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Abstract
It has been recognised that the expressivity of on-
tology languages benefits from the introduction of
non-standard modal operators beyond the usual ex-
istential restrictions and the number restrictions al-
ready featured by many description logics. Such
operators serve to support notions such as uncer-
tainty, defaults, agency, obligation, or evidence,
which are hard to capture using only the standard
operators, and whose semantics often goes beyond
relational structures. We work in a unified theory
for logics that combine non-standard modal opera-
tors and nominals, a feature of established descrip-
tion logics that provides the necessary means for
reasoning about individuals; in particular, the log-
ics of this framework allow for internalisation of
ABoxes. We reenforce the general framework by
proving decidability in EXPTIME of concept sat-
isfiability over general TBoxes; moreover, we dis-
cuss example instantiations in various probabilistic
logics with nominals.

1 Introduction
Description logics [Baader et al., 2003] are one of the core
areas of research in knowledge representation, and semanti-
cally underpin the web ontology language OWL [Horrocks
et al., 2003] as well as many stand-alone ontologies. A key
feature of many description logics is support for nominals,
which are explicit names designating individual entities to be
used within concepts, rather than only in a separate collection
of assertions about individuals, the ABox. Nominals allow in
particular for a direct combination of knowledge about indi-
viduals with terminological knowledge.

Another group of features which is often recognised as de-
sirable, but is not currently included in standard description
logics, is formed by reasoning paradigms which go beyond
the standard relational perspective. The latter is the seman-
tic basis e.g. of existential or universal restrictions ∃R.C /
∀R.C along roles asserting that some or all R-successors,
respectively, of an individual satisfy a concept C, and of
the more general qualified number restrictions ≥nR.C /
≤nR.C which give explicit numerical bounds on the num-
ber of R-successors satisfying C. Features not supported by

relational models include e.g. reasoning with uncertainty, de-
fault implication, coalitional reasoning, or notions of agency.
Some effort has recently been invested in designing prob-
abilistic extensions of description logics such as SHOIN ,
some of them supporting a form of defaults (a good overview
is found in [Lukasiewicz, 2008]). A common feature of these
approaches is that they typically add a new reasoning princi-
ple only at the outermost level, e.g. by generalising concept
inclusions in the TBox to conditional probabilities.

Here, we propose a framework that allows for a close in-
tegration of a wide variety of reasoning principles in com-
bination with nominals and general TBoxes. We obtain this
framework by extending the framework of coalgebraic hy-
brid logic recently introduced by Myers et al. [2009] with rea-
soning support for general TBoxes. This general framework
supports a wide variety of reasoning principles embodied as
modal operators, thus in particular allowing for nested appli-
cation of the new operators. The semantics of these operators,
which include e.g. probabilistic modal operators and other
notions of uncertainty, non-monotonic conditional implica-
tion, and operators relating to the power of coalitions, often
goes far beyond standard relational semantics, being based
e.g. on probabilistic structures, selection function models, or
game frames. The common umbrella for all these structures
is a coalgebra-based semantics [Pattinson, 2003], which we
recall in some detail below.

Technically, we prove that under natural assumptions on
the axiomatisation of the reasoning principles used in the
logic at hand, in fact the same assumptions as used by
Schröder and Pattinson to establish a generic PSPACE upper
bound for various purely modal logics [2009], concept sat-
isfiability over general TBoxes is in EXPTIME , typically a
tight upper bound. We achieve this by first reducing the satis-
fiability problem to the existence of tableaux, and, in a second
step, to the existence of winning strategies in parity games.

We conclude with an extended discussion of how our
framework may be fruitfully applied in ontological reasoning.
We exploit in particular that coalgebraic semantics is modu-
lar [Schröder and Pattinson, 2007] and hence allows for flex-
ibly taylored combinations of reasoning principles and algo-
rithms. We illustrate this point using different combinations
of probabilistic and relational semantics in an ontology of the
Tudor dynasty.



