
Proceedings of the first
Twente Data Management
Workshop on XML Databases
& Information Retrieval

21 June 2004
Enschede
The Netherlands

Editors:
Vojkan Mihajlovic
Djoerd Hiemstra

Secretariat CTIT:
University of Twente
CTIT
P.O. Box 217
7500 AE Enschede
The Netherlands
Phone +31 53 489 80 31
ISSN 1574-0846

CTIT
Workshop Proceedings

TDM 2004

Secretariat CTIT:
University of Twente
CTIT
P.O. Box 217
7500 AE Enschede
The Netherlands
Phone +31 53 489 80 31
ISSN 1574-0846

Twente Data Management
Workshop on XML Databases
& Information Retrieval

21 June 2004
Enschede
The Netherlands

Editors:
Vojkan Mihajlovic
Djoerd Hiemstra

Secretariat CTIT:
University of Twente
CTIT
P.O. Box 217
7500 AE Enschede
The Netherlands
Phone +31 53 489 80 31
ISSN 1574-0846

CTIT
Workshop Proceedings

TDM 2004

Omslag TDM 2004.p65 11/25/04, 8:47 AM1

Proceedings of the first
Twente Data Management
Workshop on XML Databases
& Information Retrieval

21 June 2004
Enschede
The Netherlands

Editors:
Vojkan Mihajlovic
Djoerd Hiemstra

Secretariat CTIT:
University of Twente
CTIT
P.O. Box 217
7500 AE Enschede
The Netherlands
Phone +31 53 489 80 31
ISSN 1574-0846

CTIT
Workshop Proceedings

TDM 2004

Omslag TDM 2004.p65 11/25/04, 8:47 AM1

June, 2009
The Netherlands

Editor:
Regis Vogel

Fifth European Conference on M
odel-Driven Architecture Foundations and Applications: Proceedings of the Tools and Consultancy Track

Fifth European Conference on
Model-Driven Architecture
Foundations and Applications:
Proceedings of the Tools and
Consultancy Track

CTIT Workshop Proceedings

Secretariat CTIT:
University of Twente
CTIT
P.O. Box 217
7500 AE Enschede
The Netherlands
Phone +31 53 489 3994

ISSN: 0929-0672
CTIT proceedings WP09-12

Proceedings of the first
Tw

ente Data M
anagem

ent
W

orkshop on XM
L Databases

& Inform
ation Retrieval

21 June 2004
Enschede
The N

etherlands

Editors:
Vojkan M

ihajlovic
D

joerd H
iem

stra

Secretariat CTIT:
U

niversity of Tw
ente

CTIT
P.O

. B
ox 217

7500 A
E Enschede

The N
etherlands

Phone +31 53 489 80 31
ISSN

 1574-0846

CTIT
W

orkshop Proceedings

TD
M

 2004

O
m

slag T
D

M
 2004.p65

11/25/04, 8:47 A
M

1

173852-os-CTIT.qxd 08-06-2009 14:33 Pagina 1

Regis Vogel (Eds.)

Fifth European Conference on Model-Driven

Architecture Foundations and Applications:

Proceedings of the Tools and Consultancy Track

Fifth European Conference on Model-Driven Architecture

Foundations and Applications (ECMDA-FA 2009)

University of Twente

Enschede, The Netherlands.

June 23 - 26 2009

Enschede, the Netherlands, 2009

CTIT Proceedings Series WP09-12

ISSN 0929-0672

Preface

This volume contains the proceedings of the Tools and Consultancy Track of the

European Conference on Model Driven Architecture - Foundations and Applications

(ECMDA-FA 2009). This is the written version of the presentations that will be held

during the three sessions of the track. Presentations/slides are generally better

understood when presented by a speaker. By compiling this document we provide the

presenters a way communicate those details that are sometimes missing on the slide

only material.

Like other technologies, to be successful MDA needs to have the right tools to

support it. Its success is also dependant on practitioners with the knowledge to deploy

it, and community knowledge to support its infusion. The role of the “Tools and
Consultancy” track is to provide a time and space to present these aspects of MDA

work. .

ECMDA-FA has traditionally had a very strong Tools and Consultancy track since

this is often the meeting place between academic and industrial people interested in

the practice of MDA. Attracting strong sponsors and academic and open source

presenters, the 2009 Edition is representative of this strength.

The progress and evolution of MDA tools since the first edition in 2005 is notable.

Similar to other technologies, MDA tools are maturing and provide more and more

functionality. At the same time we have noticed an increase in the number of

industrial (sponsors) participating in the track.

We would like to take this opportunity to thank the people who have contributed to
the 2009 Tools and Consultancy track. We wish to thank all authors and reviewers for

their valuable contributions, and we wish them a successful continuation of their work

in this area. Finally, we want to thank the organization of the ECMDA-FA 2009

conference for the work and dedication that make this event possible.

June 2009

Regis Vogel

Organisation

Chair

Regis Vogel The Information Highway Group

Local organizer

Arend Rensik Univeristy of Twente

Ivan Kurtev Univeristy of Twente

Andrey Sadovykh, Softeam

Programme Committee

Regis Vogel, The Information Highway Group

Ivan Kurtev, Univeristy of Twente

Supporting Organisations

Modelplex

Centre of Telematics and Information Technology, University of Twente (CTIT)
Object Management Group (OMG)

Instituut voor Programmatuurkunde en Algoritmiek (IPA)

European Association for the Study of Science and Technology (EASST)

Sponsors

IBM-Rational software

Blu Age Software

Novulo

Sapiens

IBM Research

ModelioSoft

Pure-system

Shape

Table of Contents

Papyrus UML: an open source toolset for MDA..1

Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien

GerardPatrick Tessier, Remi Schnekenburger, Hubert Dubois, François Terrier

MOCAS: a Model-Based Approach for Building Self-Adaptive Software
Components ...5

Cyril Ballagny, Nabil Hameurlain, and Franck Barbier

Emerge: Modeling your future success..12

Gil Segal, Sagi Schlisser

Modelio: Globalizing MDA..20
Philippe Desfray

pure::variants - Combining Variant Management and Model-Driven Development in
Product Lines ...23

Danilo Beuche

IBM Research work on MDE..24

Andrei Kirshin, Tali Yatzkar-Haham, Shiri Kremer-Davidson

Applying Model Driven Approach to parallel platform architecture.......................35
Irv Badr

Agile Solution Approach to legacy systems modernization using automated PIM
extraction .. 36

Imad Bernoussi, Franck Barbier, Sylvain Eveillard, Kamal Youbi and Eric

Cariou

Participation of Business Stakeholders in MDD ..52
Frank Wille

Model-driven software development of distributed heterogeneous systems53

Alexander Broekhuis , Jeroen Kouwer

traceMAINTAINER - Tool Demonstration ...54
Patrick Mäder

SOA and SHA Tools Developed in SHAPE Project ..58
Andrey Sadovykh, Christian Hahn, Dima Panfilenko, Omair Shafiq, Andreas

Limyr

EMFText and JaMoPP - Tool Presentation..73

Florian Heidenreich, Jendrik Johannes, Sven Karol Mirko Seifert, and

Christian Wende

eXtreme Model-Driven Design with jABC..78

Christian Kubczak, Sven Jorges, Tiziana Margaria, and Bernhard Steffen

FURCAS: View Based Textual Modelling..100
Thomas Goldschmidt, Steffen Becker, Axel Uhl

Papyrus UML: an open source toolset for MDA.

Agnes Lanusse, Yann Tanguy, Huascar Espinoza, Chokri Mraidha, Sebastien Gerard
Patrick Tessier, Remi Schnekenburger, Hubert Dubois, François Terrier

CEA, LIST, Laboratoire d’ingénierie dirigée par les modèles pour les systèmes embarqués
(LISE), Boîte courrier 94, GIF SUR YVETTE CEDEX, F-91191 France

{firstname.lastname@cea.fr}

Abstract. MDA is with no doubt a very good paradigm to support company
teams all over the design and development process of software systems. This
approach can be even more effective if tooling support is close to process prac-
tices and concepts used in application domains. This was one of the main mo-
tivations at the origin of Papyrus UML. This toolset is a general purpose UML
2 graphical modeller (http://www.papyrusuml.org/). Its main strength besides
its strong compliance to UML 2 relies on its ability to exploit all the expressive
power of advanced profiles management including static profiles to achieve cut-
ting edge customization leading not only to profile storage and application but
really to tool customization for domain specific applications. In the presenta-
tion, we illustrate this feature of the tool on a customization example to support
EAST-ADL, an architecture description language for automotive. In a second
part, we show how MARTE profile can be used to annotate models with tem-
poral constraints and perform schedulability analysis at an early stage of model-
ling. Finally, we present code generation facilities.

