
An Object Memory Modeling Approach for
Product Life Cycle Applications

Joerg NEIDIGa, 1 and Peter STEPHAN
b, 2

a
 Siemens AG, Germany

b
 German Research Center for Artificial Intelligence, Germany

Abstract. Today, industrial production and supply chains are facing increased
demands regarding flexibility and transparency of processes, caused by a trend for
mass-customization and increasingly tighter regulations for the traceability of
goods. To fulfill such challenging market demands, auto-ID technologies and
semantic product descriptions are becoming part of future value chains. In this
paper a modelling approach for a digital object memory (DOM) allowing for the
attachment of product life cycle (PLC) information to everyday objects is
presented. After reporting on the design aims, memory architecture and data
structure, potential benefits of the chosen approach are presented.

Keywords. Digital Object Memory, Modeling, Internet of Things, Distributed
Systems, Product Life Cycle, Radio Frequency Identification.

1. Introduction

Today, the increasing trend of shortening product life cycles and the customer desire
for highly individualized goods are asking for flexible industrial and supply chain
processes which are able to adapt quickly to changing demands. When it comes to
quality products, perishable goods or healthcare products, this is supplemented by the
request for a transparent monitoring of events that happened during the product’s life
[1]. In order to face such challenges competitively, the collection, storage and
management of comprehensive product life cycle (PLC) information becomes a crucial
factor for optimizing processes. In this context, auto-ID technologies like barcode and
radio frequency identification (RFID) have already proven their potential to align the
physical flow of goods with the digital flow of corresponding information [2].

Most of current solutions in operation use auto-ID technologies and object-related
information only in the context of closed-loop applications in single domains or even a
single company [3]. Although ID system solutions like the electronic product code
(EPC) or the GS1 coding system already allow for a information exchange between
certain stakeholders of a value chain [4, 5] these systems focus entirely on referencing
information in dependence of the object’s ID.

1
 Joerg Neidig: Siemens AG (Sector Industry), Gleiwitzerstr. 555, 90575 Nürnberg, Germany;

E-mail joerg.neidig@siemens.com
2
 Peter Stephan: German Research Center for Artificial Intelligence (DFKI GmbH)

Trippstadter Str. 122, 67663 Kaiserslautern, Germany; E-mail: peter.stephan@dfki.de

In this paper, the modeling approach for a digital object memory (DOM) is
presented, to associate object-related PLC information with physical products in an
efficient way. The solution will be tailored to the needs of real life applications, and
allow for the gathering and storage of information from different sources. Furthermore
the DOM will represent its content in a way enabling a seamless exchange and use of
PLC information in applications throughout the whole value chain.

2. Related Work

Going conceptually beyond current auto-ID applications, DOM describe an approach to
flexibly associate digital information items with physical objects [6, 7]. They are
created by gathering and storing information from information sources in the
environment (e.g. sensor networks) or processes a physical object participates in.

Exemplary research projects concerned with the creation of DOM are SPECTER
[8] or SharedLife [9]. In SPECTER, a DOM is utilized to deliver ad-hoc assistance in a
CD shopping scenario by triggering situation-aware mechanisms based on previously
recorded user interactions. SharedLife drives this idea one step further by capturing,
sharing and exploiting cooking experiences through DOM in a SmartKitchen
environment. As other implementation examples show, DOM can vary in several
dimensions like location of the physical data storage [3, 8], implementation approaches
[10, 11] and potential application contexts [12, 13, 14].

By accompanying a smart pizza packaging through stages of its PLC, it has been
proven in [15] that the concept of DOM also works for dealing with PLC information
in broader application contexts like a complete value chain.

Numerous standards for object descriptions have been created, all aiming at the
definition of a comprehensive list of object properties. Well renowned approaches are
the Electronic Device Description Language (EDDL) [16], the Field Device Tool
(FDT) [17] the Physical Markup Language (PML) [18] or the Smart Description
Object (SPDO) [19]. As all these models are created for a certain application or domain,
they are deemed not be abstract and generic enough to describe all kinds of objects
throughout an entire PLC.