2 Nominals in Coalgebraic Logic
We recall the generic framework of coalgebraic hybrid logic
recently introduced by Myers et al. [2009]. It covers a range
of logics that feature modal operators interpreted over a wide
variety of system types, nominals designating individuals
within a system, and satisfaction operators that permit to as-
sert properties of individuals at any place within a formula,
thus in particular allowing for internalisation of ABoxes.

The framework is parametric in both syntax and semantics.
The syntax of a given logic is determined by a (modal) sim-
ilarity type Λ consisting of modal operators with associated
arities, which we fix throughout. For given countably infi-
nite and disjoint sets P of propositional variables and N of
nominals, the set F(Λ) of hybrid Λ-formulas is given by the
grammar

F(Λ) 3 φ, ψ ::= p | i | φ ∧ ψ | ¬φ | ♥(φ1, . . . , φn) | @iφ

where p ∈ P, i ∈ N and ♥ ∈ Λ is an n-ary modal oper-
ator. We use the standard definitions for the other proposi-
tional operators →,↔,∨,>,⊥. The set of nominals occur-
ring in a formula φ is denoted by N(φ). A formula of the
form @iφ is called an @-formula. For Σ ⊆ F(Λ),we put
N(Σ) =

⋃
φ∈Σ N(φ) and @Σ = {φ ∈ Σ | φ @-formula}.

Semantically, nominals i denote individual points in a model,
and an @-formula @iφ stipulates that φ holds at i.

The parametrisation of the semantics is essentially the stan-
dard coalgebraic semantics of modal logics [Pattinson, 2003].
In particular, the type of systems underlying the semantics is
determined by the choice of an endofunctor T : Set → Set
on the category of sets, to be thought of informally as a
parametrised datatype (formally, T maps sets X to sets TX
and maps X → Y to maps TX → TY , compatibly with
identities and composition). Then, T -coalgebras play the
roles of frames. A T -coalgebra is a pair (C, γ) where C is a
set of states (or individuals) and γ : C → TC is the transi-
tion function. When γ is clear from the context, we identify a
T -coalgebra (C, γ) with its state space C.
Example 2.1. 1. The (covariant) powerset functor P
maps a set X to its powerset P(X); its coalgebras C →
P(C) are in bijection with Kripke frames (C,R ⊆ C × C).

2. The multiset functor B maps a setX to the set of multi-
sets overX , i.e. mapsX → N∪{∞} assigning multiplicities
to elements of X . Its coalgebras are multigraphs, a variant of
Kripke frames where edges are annotated with positive inte-
ger multiplicities [D’Agostino and Visser, 2002].

3. The distribution functor D maps a set X to the set of
finitely supported probability distributions on X; its coalge-
bras are Markov chains, also variously referred to as proba-
bilistic type spaces [Heifetz and Mongin, 2001] or probabilis-
tic transition systems.

4. Coalgebras for the functor CF taking a set X to the
set P(X) → P(X) of selection functions over X are pre-
cisely conditional frames [Chellas, 1980], also called selec-
tion function models.

5. Coalgebras for the functor Gn taking a set X to the set
{(S1, ..., Sn, f) | S1, ..., Sn nonempty sets (of strategies),
f : (

∏
Si) → X} of n-player strategic games over X are

Pauly’s game frames [2002].

The interpretation of an n-ary modal operator♥ ∈ Λ is given
by an n-ary predicate lifting [[♥]], i.e. a family of maps [[♥]]X :
P(X)n → P(TX), indexed over all sets X , such that