Introduction

MDA has widely been recognized as a major advance in the design and development
of complex systems, mainly thanks to separation of concerns promoted by the ap-
proach. Its benefit is expected to be even greater for real-time embedded systems that
must respond to rapidly evolving target platforms and yet increasing functional com-
plexity. Providing efficient tooling to support MDA designers for real-time embedded
systems in their tasks is becoming the next challenge. With the emergence of large
collaborative environments such as Eclipse projects, it becomes possible to capitalize
on technologies and provide tools responding to large consensus expressed in OMG
standards. UML 2 and its extension mechanisms based on profiles and stereotypes
provide a way to maximize investment made on tools, since customization toward
specific domains can be implemented through profile application and related tooling
facilities as long as the tool platform exploits fully these concepts. It is the direction
we have chosen and which is exposed here through a customization example to sup-
port EAST-ADL 2 automotive language (http://www.atesst.org/).

Papyrus has also been used for component based development for embedded sys-
tems using the eC3M (embedded Component Container Connector Model) environ-
ment (http://www.ec3m.net/) in telecommunication domain.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

1

mailto:%7Bfirstname.lastname@cea.fr%7D
http://www.ec3m.net/
http://www.atesst.org/
http://www.papyrusuml.org/

 Papyrus, an open source UML 2 toolset

Started as a CEA LIST open source project, Papyrus is first of all a general purpose
UML2 graphical modeller based on the Eclipse environment. Because modelling is
not enough for fully claiming to be an MDE tool, it provides also code generation (C,
C++, java) and facilitates external tools connection (schedulability analysis) in order
to enable models to be the driving artefacts of the development process.

But Papyrus is also a very powerful tool for designing Domain Specific Modelling
Languages (DSMLs) using the UML profile concept, and comes with a set of pre-
defined extension plug-ins (UML 2 profiles) devoted to real-time embedded applica-
tions, including SysML, MARTE, CCM and LwCCM OMG standards. These profiles
are packaged in plug-ins easily installable from Papyrus website feature
(http://www.papyrusuml.org/) via Eclipse remote installation.

Papyrus leverages various Eclipse software components (plug-ins) to provide an
efficient graphical editor for UML 2. Indeed, UML 2 specification compliance is one
of the key objectives guiding Papyrus development. Hence, Papyrus currently sup-
ports eight of the diagrams described in the specification: class diagram, component
diagram, activity diagram, composite structure diagram, state machine diagram,
use case diagram, sequence diagram and deployment diagram.

Validation facilities are offered in order to reduce modelling errors, and or keep
conformance to company or specific standard recommendations. These facilities rely
on the extensible Eclipse EMFT Validation framework which is integrated in Papyr-
us. Users can rely on EMFT Validation extension points to add dedicated rules either
externally to promote company or language specific modelling or within models.
OCL or Java rules can be used for that purpose. Such rules (e.g. OCL constraints) be-
nefit from text completion features implemented in Papyrus. They may be checked
via an OCL verification engine, and detected errors can be located in the editor.

Advanced customization facilities

Thanks to the Eclipse framework, Papyrus is highly customizable using most of exist-
ing Eclipse extension points (e.g. menus, contextual actions, views, model transform-
ations). In Papyrus the customizations are most of the time closely linked to profiles.
Profiling is a key feature of UML that allows user to adapt the language to specific
modelling aspects or to some business domain and/or process. Papyrus offers a
graphical editor to create new profiles, and define subsequent new modelling con-
cepts. These additional modelling concepts (called stereotypes) may be associated to
specific modelling rules (in OCL) and/or specific graphical notations. Moreover, the
concept of static profile is used to customize the toolset itself (e.g. iconization of con-
cepts, palette customization), but also for implementing validation rules.

Indeed, as profiles enhance the UML2 language, the tool also needs to be extended
to support the language extensions. The main idea behind this is: partially or com-
pletely mask UML elements if needed and preferably offer the possibility to use lan-
guage specific concepts in the model. To achieve this, palette creation tools can be

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

2

http://www.papyrusuml.org/

defined and used in Papyrus for a One-click creation of stereotyped elements. Such
palette is visible on right side of Fig.1 which gives an overview of the tool customiza-
tions developed for the automotive EAST-ADL2.

Fig. 1. Papyrus customization for the EAST-ADL2 language.

The graphical representation of model elements is also customizable with a set of
replacement icons related to the language that are more appropriate than UML default
icons. Again, Fig.1 gives a good example showing icons associated to automotive
concepts instead of UML Class or Properties in diagrams and in the outline as well.
Moreover, the graphical customization can be associated not only to profile stereo-
types but with variations depending on the usage context. As an example, a stereo-
typed UML Property can have distinct representations depending on its type, or more
generally depending on the value of any element defined in the model.

Embedded and Real-time MDA with UML and MARTE

 The MARTE profile (http://www.omg.marte.org/) has been officially accepted by the
Object Management Group (OMG) as an international standard in June, 2007, and a
version 1.0 is expected to be available by June 2009. MARTE deals with time and re-
source constrained aspects, and includes a detailed taxonomy of hardware and soft-
ware patterns along with their non-functional attributes to enable state-of-the-art
quantitative analyses (e.g., performance and power consumption).

A key challenge of MARTE is to offer the tool support for making user models
productive within a consistent development process. The tool demonstration will
show some current results to integrate a set of tools enabling practitioners for incre-

Customization
Profile management

Stereotype properties

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

3

http://www.omg.marte.org/

mental code generation, prototype execution, and timing analysis. In this approach,
MARTE-annotated models, supporting a particular model of computation, are ex-
ecuted in a real-time framework and iteratively tuned (e.g., task allocation) by
scheduling analysis tool results (see Fig.2). Once this is done, code generation can be
triggered.

Platform Models (Libraries)

Validation of Non-
Functional
Properties

Integrated and Validated System
Model

Application Model with
Non-Functional Constraints

Allocation

Analysis Tools

Input Files for Analysis

à RTOS Libraries
à HW Component Models

à Structure and Behavior
à Timing Requirements
à Time- and resource properties and
constraints

Generated Code

Fig. 2. Some typical scenarios for the usage of the MARTE tool suite

MARTE enables scheduling analysis by providing standard annotations, which are
used to add supplementary information to various kinds of UML elements that can
then be interpreted by specialized tools or domain experts. For instance, fine-grained
timing analyzers can help to determine the worst case execution times of relevant
pieces of code, which are then used in scheduling analysis to predict end-to-end re-
sponse times.

These annotations are defined in the Scheduling Analysis Modelling (SAM) sub-
profile of MARTE. The purpose is that these annotations can be applied to make a
model look like a scheduling analysis model. These can then be used by an automated
scheduling analysis tool to determine the fundamental timing properties of a software
design. We have implemented an Eclipse/Papyrus plug-in to extract system models
annotated with SAM stereotypes and transform them into input files for the SymTA/S
analysis tool, as well as the other way around to feed back analysis results. It is based
on a model-to-model transformation coded in ATL. The demonstration will detail a
typical scenario for the usage of MARTE in this context.

Papyrus, now an Eclipse MDT project for UML and SysML

A new Eclipse MDT project led by CEA LIST called Papyrus started in 2008 thanks
to the convergence of three main European open source initiatives. Papyrus, Top-
Cased UML and Moskitt development teams are unifying their efforts with the goal to
make out of these separate UML & SysML modelling tools, a common offer of out-
standing performance and user-friendliness. This proposal was accepted by the Ec-
lipse consortium and the project Eclipse web page is accessible at this link:
http://www.eclipse.org/modeling/mdt/. Contact: sebastien.gerard[at]cea.fr.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

4

http://www.eclipse.org/modeling/mdt/

MOCAS: a Model-Based Approach for Building

Self-Adaptive Software Components

Cyril Ballagny, Nabil Hameurlain, and Franck Barbier

1 LIUPPA, University of Pau
2 BP1155, 64013 Pau, France

{cyril.ballagny,nabil.hameurlain,franck.barbier}@univ-pau.fr

Abstract. This paper describes mocas (Model Of Components for Adap-
tive Systems), a state-based component model which enables the self-
adaptation of software components (behavior, implementation, proper-
ties) together with their coordination. A mocas component has its struc-
ture constrained by a uml profile. It embeds a uml state machine to
realize its behavior at runtime. mocas relies on three different tools:
a plug-in of the eclipse-based topcased platform for modeling mocas

components and generating java code, a engine for executing uml state
machines running on the top of the eclipse modeling framework (emf)
and an administration platform for managing mocas components.