3. Object Memory Design

3.1. Design Aims

The aim regarding the DOM design presented is not to simply enrich the world with
another model for describing a set of object-related information. Instead, the idea is to
create a container format for object-related information which does not substitute the
different device and object description languages, but unites them under one roof. The
requirements for the approach are given below.

1. The DOM must contain a number of mandatory entries (e.g. object ID)
2. A set of information has to be intelligible to all stakeholders of the value

chain, i.e. can be accessed and understood throughout the whole PLC
3. Besides common DOM information, an option to embed information

given in proprietary formatting must be offered, in order to enable
stakeholders to include already existing data structures

4. The DOM has to protect itself, meaning that access should only be
possible via an interface, which also allows to search for specific content

5. To allow for a hardware independent DOM implementation, the model
needs sufficient flexibility and scalability

6. The DOM has the option to link to external information sources, i.e.
incorporates arbitrary information entities like single parameters, entire
information blocks or even the complete DOM

7. The DOM has to be identifiable and allow for the versioning of it’s states

3.2. DOM Architecture

The key to enable a DOM solution for dealing with information over a whole PLC lies
in the flexibility of its architecture. To allow for a maximum of adaptability and
openness, all DOM information is arranged in a modular block structure similar to a
file system (see Figure 1). The structure consists of distinct blocks each with a clear
function and determined content.

Figure 1: Structure of the DOM and its information blocks.

In the presented architecture, the header is a mandatory part of the DOM including
all information needed to identify this model as a valid DOM of a certain version.
Optionally, the header can be extended to include a schema for the DOM model
making it self-explanatory. The information part contains all the information related to
the object itself. It consists of a collection of blocks filled with different types of
information. These blocks can be coarsely divided into common and specific ones. The
common blocks contain information which is not specific to a certain application,
domain or section of the PLC, e.g. physical object properties, warranty information or
hazard statements. To make this information commonly understandable the available
keywords and the structure are fixed. The specific blocks contain information that is
only of interest for a limited set of users. As this information is likely to be proprietary
(e.g. production parameters or sensor readings) only very little restrictions are made,
allowing to embed almost any kind of information.

The modular structure of the information part offers high flexibility and scalability.
The combination of a defined structure, which gives the DOM a unified appearance and
the support for any kind of information formats make the DOM a convenient
information pool. The chosen design allows for the retrieval of specific information by
simply accessing specific blocks. Furthermore, with the presented structure the DOM
can be extended easily by simply adding further blocks to the information part.

3.3. Information Block Description

The structure of an information block is simple and independent of it’s content. It
consists of a Block Info, Metadata, and the Data itself. Whereas the Block Info and

Meta Data are mandatory using fixed keywords, the Data may be given in any format
desired.

The Block Info is a short section which contains the block characteristics Block
Type, Block Format and its ID. By that, the Block Info includes the information needed
to access and parse the block’s Data section. The Block Type categorizes the block
itself. If it is a common information block the type must be taken from the list given in
the DOM specifications (e.g. “owner”, “physical properties”, …). If the block is a
specific one the Block Type is set to “none”. The Block Format specifies the block’s
data format given as a mime-type. In all cases (with the exception of “none”) an XML-
stream is expected in the Data section. The ID is unique to the block and is the key for
accessing it’s information content.

The Meta Data contain all information to classify and label the content of the Data
section. It contains tags like the block’s name, search keywords, the block’s creator, a
history log listing the changes made to the block, and so on. Consider the Meta Data
section as the source of information needed for powerful search applications.

The Data section contains the object-related information itself given in the format
specified by the Block Info. In this section any kind of information can be stored
without restrictions, but it is expected that the Meta Data are kept accurate. Optionally,
it is possible to store the schema of the data format in the block header. It is important
to keep in mind that for the user of a DOM it is of no interest how any of the data
mentioned above is stored physically. Common understanding is that on RFID-
transponder or embedded devices a highly compressed bit-coding is needed whereas on
pc-based devices a more elaborate encoding might be possible.