[[♥]]X(h−1[A1], ..., h−1[An]) = (Th)−1[[[♥]]Y (A1, ..., An)]

for all h : X → Y , A1, . . . , An ∈ PY .
The semantics induced by these parameters, which we

fix throughout, is a satisfaction relation |= between states
c ∈ C in (hybrid) T -models M = (C, γ, π) and formulas
φ ∈ F(Λ). Here, M consists of a T -coalgebra (C, γ) and a
hybrid valuation π, i.e. a map P∪N→ P(C) that assigns sin-
gleton sets to all nominals i ∈ N, where we often identify the
singleton set π(i) with its unique element. Satisfaction is in-
ductively defined by the obvious clauses for the propositional
part, and by

c,M |= x iff c ∈ π(x) c,M |= @iφ iff π(i),M |= φ

c,M |= ♥(φ1, ..., φn) iff γ(c) ∈ [[♥]]C([[φ1]]M , ..., [[φn]]M )

where x ∈ N∪P, i ∈ N, ♥ ∈ Λ n-ary, and [[φ]]M = {c ∈ C |
c,M |= φ}. The focus of the present work is on reasoning
over so-called general TBoxes: Given a set Γ ⊆ F(Λ) of
global assumptions, the TBox, we say that M is a Γ-model if
c,M |= φ for all c ∈ C and all φ ∈ Γ. A formula φ (a set Φ
of formulas) is Γ-satisfiable if there exists a state satisfying φ
(all formulas in Φ) in some Γ-model. Note that thanks to the
satisfaction operator, an ABox, i.e. a set of assertions about
individuals, may be encoded either in the formula φ itself or
in the TBox Γ.
Example 2.2. We recall a few basic examples that use the
functors from Example 2.1.

1. The hybrid version of the modal logic K, hybrid K
for short, has a single unary modal operator 2, interpreted
over the powerset functor P by [[2]]X(A) = {B ∈ P(X) |
B ⊆ A}. This coalgebraic definition of satisfaction trans-
lates to the usual semantics of the box operator along the bi-
jection between P-coalgebras and Kripke frames, inducing
the standard semantics of hybrid logic [Areces and ten Cate,
2007]. The description logicALCO is a notational variant of
a sublogic of multi-agent hybrid K (captured coalgebraically
using multiple copies of the powerset functor).

2. Graded hybrid logic has modal operators 3k ‘in more
than k successors, it holds that’. It is interpreted over
the multiset functor B by [[3k]]X(A) = {B ∈ B(X) |∑
x∈AB(x) > k}. This captures the semantics of graded

modalities over multigraphs [D’Agostino and Visser, 2002].
One can encode the description logic ALCOQ (which fea-
tures qualified number restrictions ≥nR and has a relational
semantics) into multi-agent graded hybrid logic with multi-
graph semantics by adding formulas ¬31i for all occurring
nominals i to the TBox.

3. Probabilistic hybrid logic, the hybrid extension of
probabilistic modal logic [Larsen and Skou, 1991; Heifetz
and Mongin, 2001], has modal operators Lp ‘in the next step,
it holds with probability at least p that’, for p ∈ [0, 1] ∩ Q.
It is interpreted over the distribution functor D by putting
[[Lp]]X(A) = {P ∈ D(X) | PA ≥ p}.



4. Hybrid CK , the hybrid extension of the basic condi-
tional logic CK , has a single binary modal operator⇒, writ-
ten in infix notation and read e.g. as a non-monotonic default
implication. Hybrid CK is interpreted over the functor CF by
putting [[⇒]]X(A,B) = {f : P(X) → P(X) | f(A) ⊆ B}.
Other conditional logics with additional axioms, e.g. cau-
tious monotony, are captured similarly. As a simple example,
the fact that the national football championship is typically
won by team i (an observation that fits a number of coun-
tries) is expressed in hybrid conditional logics by the formula
champion⇒ i.

5. Hybrid coalition logic, the hybrid version of Pauly’s
coalition logic [2002], has modal operators [C] ‘the coali-
tion C ⊆ {1, ..., n} of agents may force . . . ’. These
are interpreted by suitable predicate liftings for the functor
Gn [Schröder and Pattinson, 2009]. Given a Gn-coalgebra
(C, γ), C is the set of states in a strategic game, and nominals
therefore encode individual positions.