1 Introduction

As the number and complexity of software systems increase, their sole manage-
ment by humans becomes strenuous. Thus, software systems need to be able
to manage themselves to free human administrators from repetitive tasks. Such
systems are qualified as autonomic systems [1] and are able to manage their
behavior and their relashionships in relation with third-party systems. An au-
tonomic system is first and foremost a self-adaptive system: it is able to modify
its behavior at runtime. Self-adaptation capabilities are required because of evo-
lutions of environmental conditions, failures or the need for incorporating new
components into running applications.

In this context, mocas is a state-based component model which enables the
self-adaptation of software components (behavior, implementation, properties)
together with their coordination [2]. mocas promotes usability and instruments
self-adaptive systems based on models and model-driven engineering technolo-
gies. By usability, we consider the way to design self-adaptive systems, to develop
them, to manage them and the way communication is carried out between dif-
ferent stakeholders (designers, developers, administrators,...). To that purpose,
mocas has strong links with the unified modeling language (uml).

After briefly exposing the mocas component model and its uml profile, we
present three tools which have been realized to ease the design and development
of a mocas system, to allow the execution of uml state machine models and to
observe and control mocas components at runtime.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

5

2 The MOCAS component model

A mocas component embeds at runtime a uml state machine model to describe
and realize its behavior. The state machine controls the processing of input sig-

nals and triggers internal actions (like computation and data transformation)
and output of signals. Internal actions are realized by the functional context of
the component. The component supports business properties which are used by
the behavior, to specify its constraints (such as transition guards and state in-
variants), and the functional context, to perform the business of the component.
mocas components communicate asynchronously through signals. Signals allow
mocas components to be loosely coupled and can inherit from other signals.
These different concepts related to mocas are expressed as stereotypes and are
contained in the uml profile in fig. 1.

Each input signal is processed according to the run-to-completion cycle of
the state machine. When a signal incomes, it is put at the end of the component
message queue waiting for to be processed. Only one signal is processed at a
time. A run-to-completion cycle starts by picking up the first signal of the queue
and ends when all the transitions of the state machine have been fired and a
new state configuration is active. Then a new cycle occurs by processing the
next signal from the queue.

Fig. 1. The mocas component uml profile

A mocas component has the distinctive feature to support its self-adaptation.
To become adaptive, a mocas component is wrapped in a container conforming
to the mocas component model. The container is in charge of managing the
adaptation process: it checks the conformity of the requested adaptation accord-
ing to the current component behavior, puts the component in a quiescient state
[3], performs the adaptation operations and ensures the consistency of the whole
process. To become autonomic so that it can perform the adaptation itself, a

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

6

mocas component is endowed with a control loop. The control loop in mocas

is a set of mocas components: sensors detect what happens in the autonomic
component environment and supervise its behavior, an aggregator centralizes and
reports the sensed information to other components, an evaluator decides the ac-
tions to perform according to a policy and the reported information, and effectors

realize adaptation by means of the decided actions. These different concepts re-
lated to the self-adaptation are expressed as stereotypes and are contained in
the uml profile in fig. 2.

Fig. 2. The autonomic mocas component uml profile

3 A tool for development

As they rely on state machine models and uml profiles, mocas components
are meant to be developed in case (Computer-Aided Software Engineering)
tools supporting mde. To that purpose, we choose to develop a plug-in for the
eclipse-based topcased platform [4]. topcased is an open-source project chiefly
dedicated to the conception of embedded systems for aeronautics by putting for-
ward the use of models. eclipse already has a strong support for models thanks
to their modeling framework (emf) and their implementation of the uml meta-
model. topcased adds to it a lot of plug-ins supporting specification of ocl

constraints [5], code generation, model verification and validation. Thereby, a
topcased plug-in has been easily developed by graduate students. This plug-in
allows the specification of mocas components with the uml profiles introduced
above. After verifying and validating models, it enables generation of java code
corresponding to the structure of each component. Finally, it creates a jar file
embedding the components and their state machine models.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

7

4 A tool for execution

A mocas component embeds at runtime the state machine model describing
its behavior. The state machine is loaded from the xmi file [6] generated by
topcased and is dynamically executed thanks to the mocas engine3. The mocas

engine is a java library which supports several uml state machine features such
as orthogonal, submachine, history and final states, completion transitions, call
operation and send signal actions, hierarchy of signals, guards and invariants,...

The first idea when designing the mocas engine was to rely on the javabeans
component model, javabeans properties and java reflexive capabilities. Thus, the
elements used by the mocas engine are java classes with a no-parameter public
constructor and getter/setter to access properties. All the mocas stereotypes are
realized by a class whose name is the same than the stereotype and which extends
the emf class matching the uml metamodel elements extended by the stereotype.
As an exemple, the MOCASSignal stereotype is realized as shown in table 1.
Then, all the signals processed by the state machine engine have to extend the

Table 1. Realization of the MOCASSignal stereotype in the mocas engine

import org . e c l i p s e . uml2 . uml . i n t e r n a l . impl . S igna l Impl ;
public class MOCASSignal extends Signa l Impl {

. . .
}

MOCASSignal class. Moreover, the mocas engine also exists for the java mobile
platform thanks to a partial j2me implementation of the uml metamodel4. As
reflexive mechanisms are not available in this mobile environment, each mocas

class has an attached class describing the methods which can be invoked.

5 A tool for administration

Each mocas component can be managed thanks to the mocas administration
platform (mocasap). mocasap allows to deploy mocas components, which are
contained in the jar files generated by the plug-in, on a local host. It also allows
to control their state machines (cf. in fig. 4), to link mocas components dynam-
ically, to deliver them updates, to switch their behavior and to send signals to
components. Especially, mocasap enables to control the behavior of a mocas

component by activating a specific state of its state machine. This is done by
double clicking on a state and is useful in case of a failure, when it is required
to rollback to a previous state known as stable.

3 http://mocasengine.sourceforge.net/
4 http://uml2forjava.sourceforge.net/

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

8

Fig. 3. Specification of a mocas component in TopCased

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

9

Fig. 4. The mocas administration platform

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

10

6 Conclusion and future directions

mocas is a component model enabling self-adaptation of software components.
mocas components are developed through a model-driven process. A mocas

component is designed in the eclipse-based topcased platform by using uml.
A uml profile constraints its structure and a state machine model describes its
behavior. A mocas component embeds its state machine model at runtime. The
state machine is executed thanks to the mocas engine. A mocas component is
monitored and controlled thanks to the mocas administration platform. In the
next tool releases, we want the topcased plug-in to enable the specification of an
assembly of mocas components. We will also extend the mocas engine features
with time events and change of property values for triggering transitions. Finally,
we are investigating the support of remote deployment and mobility of mocas

components in the mocas administration platform.

References

1. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1)
(2003) 41–50

2. Ballagny, C., Hameurlain, N., Barbier, F.: Dynamic adaptive software components:
the MOCAS approach. In: ASBS’08: Proceedings of The First IEEE Interna-
tional Workshop on Autonomous and Autonomic Software-Based Systems, Cergy-
Pontoise, France, ACM (2008) 517–524

3. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering 16(11) (1990) 1293–1306

4. Farail, P., Gaufillet, P., Canals, A., Camus, C.L., Sciamma, D., Michel, P., Cregut,
X., Pantel, M.: The TOPCASED project : a toolkit in open source for critical
aeronautic systems design. In: ERTS2006: 3rd Embedded Real Time Software Con-
ference, ACM (2006) 54–59

5. Object Management Group, Inc.: UML Object Constraint Language (OCL) 2.0
Specification. (May 2006)

6. Object Management Group, Inc.: XML Metadata Interchange Specification. (May
2003)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

11

1

Modeling Your Future Success

Sagi Schlisser

Sapiens International, P.O. Box 4011, Nes Ziona 74140, Israel

Abstract. MDD is supposed to revolutionize the development of software
through models which are, as far as possible, substituted for code. Code is
nothing else than an operational model that includes all of the required
details, which themselves relate to runtime platforms. But, solving technical
problems is not enough. Sapiens eMerge EMDD goes beyond MDD by
enabling a true codeless environment that provides an enterprise-ready
container. EMDM handles modeling while promoting agility by incorporating
concrete material in the early phase of development—like GUIs and business
rules. EMDD promotes the consistent integration of models, rules, and GUIs.
It also emphasizes engineering techniques and model inspection that really
take into account the seven sins of modeling.