3.4. Interface Description

An application utilizing DOM information must not access memory content directly,
but use a standardized interface instead (see Figure 2). In that context, the interface
assumes several tasks. It works as an abstraction layer from the DOM hardware by
translating the data from the format in which it is stored physically (e.g. bitcode on an
RFID-tag) into the format expected by the user (e.g. a XML-stream) and vice versa.
Furthermore, it has to act as a kind of administration software by creating, organizing
and deleting DOM blocks and implementing rudimentary search capabilities.
Information from a DOM is accessed via the ID of the respective information block,
e.g. the data of Block 42 is accessed via the function GetUserData(42). As the IDs
are generated by the interface automatically, they have to be retrieved via a search
operation implemented in the interface. For example, the command GetBlockIds()
will return the IDs of all blocks, GetBlockIds(Metadata) returns the IDs of blocks
with certain Meta Data. More complex searches operations have to be implemented in
external applications. The intended way to access the DOM is to retrieve a list of
relevant IDs through the search option, then to (partially) retrieve the respective blocks
and finally to filter the information in the application. This has the advantage of
keeping the interface layer lightweight by limiting its complexity. The creation of a
new block is initialized via the function CreateBlock()returning the ID of the new
block. User and Meta Data can be added or altered with the appropriate Set functions.

«interface»
IProductMemory

+ CreateBlock() : int
+ CreateBlock(IMetadata) : int
+ DeleteBlock(int) : void
+ GetBlockIds() : int[]
+ GetBlockIds(IMetadata) : int[]
+ IsSearchableAttribute(string) : bool
+ IsReadOnlyAttribute(string) : bool
+ GetMetadataKeys() : string[]
+ GetMetadataDictionary(string) : string[]
+ GetBlockInfo(in t) : IBlockInfo
+ GetUserData(int) : byte[]
+ SetUserData(int, byte[]) : void
+ GetMetadata(in t) : IMetadata
+ UpdateMetadata(int, IMetadata) : void
+ DeleteMetadata(int, string) : void
+ GetHistoryData(int, int) : byte[]
+ GetLogData(in t) : ILogData

«property»
+ MemoryHeader() : IMemoryHeader

Figure 2: Object Memory Interface.

4. Benefits

Section 2 showed that a large number of different object description languages and data
formats specific to certain domains and optimized for limited phases of the PLC exist.
The presented approach offers a container in which existing ways to describe object-
related information can be united. This will allow for the gathering and storage of
information over the whole PLC always in the most appropriate way. By that, potential
users can stick with the object languages and data formats already in use. In order to
migrate to the DOM framework, simply an interface plug-in is required. Regarding the
presented DOM container itself, its flexible architecture sets it apart from other current
approaches. Adopting a structure consisting of distinct information blocks allows to
interact with small subsets of DOM information. i.e. initializing, searching and parsing
DOM content can be limited to only relevant blocks without loading the DOM
completely. By that, only little computing power and small communication bandwidth
are sufficient to interact with the DOM, enabling it for lightweight smart item solutions
attached directly to a product.

To verify the viability of the presented approach, an initial DOM version has been
implemented in a hardware demonstrator at this year’s CeBIT 2009 fair. Experiences
and further benefits are reported in a publication currently under review [20].

5. Conclusion

In this paper a modelling approach for a digital object memory (DOM) is presented,
allowing for the effective attachment of product life cycle (PLC) information to
everyday objects. Based on a number of design aims, the development of a container
format is described, in which existing ways to describe object-related information can
be united. The key to enable such functionality lies in the flexible DOM architecture
and the information storage in a block structure which allows for a maximum of
openness in information handling. The access to the DOM is managed by a
standardized interface. Main benefits of the presented approach are its capabilities to
integrate object-related information of different domains over a whole PLC, it’s easy

expandability and the possibility to interact only with DOM information blocks of
interest.

Acknowledgements

The research described in this paper was conducted within the project Semantic
Product Memory (SemProM). SemProM is funded by the German Federal Ministry of
Education and Research under grant number 01 IA 08002. The responsibility for this
publication lies with the authors.