Our generic complexity result will be based on axiomatisa-
tions in a certain format; we require the following notation.

Definition 2.3. The set of boolean combinations over a set
V is denoted Prop(X). A clause over a set V is a disjunc-
tion of literals over V , i.e. elements of V ∪ {¬v | v ∈ V }.
The set of clauses over V is denoted Cl(V ). A conjunctive
normal form (CNF) of φ ∈ Prop(V ) is a subset of Cl(V )
whose disjunction is propositionally equivalent to φ. For
Φ ⊆ Prop(V ), ψ ∈ Prop(V ), we write Φ `PL ψ (‘Φ propo-
sitionally entails ψ’) if there exist φn, ..., φn ∈ Φ such that
φ1 ∧ ... ∧ φn → ψ is a propositional tautology. A valu-
ation τ : V → P(X) for some set X induces in the ob-
vious way an interpretation [[φ]]τ ⊆ X . Moreover, we put
Λ(X) = {♥(x1, ..., xn) | ♥ ∈ Λ n-ary, x1, ..., xn ∈ X}.
Given τ as above, one obtains for φ ∈ Prop(Λ(Prop(V )))
a one-step semantics [[φ]] ⊆ TX extending the assignment
[[♥(φ1, ..., φn)]]τ = [[♥]]X([[φ1]]τ, ..., [[φn]]τ).

Using these notions, we can now define the crucial prerequi-
sites for the generic reasoning algorithm.

Definition 2.4. A (one-step) rule R = φ/ψ over a set V of
propositional variables consists of a premise φ ∈ Prop(V )
and a conclusion ψ ∈ Cl(Λ(V )). The rule R is one-step
sound if whenever [[φ]]τ = X for a valuation τ : V →
P(X), then [[ψ]]τ = TX . A set R of one-step rules is
strictly one-step complete if whenever [[χ]]τ = TX for some
τ : V → P(X) and some χ ∈ Cl(Λ(V )), then there exist a
rule φ/ψ ∈ RC and a V -substitution σ such that ψσ `PL χ
and X, τ |= φσ. Here, RC denotes the extension of R with
congruence rules a1 ↔ b1; ...; an ↔ bn/♥(a1, ..., an) ↔
♥(b1, ..., bn) for ♥ ∈ Λ n-ary.

Strict one-step completeness essentially amounts to absorp-
tion of cut by the rule system. Strictly one-step complete
rule sets for the logics of Example 2.2 are given in [Schröder
and Pattinson, 2009; Pattinson and Schröder, 2008]. E.g. for
hybrid K, the set of rules a1 ∧ ... ∧ an → b/2a1 ∧ ... ∧
2an → 2b is strictly one-step complete. The axiomatisation
of graded and probabilistic logics is more complicated, but
still tractable in a sense recalled below. In the following, we
assume given a strictly one-step complete setR.

3 Generic Complexity Bounds
We proceed to develop a decision procedure for global con-
sequence in coalgebraic hybrid logic, i.e. for Γ-satisfiability
of formulas given a TBox Γ, by means of a translation of the
satisfiability problem into the problem of finding a winning
strategy in a parity game. The latter will be played on a game
board built from a Γ-closed set Σ of formulas.

Definition 3.1. Let Σ ⊆ F(Λ). A (Σ-)Hintikka set is a sub-
set of Σ which is maximally consistent w.r.t. propositional
reasoning. We say that Σ is closed if Σ is closed under sub-
formulas, negation, and @t with t ∈ N(Σ), where we identify
¬¬φwith φ, @t¬φwith¬@tφ, and @s@tφwith @tφ. We say
that Σ is Γ-closed if Γ ⊆ Σ and Σ is closed. The Γ-closure
of a set ∆ is the smallest Γ-closed set containing ∆.