Keywords: modeling, model-driven development, MDD, business rules

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

12

2

1. Model-Driven Development

In the late ‘90’s the maturing of object-oriented (OO) modeling lead to the

unifying OO methods of the Unified Modeling Language UML®. Even though there

was significant progress, software production remained small-scale and the need for

developing modern, heavy-duty approaches became obvious. In the early 2000’s, the

Model Driven Architecture® (MDA®) initiative tried to tackle this problem by laying

down the foundations of model-centric development. Beyond the complex

technological nature of MDx (x = Architecture, Engineering or Development),

potential users—who intend to investigate this software development paradigm—

obviously expect significant economical progress, because:

• Modeling leads to an increase in productivity and a faster time-to-market.

• MDx’s roots in object orientation leads to reusability and maintainability.

However, MDA is disadvantaged by the complex nature of modeling and by

models that are neither accessible nor understandable. Models—due to their abstract

nature—cannot be qualified as natural nor as intuitive. Software developers prefer

tangible software artifacts, like GUIs, in place of models. (as formulated by B.

Meyer)

Fig.1: Sapiens eMerge XMI model with enterprise UML extensions (shown with Altova
Umodel)

enterprise extensions

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

13

3

2. Blueprints for Enterprise Model-Driven Development

Producing a new mission-critical enterprise application is no small feat, especially

when dealing with high-end, complex applications. These applications must adhere

to enterprise standards, such as:

• Monitoring

• Fault tolerance

• Journaling and audit trail

• High performance

• Scalability

• Clustering

• Security

Achieving a mission-critical level must be done economically—both from the

software and from the deployment point of view—in order to be able to service large

numbers of concurrent users (back-office, partners, web, etc.). From a development

point of view, analyzing many (or even most) mission-critical level applications, one

finds the challenges for most applications are split between:

• Object modeling: Modeling the objects in the application and the

relationships between them.

• Persist objects: Managing the object relational relationship to persist the

data in a standard RDBS.

• Business rules: Representing, collecting, and maintaining the business logic

as business rules.

• Events: Managing the expected business events.

• Presentation: Creating the user interface.

• Integration: Integrating the above into one successful application.

The biggest challenge to successful enterprise application development and a large

part of the driving force for modeling is the business—technical gap. That is,

enabling the engineering team to talk and to communicate with the business team.

The MDx challenge is to bring all of the above challenges into a viable solution

where the model is so close to the actual business that the model can be executable—

that is model executability. But, merely generating code or executing models as is

being done today (even the more advanced MDx’s using frameworks) do not meet

the enterprise challenges described above.

The answer lies in Model-Driven Middleware (MDM): The ability to execute the

model without generating code on model-aware middleware. Such middleware—

together with support for extended modeling, presentation, and business rules—can

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

14

4

and does run mission-critical enterprise applications with thousands of users and

millions of transactions a day.

Fig.2: Sapiens eMerge Enterprise Model-Driven Middleware (EMDM) with Java and
.NET integration

The Seven Sins of Modeling

The seven sins of modeling (as formulated by B. Meyer) are: ambiguity,

contradiction, forward reference, noise, over specification, silence and wishful

thinking. The obvious expected outcome of MDD is how to better address

requirements engineering issues: the presumed advantage of models compared to

code. Models, through their abstract nature, favor early detection of problems, these

being omissions, requirement misunderstandings, and so on. There is no miracle.

An MDM based on a metadata repository allows for active inspection and

interrogation of the model, together with the business rules and the presentation.

Model inspection and model reporting lead to productivity and enable sin-detection

and analysis.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

15

5

Fig.3: Sapiens eMerge EMDM modeling transparency (exported to EA)

3. EMDM: The Model is the Code and The Code is the Model

MDD emphasizes metamodeling, XML-based model and metamodel formats,

open extensible model transformation languages and meta-languages, and

consequently, corresponding tools for managing models and their transformations.

The main question is: To what point is the delivery of decorated models with

platform-dependent features realistic? That is, do we really believe that we can do

it without writing code? In practice, the MDD process currently used stops when the

material in models do not enable the automatic generation of code. Therefore,

developers have to provide additional implementation details and tuning. The

difficulty is the control of such additions to models; the models are marketed as

finished, but in many cases the additional details and tuning become sizeable.

objects

rulesets

business logic rules

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

16

6

Sapiens Enterprise Model-Driven Middleware (EMDM) is built around the

concept: The model is the code and the code is the model. This powerful concept

means the middleware is used to execute the model directly without generating any

code. This is crucial for enterprise model executability, since mission-critical

applications are exponentially more complex than smaller applications. Mission

critical applications are where code generation breaks down and model executability

stops.

Fig.4: Sapiens eMerge EMDM XML-based metamodel

4. Incremental Maintenance

A key expectation of MDD is the ability to easily update models due to new or

adjusted client requirements. Such maintenance must be based on a rapid lifecycle

and done in a cost effective way. Heavyweight changes—for instance, database

restructuring—generate high costs, unlike lightweight modifications (which

represent around 90% of all maintenance).

Sapiens eMerge EMDM’s agility—associated with modeling traceability and

many visual wizards for presentation and rules—helps cut maintenance costs

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

17

7

dramatically. Changes are much more maintainable when the application is running

on middleware; this is due to middleware change support and refactoring which does

not depend on external code.

Fig.5: Sapiens eMerge EMDM agility—Rich Internet Application (RIA) builder and
integration mapper

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

18

8

5. Conclusion

MDD is supposed to revolutionize the development of software through models

which are, as far as possible, substituted for code. Code is nothing else than an

operational model that includes all of the required details, which themselves relate to

runtime platforms. But, solving technical problems is not enough. Engineers,

developers, and end-users must be convinced that MDD is productive, cost-effective,

simple, and intuitive. Sapiens eMerge EMDD goes beyond MDD by enabling a true

codeless environment that provides an enterprise-ready container. EMDM handles

modeling while promoting agility by incorporating concrete material in the early

phase of development—like GUIs and business rules. EMDD promotes the

consistent integration of models, rules, and GUIs. It also emphasizes engineering

techniques and model inspection that really take into account the seven sins of

modeling.

Fig.6: Sapiens EMDM – Modeling your future success

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

19

Modelio: Globalizing MDA

Philippe Desfray, SOFTEAM

Abstract. Modelio (www.modeliosoft.com) is a modeling tool addressing both
Business and IT, that supports IS to business alignment. The MDA technology
has been too much focused on software aspects, mainly on code generation or
technical architecture aspects. MDA must be much more used to support
methodologies and sustain modeling on the entire enterprise scope. This paper
presents how, by integrating in a single repository the entire enterprise scope
modeling coverage, by providing strong MDA capacities and by allowing an
efficient and flexible distributed team cooperation, Modelio allows a global

MDA approach, empowering thus MDA to the enterprise wide application.

Keywords: MDA, UML modeling, BPMN, Enterprise architecture, Goal,
Dictionnary, Requirements, business rules modeling.

1 Introduction

Software development is only a small part of the problems to be managed within

companies. Beyond software development issues are problems related to the

definition of the company strategy, to the organization of the company, the definition

of its business processes, and to the IS evolution linked to the existing IS.

The MDA technology has been too much focused on software aspects, mainly on

code generation or technical architecture aspects. MDA must be much more used to

support methodologies and sustain modeling on the entire enterprise scope.
The modeling scope must therefore be enterprise wide, and include scoping and

guidance techniques such as goal analysis, dictionary and business rules analysis and

requirements analysis.

Scaling up MDA implies large modeling capacities coverage, a strong MDA

integration, and a strong distributed teamwork support. MDA is limited by the tool’s

capacities, to cover the enterprise wide modeling needs.