References

[1] Garcia, A., McFarlane, D., Fletcher, M., and Thome, A. Auto-ID in Materials Handling, Cambridge,
MA: White paper, Auto-ID Center, MIT (2003).

[2] Fleisch, E. and Mattern, F. Das Internet der Dinge: Ubiquitous Computing und RFID in der Praxis,
Berlin: Springer (2005).

[3] Neidig, J., and Opgenoorth, B. RFID in der Automatisierung - ein Blick in die Zukunft, In: atp –
Automatisierungstechnische Praxis, 7 (2008), 34-38.

[4] Engels, D., Foley, J., Waldop, J., Sarma, S., and Brock, D. The Networked Physical World: An
Automated Identification Architecture, 2nd IEEE Workshop on Internet Applications (2001).

[5] Römer, K., Schoch, T., Mattern, F., and Dübendorfer, T. Smart Identification Frameworks for Ubiquitous
Computing Applications, In: Wireless Networks, Special issue: Pervasive computing and
communications, 10, 6 (2003), 689-700.

[6] Mase, K., Sumi, Y., and Fels, S. Memory and Sharing of Experiences, In: Personal and Ubiquitous
Computing, 11, 4 (2007).

[7] Sumi, Y., Sakamoto, R., Nakao, K., and Mase, K. ComicDiary: Representing individual experiences in a
comis style, In: Proc. of the 4th International Conference on Ubiquitous Computing (2002).

[8] Plate, C., Basselin, N., Kröner, A., Schneider, M., Baldes, S., Dimitrova, V., and Jameson, A.
Recomindation: New Functions for Augmented Memories, In: Proc. of the International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH2006), 141-150 (2006).

[9] Schneider, M. The Semantic Cookbook: Sharing Cooking Experiences in the Smart Kitchen, In: Proc. of
the 3rd International Conference on Intelligent Environments (IE'07), 416-423 (2007).

[10] Wahlster, W., Kröner, A., Schneider, M., and Baus, J. Sharing Memories of Smart Products and Their
Consumers in Instrumented Environments, In: it - Information Technology, 50, 1 (2008), 45-50.

[11] Barbu, C., and Kröner, A. Designing a Study Concerning the Functions of Sharable Personal
Memories, In: Proc. of the IADIS International Conference WWW/Internet 2008 (2008).

[12] Pollack, M. E. Intelligent technology for an aging population: The use of AI to assist elders with
cognitive impairment, In: AI Magazine, 26, 2 (2005), 9-24.

[13] Kuwahara, N., Noma, H., Kogure, N., Tetsutani, N., and Iseki, H. Wearable auto-event-recording of
medical nursing, In: Proc. of the 9th IFIP TC13 International Conference on Human-Computer
Interaction (INTERACT’03), (2003).

[14] Wasinger, R., and Wahlster, W. The antropomorphized product shelf: Symmetric multimodal
interaction with instrumented environments, In: Aarts, E., and Encarnacao, J. (ed.): True Visions: The
Emergence of Ambient Intelligence, Heidelberg, Berlin, New York, Springer (2006).

[15] Schneider, M. and Kröner, A. The Smart Pizza Packing: An Application of Object Memories, In: Proc.
of the 4th International Conference on Intelligent Environments (IE’08), 1-8 (2008).

[16] Riedl, M., Simon, R., Thron, M. EDDL – Electronic Device Description Language, Oldenbourg, (2001)
[17] Simon, R., et al. FDT Field Device Tool, Oldenbourg, (2005)
[18] Brock, D.L., et al. The Physical Markup Language, White Paper, MIT Auto-ID Cener, (2001)
[19] Janzen, S. and Maass, W. Smart Product Description Object (SPDO), In: Poster Proc. of the 5th

International Conference on Formal Ontology in Information Systems (FOIS2008), (2008)
[20] Stephan, P., et al. Product Mediated Communication Trough Digital Object Memories in

Heterogeneous Value Chains, Under Review: 11th Intl. Conference on Ubiqitous Computing, (2009).