Let φ be a formula, to be checked for Γ-satisfiability. As φ is
Γ-satisfiable iff @tφ is Γ-satisfiable for a fresh nominal t, we
can assume that φ is an @-formula. We form the Γ-closure
Σ of {φ} (which is of polynomial size in Γ, φ). Note that φ
is Γ-satisfiable iff there exists a Γ-satisfiable @Σ-Hintikka set
K such that φ ∈ K; as going through all suchK yields an ex-
ponential factor and we are aiming for EXPTIME decidabil-
ity, we can focus on deciding Γ-satisfiability of @Σ-Hintikka
sets. We can then apply the technique of @-elimination
from [Myers et al., 2009]:

Definition 3.2. A hybrid formula is @-free if it does not con-
tain occurrences of @. A set of @-formulas is @-eliminated
if it consists of formulas @iρ with ρ @-free. For ρ ∈ Σ, ρ[K]
denotes the @-free formula obtained by replacing every sub-
formula @iχ of ρ not contained in further occurrences of @
by > if @iχ ∈ K, and by ⊥ otherwise.

One shows easily that a model satisfiesK iff it satisfies the @-
eliminated set {@iρ[K] | @iρ ∈ K}. Thus, we assume in the
following w.l.o.g. that K is @-eliminated and hence that the
Σ-Hintikka setsKi = {ρ | @iρ ∈ K} (i ∈ N(Σ)) are @-free;
intuitively, we have thus reduced to checking Γ-satisfiability
of an ABoxK. Note that theKi need not be pairwise distinct.
If one of the Ki does not contain Γ, then K is immediately
rejected as Γ-unsatisfiable.

In the tableau system for global entailment, possible non-
termination arises both from the presence of global assump-
tions, which may propagate indefinitely, as well as from the
presence of nominals, which may force loops. The game-
theoretic approach that we apply below allows us to deal with
infinite paths in tableaux, and eliminates the need to consider
blocking conditions. We introduce a notion of tableau graph
that captures all possible tableaux, i.e. all possible rule appli-
cations at every node, within a single object:

Definition 3.3. IfH is a Σ-Hintikka set, χ/ψ ∈ R, and σ is a
substitution such that ψσ ∈ Prop(Σ) and H `PL ¬ψσ, then
¬χσ is a demand of H . A Γ-tableau graph for K is a graph
whose set of nodes consists of Σ-Hintikka sets and includes
the Σ-Hintikka sets Ki, such that

1. for every demand ρ of a node H , there exists an edge
H → G such that G `PL ρ

2. whenever H `PL i for some node H and some i ∈
N(Σ), then H = Ki,



3. H ⊇ Γ for every node H .
Theorem 3.4. The set K is Γ-satisfiable iff there exists a Γ-
tableau graph for K.

Sketch. ‘Only if’ is by straightforward extraction of a tableau
graph from a Γ-model for K. ‘If’ is by construction of a
so-called coherent coalgebra structure ξ on the set of nodes
in a tableau graph such that the graph becomes a supporting
Kripke frame, i.e. for every node H , ξ(H) ∈ TY where Y is
the set of successor nodes of H . Here, ξ is called coherent if
for all ♥(ρ1, ..., ρn) ∈ Σ and all nodes H ,

ξ(H) ∈ [[♥]](ρ̂1, ..., ρ̂n) iff ♥(ρ1, ..., ρn) ∈ H

where ρ̂ is the set of successor nodesG ofH such that ρ ∈ G.
Existence of a coherent structure ξ is proved by means of
strict one-step completeness, analogously as in [Schröder
and Pattinson, 2009] but avoiding induction over the depth
of nodes. Coherence then allows the inductive proof of a
truth lemma, which entails that the model constructed sat-
isfies both Γ and K.