1 Modelio: a new range of tool for a complete coverage

Modelio provides a complete coverage to support the modeling activities for each

stakeholder within a company. Its modeling support includes UML2, BPMN,

Enterprise Architecture, SOA architectures, Goal analysis, requirement analysis,

Dictionary and business rules analysis.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

20

In addition to a predefined set of model driven code generation modules, Modelio

provides a strong integrated MDA capacity, through its UML Profile editor, and its

rich Java API for metamodel access, model transformation and tool customization.

Modelio supports distributed team work and model driven development

cooperation through tight Subversion (SVN) integration. Flexible and efficient, the

team cooperation with Modelio works with time to time internet access.

One repository for enterprise large modeling, integrated MDA, team cooperation

support and integrated traceability management enables the MDA application
globalization, from enterprise vision to development, and for large cooperating

communities.

Modelio is distributed in three editions for different usages and budgets:

• Modelio Free: A comprehensive, professional modeling tool, free of charge!

• Modelio Java Express: Model-driven Java code generation for only €100!

• Modelio Enterprise: For projects and teams, extendable through a large set of

modules and dedicated MDA extensions.

Modelio Enterprise Edition provides a large set of modules, that allow the user to

configure it for specific usages.

• Modelio Modeler : UML2 modeling; Project sharing support

• Java Designer : Model driven Java code generation.

• C# Designer : Model driven C# code generation

• C++ Designer: Model driven C++ generation

• Document Publisher : Document generation (OpenXML-Word; HTML) .

Document roundtrip edition (Word); Many on the shelf document templates

• Requirement Analyst: Model integrated requirement analysis; Impact analysis;
Traceability management

• Dictionary & Business Rules: Model integrated Dictionary & Business rules

analysis.

• Goal Analyst: Model integrated Goal analysis support.

• SVN Teamwork manager: Distributed teamwork. Configuration & version

management. Subvertion integration.

• MDA Designer: UML profile editor, Java API for metamodel handling, model
transformation, Modelio GUI customization

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

21

• SOA Architect: SOA architecture modelling

• EA – BPM Modeler: Enterprise Architecture and Business Process modelling.

BPMN modelling.

• XML Designer: Generates or reverses XML schemas (XSD)

• WSDL Designer : Generates or reverses WSDL code from interfaces.

See demos, guidelines, download evaluate or buy Modelio on www.modeliosoft.com

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

22

pure::variants - Combining Variant Management and

Model-Driven Development in Product Lines

Danilo Beuche, pure-systems, Germany

Abstract. In this demonstration the integration of pure::variants, a leading tool for variant

management in (software) product lines (SPL), and model driven development (MDD)

environments will be shown. The pure::variants framework currently integrates with tools

suites for development of domain specific modeling languages (e.g. openArchitectureWare),

generic modeling languages (UML e.g. Enterprise Architect) and domain specific modeling

tools (e.g. MATLAB/Simulink).

The demonstration will briefly cover pure::variants basics such as feature modeling and will

then show some use cases with SPL MDD approaches.

 .

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

23

IBM Research work on MDE

Andrei Kirshin1, Tali Yatzkar-Haham1, Shiri Kremer-Davidson1

1 IBM R&D Labs in Israel, Haifa University Campus, Mount Carmel,

Haifa, 31905, Israel

{kirshin, shiri, tali}@il.ibm.com

Abstract. This paper presents the work that is being done in IBM Research in
the area of Model Driven Engineering (MDE). The talk contains three parts:
Model-based Testing, Product Lines Engineering, and Telecom Service
Creation Environment.

Model-based Testing: Model-based Testing already proved itself as a
methodology that improves effectiveness and efficiency of testers. We
developed a tool suite that leverages the power of UML and enables automatic

test generation based on behavioral system models, debugging of such models
and manual test editing.

Product Lines Engineering: Product Lines Engineering is rapidly emerging as
an important paradigm, allowing order-of-magnitude improvements in time to
market, maintenance cost, quality, and mass customization support. Our tools
and methodologies facilitate software reuse, support integration of suppliers’
components in the supply-chain domain, and enabling transformations into
various product artifacts.

Telecom Service Creation Environment: Our work describes a model based
approach for rapid creation of Next Generation Networks Services. Our tooling
enables designers to create models of such services without knowledge of the
underlying protocols and to generate runnable services from them without
additional code being written.

Keywords: model-based testing, product lines, telecom service

1 Introduction

This paper presents the work that is being done in IBM Research in the area of Model

Driven Engineering (MDE). Most of the tools presented here are developed in IBM

Haifa Research Lab [1][2]. Extensions of model simulator were done in collaboration

with IBM Tokyo Research Lab [3]. The paper does not cover all the work done by

IBM Research division in this area. Section 2 presents Model-based Testing work,

Section 3 talks about Product Lines Engineering, and Section 4 describes Telecom

Service Creation Environment.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

24

2 Model-based Testing

In Model Driven Engineering developers create models instead of writing the code.

The code is automatically generated from the models.

Similarly, in model-based testing testers use models to describe the behavior of the

system under test and the tests are generated automatically from these models. Fig. 2
briefly shows the model-based testing workflow.

Test
Execution

Environment

Concrete
Test Script

BUG!

Test
Generator

Model of the
System Under

Test

Model
Debugger

Tester

Developer

System
Under Test

Spec

Abstract
Test Suite

Fig. 1. Model-based testing

This section describes tools that were developed at the IBM Haifa Research Lab and

used for model-based testing. They are extensions of Rational Software Architect

(RSA), which is used to create UML models of the system under test. Typically, the

structure of the system is described using class diagrams and composite structure

diagrams. State machines, activities, and Java code snippets are used to describe the

behavior. In our scenario, the Model Execution Engine [4] executes the model

“behind the scenes”, while the “main actors” are the model debugger and test

generator (see Fig. 2).

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

25

Rational Software Architect

UML Model of the SUT

Model Execution Engine

Model Debugger Test Generator

Test

Fig. 2. The architecture of the tool suite

The model debugger verifies that the model describes the correct expected

behavior of the System Under Test (SUT). It enables the user to interact with the

executable model in two ways:

– To control the execution by sending input to the model; that is, create instances,

invoke operations on instances, and send signals to instances.

– To observe the execution by observing the output of the model; that is, the
attribute values, active states, and signals to the environment.

The model debugger helps answer the question “Is there a defect in the model?” at

two different stages: before test generation during the modeling of the SUT, and after

test generation when a test case fails. In the latter case, the defect can be in the SUT or

in the model. If the defect is in the model (its behavior is wrong), the debugger

localizes and fixes the defect, thus answering the question, “Where is the defect?” The

debugger allows the setting of breakpoints on model elements. Fig. 3 illustrates a

running state machine with a highlighted active state and running transition. It also

shows breakpoints and execution pending elements.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

26

Active
(current)

state

Execution
pending

Running

transition

Breakpoint

Fig. 3. A debugging session of a UML model

The test generator also uses the model execution engine and acts similarly to the

model debugger by sending input and observing output. The input is recorded as test
sequences of stimuli applied to the SUT. The output is also recorded as expected

outcomes. In other words, the model is used as a test oracle predicting correct

behavior. During test generation, the next input for a test sequence is selected by the

test generator, depending on the coverage task chosen by the user:

– Random generates random sequences of stimuli (no coverage)

– Input Coverage covers as much input as it can (a specific input)

– Input Step Coverage covers as much input in each step in the test case as it can (a

specific input in a specific step in the test case)

– Input Step Pair Coverage covers as many different pairs of input in each pair of

steps in the test case as it can (a specific pair of input values in a specific pair of

steps).

The current version of the test generator only implements input coverage
algorithms. Their advantage is that do not deal with the problem of state explosion.

This problem is faced only when test generators explore the whole state space of the

test model, which can grow very quickly for large test data.

Another advantage of the test generator is that it actually executes the model of the

SUT. This enables us not only to generate the sequences of stimuli but also to
precisely predict the expected behavior (output of the SUT). Test generators that

statically analyze the model often have problems in predicting expected results.

Another strength of the test generator is that it uses the same model execution

engine as the model debugger. If wrongly generated tests result from an incorrect test

model, the problem can be easily located and fixed in the model using the model

debugger. Test generators using their own execution engine might interpret the

semantics of the model differently, which complicates the maintenance of the original

model.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

27

For the test suite format, we use the Eclipse Test & Performance Tools Platform

(TPTP) [5]. Test steps (stimuli and observations) reference model elements and a

special editor (see Fig. 4) developed at the IBM Haifa Research Lab is used for

convenient viewing and editing of the generated tests. In addition to using the

described test generator, tests can also be created manually using the editor. Finally,

the test can be either translated to a specific test script for execution on the SUT, or
alternatively, TPTP can be extended to execute the test directly on the SUT.

