuracy, but higher robustness to 3D
changes. Also, since our approach estimates parametric
motion by a simple least-squares estimation over flow
error statistics, it runs in near real-time.



Figure 1. In contrast to motion only (left),
the combination with a color model (right)
gives a better segmentation.

3. Approach

Given image data I with pixel positions x, a binary
mask m is estimated such that m(x) = 1 whenever x
belongs to the foreground. Further, a parameter vector
θ describes the background and foreground motion and
appearance.

Using a MAP parameter estimation approach and as-
suming a uniform prior over θ, we obtain the optimiza-
tion criterion:

m̂, θ̂ = arg max
m,θ

p(I|m, θ) · P (m) (1)

For the likelihood term p(I|m, θ), we assume that
(1) pixels are independent, and (2) each pixel carries
independent color and motion information: I(x) =
[Iv(x), Ic(x)].

p(I|m, θ) ∝
"Y
x

p(Ic(x)|m, θc)
#α
·

"Y
x

p(Iv(x)|m, θv)
#1−α

,

(2)

where the parameter α ∈ [0, 1] determines how strongly
unlikely color and motion values are penalized and thus
balances the influence of color and motion information.

The prior P (m) enforces a smooth and short ob-
ject boundary. This is done using a Gibbs distribution
(where C is the set of all neighbor pixel pairs and β > 0
is a parameter that weights the importance of the prior):

P (m) ∝
∏

(x,y)∈C,m(x)6=m(y)

e−β (3)

By taking the logarithm, we obtain an energy func-
tion, minimizing which is equivalent to maximizing (1):

E1(m, θ; I) = α ·
∑
x

− log p(Ic(x)|m, θc)︸ ︷︷ ︸
color cost

+ (1− α)
∑
x

− log p(Iv(x)|m, θv)︸ ︷︷ ︸
motion cost

+
∑

(x,y)∈C,m(x) 6=m(y)

β

︸ ︷︷ ︸
smoothness cost

(4)

E1 consists of three terms: the first two regulate the
fit of the foreground and background pixels to regions
of coherent parametric color and motion, while the last
one forces the segmentation boundary to be smooth by
penalizing its length.

3.1 Color Information

We assume that background and foreground color
are modeled by parametric densities with parameters
θc = (θbc, θ

f
c ). The color likelihood is:

p(Ic(x)|m, θc) = m(x) · pc(IRGB(x)|θfc )
+[1−m(x)] · pc(IRGB(x)|θbc). (5)

For the color distributions pc(IRGB(x)|θfc ) and
pc(IRGB(x)|θbc), we use Gaussian mixture models
(where θf/gc are component priors, means, and covari-
ances) or color histograms with entries θf/gc .

3.2 Motion Information

For p(Iv(x)|m, θv), we use the motion competition
model based on optical flow error [3]: two paramet-
ric (e.g., constant of affine) motions θv = (θbv, θ

f
v ) for

background and foreground with variances σ2
b , σ

2
f are

assumed. For each pixel position x, the model predicts
the associated motion vectors for foreground, vf (x),
and background, vb(x).

Like [3], we measure the quality of these
motion predictions using the optical flow er-
ror ef/g(x) = ∇I(x) · vf/g(x) + It(x), which
is assumed to be normally distributed with
ef/g(x) ∼ N (0, σ2

f/g · ||∇I(x)||
2) (∇I is the im-

age gradient and It is the temporal derivative).
The motion model can thus be rewritten as:

p(Iv(x)|m, θv) = m(x) · N (ef (x); 0, σ2
f ||∇I(x)||2)

+[1−m(x)] · N (eb(x); 0, σ2
b ||∇I(x)||2) (6)

3.3 Extensions: Shape and Contrast

The model from Equation (4) can be improved using
two observations. The first one is that motion bound-
aries tend to coincide with image edges. Therefore, a
contrast term is used similar to [7]:

E3(mt, θ
t; I,mt−1) = E2(mt, θ

t; I,mt−1)

−β · η
∑

(x,y)∈C,m(x) 6=m(y)

[
1− exp(− (I(x)−I(y))2

2σ2 )
]

i.e., the smoothness cost from Equation (4) is reduced
by a factor η depending on the pixel difference (σ2 is



Figure 2. In static scenes, background
subtraction can provide accurate ground
truth for testing motion segmentation.

estimated as two times the mean squared pixel differ-
ence). Consequently, region boundaries are favored to
coincide with image edge locations.

The second observation is that objects should move
smoothly between successive frames. This can be for-
mulated using an additional shape consistency term
over the segmentation masks of the current (mt) and
previous frame (mt−1):

E2(mt, θ
t; I,mt−1) = E1(mt, θ

t; I)
+

∑
x,mt(x)6=mt−1(x)

γ (7)

where the Lagrangian multiplier γ regulates the influ-
ence of shape consistency. Note that this term helps in
cases where motion is not discriminative (e.g., if the ob-
ject stands still) such that the proposed approach relies
on color and shape consistency clues instead.