As the nodes of the tableau graph are subsets of Σ, we obtain
a small model property for hybrid coalgebraic logic relative
to an arbitrary background theory.
Corollary 3.5. Every Γ-satisfiable formula φ is satisfiable in
a Γ-model of exponential size in Γ and φ.
Having reduced the satisfiability problem to existence of
tableau graphs, we now show that the latter can be further
reduced to existence of winning strategies in certain par-
ity games, as follows. The game is played by two players,
Abelard (∀) and Eloise (∃); ∃ tries to prove that K is Γ-
satisfiable, while ∀ tries to prove the opposite. A move by
∀ consists in the choice of rule to be applied, giving rise to a
demand, while a move by ∃ consists in the choice of a Hin-
tikka set that satisfies the demand. Formally:
Definition 3.6 (Tableau Game). The Γ-tableau game for K
is a graph game

S = (B∃, B∀, E)
where
• B∀, the set of positions owned by ∀, consists of all Σ-

Hintikka sets containing Γ (including the Ki) and containing
i ∈ N(Σ) only in case H = Ki, and an additional initial
position init .
• B∃, the set of positions owned by ∃, consists of pairs

(R, σ), where R = χ/ψ is a rule in R and σ is a substitution
such that ψσ ∈ Prop(Σ)
• E is the set of permissible moves, where ∀ may move

from a Σ-Hintikka-set H to a pair (χ/ψ, σ) such that H `PL

¬ψσ, and ∃ may move from (χ/ψ, σ) to a Σ-Hintikka set H
such that H `PL ¬χσ. Additionally, ∀ may move to any of
the Ki from init .
The set of all positions on the game board is B = B∃ ∪B∀.
(Note that B∀ is a priori infinite if there are infinitely many
rules; we will introduce additional assumptions later that al-
low reducing to a finite board.)

A full play in the tableau game is a finite or infinite
sequence of moves (b0, b1, b2, . . . ) such that b0 = init ,

(bi, bi+1) ∈ E for all i ≥ 0, and – in case the sequence is
finite – the last position has no permissible moves. A finite
full play is lost by the player who owns the last position (and
hence cannot move), and infinite full plays are won by ∃.
Remark 3.7. We note that the tableau game is a parity game
where we assign priority 0 to all positions of the game so that
– by the parity condition – ∃ wins all infinite games [Mazala,
2001].

Definition 3.8. A history-free strategy for ∃ is a function f :
B∃ → B such that (b, f(b)) ∈ E for all b ∈ B∃. We say
that f is a winning strategy for ∃ if ∃ wins all full plays that
conform with f in the obvious sense.

Lemma 3.9. Eloise has a history-free winning strategy in
the Γ-tableau game for K iff there exists a Γ-tableau graph
for K.

Proof Sketch. ‘If’ is clear. ‘Only if’: construct the Γ-tableau
graph starting from the initial set of nodes {Ki | i ∈ N(Σ)}
and successively introducing additional nodes and edges ac-
cording to the strategy of ∃ for every possible move of ∀, i.e.
for all arising demands.

We now show that the existence of a winning strategy for ∃ in
the tableau game can be decided in exponential time, subject
to a mild condition on the rule sets that is satisfied in all our
examples. We require the modal tableau rules to be tractable
in a similar sense as in [Schröder and Pattinson, 2009]; the
main condition here is that one may restrict to rule sets with
at most polynomial-size codes (regarding the remaining con-
ditions, we can be slightly more generous in the context of
EXPTIME bounds relevant here).

Definition 3.10. The set R of modal rules is EXPTIME -
tractable if there exists a coding of the rules such that, up to
propositional equivalence, all demands of a Hintikka set can
be generated by rules with codes of polynomially bounded
size, and such that validity of codes, matching of rule codes
for χ/ψ ∈ R to Hintikka sets H (in the sense of finding σ
such that H `PL ¬ψσ), and membership of clauses in a CNF
of a rule premise are all decidable in EXPTIME .

Lemma 3.11. If R is EXPTIME -tractable, then it can be
decided in EXPTIME whether ∃ has a winning strategy in
the Γ-tableau game for K.