Fig. 4. Test editor

This work was extended for the verification of embedded systems using

collaborative simulation of SysML and Simulink models [6].

3 Model-Driven Product-Lines for Embedded Software and for

Supply-Chain Companies

We present a model-driven development approach for the design and development of

Software Product Lines. We suggest a model-driven component-based framework for

software product lines development, together with a methodology for using the

framework.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

28

Software is becoming increasingly large and complex. As a result, companies want

to reuse more of the software that they produce. Software product-lines engineering

relates to engineering techniques for creating a portfolio of similar software systems

from a shared set of software assets. While companies target the needs of their

customers by creating a product-line, today's tools and techniques for system and

software development tend to focus on individual products. Thus, developing
software for a product-line using current tools becomes extremely complex.

Our software product line tools and methodologies facilitate software reuse,

support integration, configuration and delivery of suppliers’ components in the

supply-chain domain, enabling transformations into various product artifacts,

including build scripts and glue code for the integration of third party suppliers’

components.

Fig. 5. Product definition process

The process of using our tool is depicted in Fig. 5. The domain engineer models the

product line platform which contains hierarchic structure of components and their

connections together with variation points. Fig. 6 shows an example of the internal

structure of a component with variation points of type optional. To continue the

process, validation checks can be activated on the domain model. The next step is the

generation of a product model by configuring the product line model. This can be

done in several steps using stage configuration. The last step is the generation of

product artefacts for the product model. Whenever there is an update in the product
line definition, the domain engineer can go back to the product line model, update it

and repeat the validation, configuration and build script generation steps.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

29

Fig. 6. A component with variability

Our model-driven development environment for software product lines extends the

IBM Rational toolset, which is built using the Eclipse framework. IBM Rational tools

contain an out-of-the-box environment for model driven development in UML,

including editors, palettes, import, export, code generation.

The issues addressed by this work can be applied to various industries such as

electronics, automotive, aerospace and defense, and more.

4 Model-based Development of Telecom Services

Modeling can be an effective way to manage the complexity of service-oriented

software development. Although it is widely used, its adoption in the

Telecommunications domain is not yet widespread.
Telecom service development requires deep low-level knowledge of numerous

protocols (e.g. SIP, SDP, Diameter, HTTP, SOAP) and on how to synchronize

between them. In IP telephony, several platforms and tools for service development

are available which simplify the service development process to some extent, but still

they don’t hide from their users all protocol details.

Our Telecom Service Creation Environment (TSCE) enables designers to create

models of such services without requiring any knowledge of the underlying protocols

and to generate runnable services from them without additional code being written. It

allows designers to design services using the Telecom Service Domain Specific

Language (TS-DSL) and provides a level of automation for implementing the service

design methodology we adopted. Part of the TS-DSL meta-model can be seen in
Figure 1.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

30

Fig. 7. Telecom Service Meta-model fragment

TS-DSL hides the internals of the protocols focusing on their provided

functionality and provides high level building blocks for the design of services. TS-

DSL also support invocations of external services of diverse types (e.g. SIP Services,

Web Services) through different protocols or mechanism (e.g. SIP, HTTP, SOAP) -

hiding the underline invocation and synchronization details from the developers. TS-
DSL also leverages the Shared Information/Data models introduced by

Telecommunication Management Forum.

TSCE is implemented on top of Rational tools (RSA/RSM), which facilitate the

reuse of existing services, use of templates, behavioral patterns, and pre-defined

service elements to speed up the design and implementation process. TS-DSL is

implemented in TSCE using a UML profile and a telecom model library.

The model library introduces a set of predefined entities that encapsulate data and

functionality widely-used in Telecom service models. For example: Party, Call,

Instance Message, and Biller. Developers can use these entities and invoke their

operations in their model.

TSCE introduces a set of views, actions, service creation templates, and TSCE-

related palettes to simplify domain-specific language element creation and
manipulation (see Figure 2).

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

31

Fig. 8. The Telecom Service Creation Environment

The behavior of a telecom service is specified by state machines and activity

diagrams. Each telecom service is created with a main state machine which specifies

the service interaction with a client. The designer can add “entry”, “do”, and/or “exit”

activities for each state to define the logic to perform on state initialization,

processing, and just before exiting it. Figure 3 contains the main state machine of the

“Free Call with Ads” service we developed using TSCE.

State activities can be seen as entry points to the service activity flow. The flow can

invoke a variety of UML and TS-DSL actions and control nodes connected via
control flow links. Data flow is defined via data links between the action’s pins.

Actions can invoke instance creations, operation calls, external service invocations,

other activities, etc. For example, Figure 2 contains an activity diagram that creates a

Call and establishes it between an invitee and inviter with no protocol dependencies.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

32

Fig. 9. Free Call with Ads example: Main State Machine chart

One of the main challenge of this work was in defining the right level of

abstraction that is both powerful enough to describe all the required functionality of a
service and yet enables generation of runnable service code, i.e. defining mapping

rules and infrastructure that close the abstraction gap and transform the designed

services into running code.

TSCE transformation extends Rational Software Architect’s built in transformation

from UML to Java and adds our service specific rules to perform the task of

generating both the static (e.g. SIP Servlet structure, sip.xml) and behavioral parts of

the service. Figure 4 shows a fragment of the generated code for “Meet Me Now”

activity.

Fig. 10. Generated Code Sample

Our approach radically simplifies service design, cuts down service time-to-

market, makes the service design process accessible to designers not familiar with

telephony protocol details, and simplifies maintenance.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

33

References

1. IBM Haifa Research Lab: http://www.haifa.ibm.com/
2. IBM Haifa Research Lab – Model Driven Engineering Technologies group:

http://www.haifa.ibm.com/dept/services/mdet.html
3. IBM Tokyo Research Lab: http://www.trl.ibm.com/extfnt_e.htm
4. Dotan D., Kirshin A.: Debugging and Testing Behavioral UML Models. OOPSLA

Companion 2007, pp. 838–839. ACM Press (2007)

5. http://www.eclipse.org/tptp
6. Kawahara R., Nakamura H., Dotan D., Kirshin A., Sakairi T., Hirose S, Ono K., Ishikawa

H.: Verification of embedded system’s specification using collaborative simulation of
SysML and Simulink models, MBSE 2009

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

34

Applying Model Driven Approach to parallel platform

architecture

Irv Badr, IBM Rational, USA

Abstract. Flexibility, scalability, power consumption, and in the case of
consumer devices, an optimized user-experience are main requirements posed
by tomorrow’s real-time and embedded systems. System scalability and

flexibility are key factors in fast-time-to-market and allow manufacturers and
service providers to be competitive. Executable models and virtualization
techniques become a vital part of the workflow used in software development
for scalable parallel hardware architectures

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

35

Model-driven reverse engineering of COBOL-based

applications

Franck Barbier*†, Sylvain Eveillard*, Kamal Youbi* and Eric Cariou†

*Netfective Technology, OMG member, SOA consortium member

†University of Pau

1. Introduction

Model-Driven Development (MDD) [1] is nowadays a proven paradigm for

constructing cost-effective applications. Their design cycle satisfies time-to-market

constraints. Inspired by object-orientation (OO programming languages, OO

databases, OO analysis and design methods…), MDD favors software quality in

general, i.e., reusability and maintainability. Models1, which are first-class

components in development processes, also greatly favor portability. More precisely,

Platform-Independent Models (PIMs) are free from technical concerns, while

Platform-Specific Models (PSMs), derived from PIMs by means of transformations,

are annotated with platform-oriented configuration information to generate end-user

applications.

To be able to cope with large-scale MDD applications, the demand for appropriate
MDD tools has increased. These tools support the management of sizeable modular

models through repositories. They also offer conformance with and adaptation to

standards like the Eclipse Modeling Framework (EMF). They can generate code,

transform source models into target models and are able to define new metamodels to

build Domain-Specific Modeling Languages (DSMLs).

For a long time, MDD tools have supported reverse engineering functionalities.