3.4 Optimization

To estimate the segmentation mask mt and param-
eters θ for color and motion in foreground and back-
ground, the energy E3 is minimized given the segmen-
tation maskmt−1 and weights α, β, γ, η. The optimiza-
tion is carried out in an iterative scheme similar to [3],
where θ and m are alternately estimated.

1. Initialize the mask (e.g., m1
t := mt−1). Set k = 1

2. Estimate θc and θv using statistics over foreground
(in case of θfc , θ

f
v ) and background (θbc, θ

b
v) regions

in mk
t

3. Estimate mk+1
t by fixing θ and minimizing E3 us-

ing a graph cut algorithm.

4. If mk+1
t 6= mk

t : set k = k + 1 and goto (2).
Else return mk+1

t

Boykov and Kolmogorov [2] give an efficient algo-
rithms for solving the graph cut problem. Also, the mo-
tion competition model can be estimated very efficiently
from statistics of flow error as has been reported in [3].
At a resolution of 160 × 120, our non-tuned prototype
runs at 3 fps. on a 2.4 GHz machine.

4 Experiments

A key challenge for training and evaluating segmen-
tation systems is that the acquisition of ground truth is
time-consuming, such that often only qualitative eval-
uations on few test sequences are done. To provide a
quantitative evaluation, we use two test sets:

Static Scenes: In case of a static background and
fixed camera focal length, an almost perfect segmenta-
tion can be achieved by robust background subtraction
techniques (e.g., [12]). This provides a simple way to
generate ground truth automatically. For this purpose,
we used an implementation of a state-of-the-art online
background subtraction approach. The method weights
a shadow model [5] and local histograms of gradi-
ent directions [10] and integrates them with a back-
ground attenuation and graph cut as in Sun’s Back-
ground Cut [12]. From a dataset of 24 short video clips
in which several objects are presented to a camera in
front of several static scenes, 507 frames are obtained
(frames without foreground objects in them were ig-
nored). For an impression of the ground truth segmen-
tations obtained, see Figure 2. Note, however, that this
approach is restricted to static scenes and is therefore
significantly limited compared to our framework.

The proposed approach was tested on this dataset at
a resolution of 160× 120 pixels using an affine motion
model and β = 6, γ = 2.5, η = 0.5 (this setup was
obtained by a grid search optimization of segmentation
error). To evaluate the influence of color information on
the system, the color weight α was varied. If α = 0, the
system uses motion only and is similar to the approach
from [3]. With increasing α the influence of color on
the segmentation increases.

A sample result is illustrated in Figure 1 - in this
scene, motion alone is not sufficient to segment the
object from the background (possible explanations are
sudden illumination changes and a motion pattern that
does not suit the parametrization). If combined with
color information, however, the object can be seg-
mented from the background almost perfectly.

Quantitative results are given in Figure 4, where the
segmentation error is plotted against the color weight
α. Four color models were used: a Gaussian mixture
model, a histogram model, and as baselines Normal
densities with full and diagonal covariance matrices.
Our insights from this experiment are: (1) By choosing
a proper weight (α ≈ 0.05), segmentation quality can
be improved by about 2 % . According to a t-test (level
0.5%) this improvement is significant. (2) To achieve
this, a color model of a certain complexity is necessary
- while both normal densities fail to improve segmenta-
tion quality, the more complex mixture model (12 com-



Figure 3. Segmentation results in dy-
namic scenes. Top row: input. Center:
results. Bottom row: ground truth (manu-
ally acquired).

ponents) and histogram (103 bins) lead to similar im-
provements.

General Scenes: For scenes in which the back-
ground is allowed to move, 29 pairs of frames were seg-
mented manually. The data was sampled from videos
downloaded from the video portal revver.com and
shows cars, faces, and animals in motion.

For these scenes, larger images were used (240×180
pixels) and also smoothed with a Gaussian filter. We
tested the system with a constant motion model and a
histogram color model. Compared to the static case,
our quantitative results show higher error rates (since
the segmentation problem is more difficult for dynamic
scenes), but also a reduction from 13.5 % (α = 0)
to 12.6 % (α = 0.3) by using color information. A
paired t-test was successful at a significance level of
25%; stronger statements might be possible with higher
numbers of samples, but these are difficult to acquire.
Some sample segmentations are illustrated in Figure 3.

5 Conclusions

In this paper, a segmentation approach was pre-
sented that combines color and optical flow in a joint
probabilistic framework. Our quantitative experiments
demonstrate that our way of integrating color clues with
a state-of-the-art motion-only approach [3] improves
segmentation results in both static and dynamic scenes.

Since our system is restricted to a single foreground
region so far, a possible extension would be to integrate
the approach with an α-expansion algorithm [7] to al-
low a segmentation of multiple foreground objects 1.

1This work was supported in part by the Stiftung Rheinland-Pfalz
für Innovation, project InViRe (961-386261/791)
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Figure 4. The segmentation error, plotted
against the color weight α. For GMMs and
histogram color models, segmentation er-
ror can be reduced by about 2 %.
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