Proof Sketch. Given that the rule set is tractable, we may re-
place the positions B∃ owned by ∃ by codes of polynomial
size in Γ,K. This leads to a game board whose size n is at
most exponential in Γ,K. As we have a parity game with
only one priority, it takes at most O(n4) ∗ k steps to deter-
mine whether ∃ has a winning strategy [Klauck, 2001], where
k is such that one can decide in at most k steps whether
(b, b′) ∈ E. Tractability of the rule set guarantees that k
is at most exponential, so that we obtain overall complexity
EXPTIME .

Corollary 3.12. If R is EXPTIME -tractable, then Γ-
satisfiability of formulas φ over general TBoxes Γ is decid-
able in EXPTIME .



The above corollary yields decidability in EXPTIME of rea-
soning over general TBoxes for all logics mentioned in Ex-
ample 2.2. In particular, this reproves the known tight upper
bound for hybrid K (which follows from an EXPTIME up-
per bound for the graded µ-calculus [Areces and ten Cate,
2007]), as well as for the description logic ALCOQ (and,
with minor modifications, ALCHOQ) [Tobies, 2000], how-
ever by embedding the latter into a more expressive logic that
internalises ABoxes by means of satisfaction operators. The
use of games in the context of TBox reasoning appears to
be new. We emphasise moreover that the algorithm essen-
tially analyses a tableau; already in the case without nomi-
nals, the ad-hoc analysis of tableaux for TBox reasoning in
the basic description logic ALC has proved to be quite com-
plex [Donini and Massacci, 2000]. The (tight) upper bounds
for TBox reasoning in probabilistic hybrid logic, conditional
hybrid logic, and hybrid coalition logic appear to be new. We
discuss some examples of this type in more detail below.

4 Two Views on Probabilistic Successors
We discuss two applications that highlight the generality of
our results. In both examples, we combine classical relational
successors and uncertainty, but in two different ways. Both
are phrased in terms of descendancy, where states in a model
represent persons.

4.1 Probabilistic Successors
We imagine a situation where we only have probabilistic
knowledge about the offspring of a certain person. Sup-
pose for instance that the probability that c (Catherine Carey)
is a child of h (Henry VIII) is known to be at least 0.8,
and similarly we know that h′ (Henry Carey) is a child of
h with likelihood 0.6. To model this situation, we con-
sider a structure of type C → DP(C) where P(X) is the
powerset of a set X and D(X) = {µ : X → [0, 1] |
supp(µ) is finite,

∑
x∈X µ(x) = 1} is the set of finitely sup-

ported probability distributions over X as in Example 2.2. In
other words, given a person x ∈ C, an application of the
structure map yields a probability distribution over sets (!)
of persons. If this distribution assigns probability p to a set
C ′ ⊆ C, we interpret this as the fact that the probability that
C ′ are (precisely) the children of x equals p. (Note that this
model applies primarily when x is male.)

This situation can be syntactically described using modal
operators of the form Lp3, where Lp3φ reads ‘the probabil-
ity that there exists a successor that satisfies φ is at least p’,
together with the companion modality Lp2 expressing the
same statement relative to all successors.

Assume we know that the probability that every king has
at least one illegitimate child is at least 0.8. This is expressed
using the global assumption

king→ L0.83illegitimate,

while the above assertions about Catherine and Henry Carey
take the form

@hL0.83c and @hL0.63h
′.

Moreover, we know that Henry is a king, and m (Mary) is
certainly a child of Henry, and either c or h′ is illegitimate,

whereas e is legitimate, which we express by

@hking @h〈1〉m @e¬illegitimate
@cillegitimate ∨@h′illegitimate.

Now consider the concept

king ∧ L0.92¬illegitimate

asserting that all children of a king are legitimate with prob-
ability at least 0.9. This concept is satisfiable, but h is not an
instance of c2 (as e is a legitimate child of h).