These features are often limited to code parsing. The results are cartographic views of

this code. This can even be useful for code that does not come from model

transformation. For obvious reasons, this code is usually OO-based (e.g., reversing

Java code), because only with great difficulties can non OO code be reformatted into

the form of models. For code generated from models, tools have difficulties
guaranteeing a kind of synchronization between models and code. This is especially

true when programmers intend to make changes directly in the source code2.

Moreover, MDD has the reputation of being appropriate for designing applications

from scratch. Nowadays, applications built from models exist, but there is often a

divergence between model states and code shape. This results from manual

alterations.

More generally, the great majority of applications are not derived from models. The

spreading and success of models’ technology thus strongly rely on the ability of this

1 We consider UML (Unified Modeling Language) models.
2 Performance tuning has often been a primary reason to intervene directly on code.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

36

technology to integrate existing information systems in a seamless way. Model-driven

reverse engineering may opportunely play this role.

To that extent, his paper discusses a method and a tool that provide an integrated

reverse engineering framework, which is plugged into Eclipse. The tool named BLU

AGE®3 has the ability to generate applications from models without writing a single

line of code. In BLU AGE®, PIMs are constructed by software analysts while
technical cartridges (PDMs standing for Platform Description Models) are designed

by software architects. BLU AGE® is able to transform PIMs into PSMs and to link

these PSMs to PDMs. This paper explores how PIMs can be, as much as possible,

automatically generated from legacy systems. We focus on COBOL-based

applications.

2. Goals

The key goals of this paper are to address:

• Non OO code issues. We discuss the reverse engineering of common4 COBOL in

a specific context. Precisely, this code is written in COBOL, but conforms to the

IBM VisualAge PACBASE (VAP) tool. The code structuring thus respects

particular rules and formats. Concretely, VAP programs are written by means of

a superset (a dialect) of the COBOL language itself. Programs are also equipped

with helpful VAP-based configuration data linked to legacy technology (e.g.,

character screens). However, one must remember that this tool comes from
programs created in the eighties, so code complies to the standards and the

structured programming spirit of that time. That is why there is high redundancy;

This is due to the ignorance of the OO approach at that time. So, the difficulty in

converting such legacy information systems into models remains high, especially

OO models.

• Semantic issues. Simply having a cartographic view of old COBOL is not

enough. So models are not only partial or complete viewpoints of legacy

systems, but also include a re-formalization of the business rules engraved in

COBOL programs. As a result, models obtained from reverse engineering are

intended to become the inputs of the generation processes, which are used to

rebuild applications based on today’s platforms. This is mainly Java EE and

.NET, but also includes their associated components: Struts, JavaServer Faces
(JSF), Hibernate, Java Persistence API (JPA), Windows Presentation Foundation

(WCF)… About semantic issues, this paper also sketches the alignment of the

proposed reverse engineering process with KDM (Knowledge Discovery Meta-

Model), an OMG standard [2].

• Systematic and automated reverse engineering issues. As far as possible, reverse

engineering should never be done manually. Although human intervention is

inevitable, a tool is required to support most of the tedious tasks caused by

sizeable volumes. To that extent, we present the REVERSE component of BLU

AGE®, an Eclipse/EMF-based CASE (Computer-Aided Software Engineering)

3 www.bluage.com
4 The proposed approach is not dedicated to object-oriented COBOL but ordinary COBOL.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

37

tool that enables the elaboration of PIMs that are endowed with context-specific

annotations (a.k.a. stereotypes in UML). These PIMs result from the extraction

of legacy code. The case study described in this paper is the first COBOL

benchmark of the REVERSE module of BLU AGE®. Until now, the perfecting

of this module has occurred by means of Java only. The results exposed in this

paper show the need for a more open and sophisticated reverse engineering
process and tool due to, essentially, the non OO nature of COBOL and VAP.

Lessons learned also comment on the large-scale factors of this experiment and

its economical facets.

3. Modernization context

VisualAge PACBASE is an application generator. Billions of lines of COBOL exist

all over the world, which have been produced with this environment. For historical

reasons, such applications require specific execution contexts, namely old terminals

(non graphical window-based screens), mainframes and CICS (Customer Information

Control System)… Regarding CICS, VAP legacy systems mix business logic and

CICS commands. So, an important challenge is to first separate both aspects to

converge with the “PIMs versus PSMs” philosophy. The next challenge is to

substitute CICS for another execution platform, like a Java EE server for example.

Despite its recognized qualities, the VAP integrated development environment

raises critical problems:

• The environment, and thus its resulting applications, will be maintained by IBM
up to 2015;

• It does not support any kind of interoperability with modern non proprietary

platforms;

• Expert users exist5, but advances in computer and software technologies create

difficulties and even risks, when relying on non durable adequate competencies;

• Applications based on this environment contain an important amount of business

knowledge. The need for extracting this knowledge in a readable and usable way

is a crucial issue in investment perenniality;

• Maintenance costs cannot be cut down and are high. This is due to the significant

dependency upon external assistance and support.

4. Modernization approach

Given that an application is based on various old software technologies, the overall

goal of modernization is a priori to replace this application by another equivalent one
(in terms of functions offered to users). One of the benefits of having a renewed

application, based on Java EE for instance, is the gain in technical agility provided by

Java EE (Web integration abilities, load balancing, ease and transparency of service

access and distribution, compliance with standards, Java EE product (server)

5 www.napug.com

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

38

independence…). Of course, using MDD for reverse engineering provides the

opportunity to change and/or to extend the set of functions corresponding to enhanced

user requirements. Models (PIMs) formally express these requirements. PSMs linked

to Java EE for example, may thus be derived from these PIMs, which are outputs of

the reverse engineering process themselves.

VAP repository structure

VAP repository parameters

COBOL code

Users’

perspective
when using

VAP

Figure 1. VAP organization

So, three phases are distinguished:
1. The reverse engineering process itself. We describe in this paper some

implementation principles and details of the REVERSE component of BLU

AGE®, especially the generation of text based on a semi-natural language. This

language shares a common metamodel (i.e., “it is an instance of”) with a

prefabricated metamodel, which is dedicated to the way people may use VisualAge

PACBASE (Figure 1). In fact, programs are described in a COBOL-like language

that is associated with screen layout/control information, and so on. All of this

material can be recorded as an instance of a metamodel. In this respect, reverse

operations intensively use model transformation technologies. More precisely, the

Atlas Transformation Language (ATL)6 instruments these reverse actions.

2. The validation phase. Models can be used to generate the new application. This
means that all functions and business rules in legacy code must be properly

captured. This phase is called validation. Once the PIMs are viewable as outputs of

the reverse process, one may wonder if they are the trustworthy representation of

the existing system. Test data and scenarios established from the existing system

can be replayed for the renewed application. By means of another component

(named BUILD), the testing of models is carried out within Eclipse. This is done

with the help of the new generated code which is synchronized to models, even

graphically. In this respect, Figure 2 shows a UML model that represents screen

linking and data processing. On the right hand side, there is a UML activity, which

describes a given screen. Several scenarios exist to move from this screen to others

(on the left hand side) through an intermediate column (called “swimlane” in UML

jargon). In this column, activities represent data processing in servers (queries for

6 www.eclipse.org/m2m/atl/

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

39

example). Hence, testing facilities allow one to assign breakpoints to activities.

One can carry out debugging step by step. This is how validation may succeed

provided that test data is rich and significant enough.

3. The measurement activity. The reverse modeling process has to be proven

economically relevant. However, demonstrating that PIMs are trustworthy and

complete pictures of the current functions is time-consuming. While elementary
operations are treated automatically, complex operations are progressively

controlled and scored7. By hand first, these operations are annotated with technical

and/or functional markers. The reverse process captures the available knowledge to

avoid as much as possible to request further work from reverse engineers. In this

scope, the pilot project (see next section) aims at anticipating the scalability of the

proposed modernization process; if it can be generalized especially. In this paper,

we do not focus on the re-generation of the existing application to target modern

platforms. If the targeted application’s PIMs are consistent and complete,

rebuilding a new system with BLU AGE® is quite simple compared to computing

these PIMs by means of reverse engineering (phases 1 and 2). Moreover, it can be

done in a cost-effective way (phase 3). That is why projected man-month charges

have been established for the pilot project. So, effective man-month consumption
should be compared to these forward-looking costs. This paper describes this

experiment which has just finished. At this time, the feasibility and the

applicability of this reverse engineering process have been demonstrated on a

medium scale and in a cost-effective way.