Similarly, the ABox

@hL12(illegitimate→ (c ∨ h′)) @c¬illegitimate

formalising that c is legitimate and c and h′ are the only pos-
sible illegitimate children of h is satisfiable (and the global
assumption forces that h′ be a child of h with likelihood at
least 0.8) but it becomes unsatisfiable if we stipulate for ex-
ample that h′ is a child of h with probability at most 0.7. The
proof rules that govern this situation are a straightforward
combination of the rules discussed in [Schröder and Pattin-
son, 2009], which immediately yields tractability of the ensu-
ing combined rule set. As a consequence, we have that global
consequence for the logic of probabilistic successors is decid-
able in EXPTIME .

4.2 Probabilistic Identities
Now let us suppose that someone internal to Henry’s court
has observed that none of the children of c′ (Catherine of
Aragon) had really died, but they were rather removed from
court, and we are only left with probabilistic knowledge con-
cerning their identities.

To model this situation, we need to consider a different
combination of relational successors and probability distri-
butions. Our knowledge base is modelled by structures of
the form C → P(D(C)) where P and D are as above. The
main difference is now that, from each state of the model, we
can observe a set of relational successors (corresponding to
the person’s offspring), but each successor carries a proba-
bility distribution over the model that expresses uncertainty
concerning the successor’s identity.

Syntactically, this leads to modal operators of the form
3Lp asserting that there exists a (relational) successor that
satisfies a given formula with probability at least p. How-
ever, we use a slightly richer set of modal operators, where
we can interpose propositional connectives between the re-
lational and probabilistic operators. Formally, this leads to
a two-sorted logical language where one sort describes re-
lational successors and the second models quantitative un-
certainty; tractability of such combinations is established in
[Schröder and Pattinson, 2007], so that we obtain decidabil-
ity in EXPTIME of global consequence in this situation
(formally, the logic of the previous section arises as a sim-
ilar combination, the second sort corresponding to possible
worlds).

Suppose that c′ had one female child, whose identity is
known to be m (Queen Mary) with certainty, and she also
had a male child, believed to be a with likelihood at least 0.2
and b with likelihood at least 0.8. We take it for granted that



a queen’s offspring is always legitimate child, leading to the
global assumption

queen→ 2¬L1illegitimate

where we have made use of the ability to apply propositional
connectives to subformulas of the same (here: probabilistic)
type. This assumption expresses that at least one of the possi-
ble candidates (with non-zero probability) for any given child
of a queen, namely the actual child, must be legitimate.

In addition, we have the ABox

@c′queen @c′3(L0.2a ∧ L0.8b) @c′3L1m

@mfemale @a¬female @b¬female

that formalises our assumptions concerning c′’s offspring.
We may now ask whether it is possible that both a and b are
illegitimate, i.e.

@aillegitimate ∧@billegitimate.

This formula is not satisfiable as it would violate the global
assumption. In contrast, the statement that a queen has at least
one child who will be queen with likelihood at least 0.7, i.e.
the formula

queen→ 3L0.7queen

is consistent with our (hypothetical) knowledge – we may e.g.
consider models satisfying @mqueen.

5 Conclusion
We have extended the algorithmic framework that surrounds
coalgebraic hybrid logic [Myers et al., 2009] to deal with
global logical consequence. While hybrid constructs allow
us to make assertions about individuals, global consequence
allows us to algorithmically decide satisfiability of formulas
relative to a global background theory. In description logic
terms, we internalise the ABox and provide support for con-
cept satisfiability and instance checking relative to a general
TBox. The prime achievement of this work is its generality:
suitable instantiations of the general coalgebraic framework
yield EXPTIME bounds for a large number of modal and de-
scription logics that go far beyond Kripke semantics. In par-
ticular, we have established

• a small model property for coalgebraic hybrid logic over
general TBoxes (Corollary 3.5), and

• EXPTIME complexity of the global consequence prob-
lem in coalgebraic hybrid logic (Corollary 3.12)

for the class of all logics that can be formalised in the coalge-
braic framework, which includes various conditional logics,
coalition logic, and logics for uncertainty. Further extensions
of the framework and the analysis of further reasoning tasks
are the subject of ongoing investigation.
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