Figure 2. Example of a UML dynamic model coming from the reverse

engineering process

7 The number of elementary statements used like GOTO, COBOL module performed

(PERFORM command) subprograms called… are established.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

40

5. Case study description

Intermarché is one of the main European companies in the retail sector. STIME is

its information system division. The SCAFRUITS application is concerned with the

provisioning of fruits and vegetables from referenced suppliers, as well as the sale and

distribution of these items to franchised outlets all over Europe. Shops interact by
means of the SCAFRUITS application to have the best products at the best prices

under the best conditions (short time delivery, sanitary quality assurance,

synchronization with volatile demand…).

The business scope of SCAFRUITS is broad: order management, shipping, supplier

and product qualification and referencing, timely price management, product

activation/inhibition… For obvious common reasons, the application is also

composed of many facility programs and sub-programs, which play the role of

transversal supports for the business-oriented primary use cases.

The application’s design and initial utilization began in 1994. It has continuously

evolved since that time. Today, from a business viewpoint, the application is

composed of 85 Transactional Processing (TP) and 23 batch processes. A TP is a

typical interactive use case, e.g., a user carries out the referencing of a fruit supplier
through an old-fashion screen to finally be notified about the success (or possible

failure) of its operation. Additionally, transversal facility subprograms are used for

checking the conformity of products to EU sanitary standards.

Concerning its technical facets, the size of the application is estimated to be equal

to 3M of LoC, 600 programs, 400 screens, 200 batch programs, 300 potential users,

48,000 product references with only 2,000 active references at a time. There are

350,000 transactions per day and 100,000 created order lines per day. The savings, if

the full application can be moved from VAP to a modern platform like Java EE, are

estimated at around € 1.5M per year.

The pilot project, called VAP2BA (VisualAge PACBASE to BLU AGE®), has a

scope-limited functional perimeter. This consists of product referencing and ordering,
including CRUD (Create, Read, Update, Delete) operations. The pilot project is

concerned with 15 TP and 15 batch (business) processes. Here are some of the use

cases, which are part of the pilot project:

• supplier order creation;

• supplier order reception;

• Etc.

Test scenarios and data rely on these use cases. In fact, it amounts to collecting

data. This data aims at being restructured into objects, in the OO sense. More

precisely, these objects and their links are instances of the classes and associations

(see Figure 10) found in the PIMs, which are outputs of the reverse engineering

process. Once established, testing occurs through scenarios, e.g., a screen linking is
required for playing the “supplier order reception” use case.

This global activity is critical to demonstrate that the PIMs are “correct” (i.e., “The

validation phase” above).

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

41

6. Method [3]

The technical approach is based on the PACBASE Access Facility (PAF)

component of VAP. VAP developers use the VAP user interface (Figure 1) to build

their applications by means of a COBOL-like language, while adhering to VAP

design guidelines. This amounts to taking into account numerous flat files with a
complex specific organization (redundancy, implicit dependency among files based

on implicit string matching, etc.). Practically speaking, PAF offers a SQL-like

language that can access data in the form of VAP repository entities.

 Ecore-like BLU AGE® DSML – M4

PAF tables’ structure – M3

PAF tables – M2

Records in PAF tables – M1

Parsed COBOL code – M0

Conforms to

(instance of)

Conforms to

(instance of)

Conforms to

(instance of)

Conforms to

(instance of)

Figure 3. Metamodel layering

The proposed method intensively relies on predefined metamodels (Figure 3). It

starts from an Ecore-like DSML8. Ecore (Figure 4) is the Eclipse metalanguage for

coping with any kind of model. The structure of the PAF tables is thus represented by

means of the Ecore-like metalanguage. The result is that the complex organization of

VAP is captured once and for all9. The logic of VAF relies on metatypes, which are

members of this metamodel (M3 level): Role, Table10, Column, Library (of code),

Session, User… It also relies on associations between these metatypes. For example, a

role is composed of zero or n tables; a table is composed of at least one and at most n
columns. For example, the Table metatype conforms by definition to a BLU AGE®

metatype specifically designed for reverse engineering.

8 Domain-Specific Modeling Language.
9 Section Lessons learned from the case study discusses why this solution is not satisfactory in

forthcoming developments of BLU AGE®.
10 In the VAP logic, a table is a unit of organization. For example, a table may describe a batch

process.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

42

Figure 4. Ecore core metatypes in Eclipse

Another metamodel (M2 level in Figure 3) is application-dependent. A

SCAFRUITS table structure is an instance of the Table metatype at the M3 level. For

instance, the EC02 table structure in SCAFRUITS has five columns, each having a

given size, format and label… Copies of the EC02 table itself are thus located at the

M1 level as instances of the EC02 table structure.

So, PAF is used to populate records at the M1 level. Data samples extracted by

means of PAF are described in Figure 5.

Figure 5. Rough XML data resulting from PAF queries

Since extractions are composed of several XML files, removing useless (parasite)

data and redundancies is a primary issue. For example, a TP may use the SE01

segment, while a batch process uses the same segment. This segment must appear

once and for all in an appropriate model.

The PAF extraction model is intentionally used to first eliminate redundancy. Next,

several ATL transformations are run in sequence to explicitly re-create the

dependencies between VAP entities (Figure 6).

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

43

PAF extraction PAF persistence PAF associations

Rough XML data

from PAF

Figure 6. VAP information processing

In Figure 6, the PAF persistence model is computed by means of an ATL

transformation from the PAF extraction model. The same applies to the PAF

associations, which adds meaningful inverse references to the VAP entities that come
from the PAF persistence model. The PAF persistence model re-creates references

(instances of EReference in Figure 4) from flat files. The PAF associations is

composed of inferred inverse references from the the PAF persistence model.

As an illustration, each VAP entity (a batch process for example) has a main screen

(PG01 for example) and some possible screens. Each COBOL statement is registered

in a VAP entity, say PG08. One must then recompose the link between PG01 and

PG08 in the models. In VAP however, string matching and cross-references between

files are the only way to determine dependencies.

Figure 7. PAF persistence and PAF associations samples

Following this logic, an instance of the PAF associations model is shown on the

right hand side of Figure 7. The CGPM batch process (a VAP entity) supports

navigation to all of its linked PG01 objects and to all of its PG08 objects, etc. In short,

the PAF associations model complements the PAF persistence model by supplying

reverse navigability.

The reverse engineering method is in fact divided into three phases:

• The extraction phase is fully generic (i.e., independent of the SCAFRUITS

application itself) and fully automated. This phase is built onto the
metamodels in Figure 3. It contributes to having a nice and rich cartographic

view of a VAP application within Eclipse. This phase is based on the above

described transformation processes;

• The interpretation phase is semi-automated in the sense that it depends upon

the deep natures of the legacy technology and business application. The

COBOL-like code (Figure 8) is parsed and transformed into a semi-natural

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

44

language11 (Figure 9). This code conforms to a predefined metamodel. One

key advantage of the proposed method is that the semi-natural language in

Figure 9 conforms to a meta-model, which is an ATL transformation of the

former. To more or less automatically generate business rules in a neutral

formalism, reverse engineers provide on-the-fly information on (1) what are

the means, constraints and rules of the legacy technology to manage business
rules and, (2) what are and where are the true business rules of the reversed

application itself. As a result, the semi-natural language sentences are a great

help for readability and comprehensibility for both the application and its

support technology. Outputs allow the direct generation of BLU AGE® stuff.

This holds true for even OCL (Object Constraint Language) constraints,

which are in charge of representing business rules in BLU AGE®.

•

Figure 8. VAP-oriented COBOL

Figure 9. Semi-natural language (in French) generated from VAP-oriented

COBOL

• The publication phase leads to view, transform, but mostly, refactor, the

material coming from the interpretation into BLU AGE® metatypes (Figure

10). However, all of the COBOL can be easily and straightforwardly

managed within Eclipse (Figure 11, right hand side). At this time, there is a

Java-like language, which is offered to users to translate COBOL-oriented
models into this language (i.e., on the right hand side of Figure 11). At this

time, the mapping with entities, business objects, controllers (in BLU

AGE® jargon) is, for efficiency reasons, carried out with a certain strategy.

11 For example, the French word “Déplacer” means “to move” in English. Generally speaking,

people are more confident when reading text close to their native language.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

45

As an ongoing implementation, the inclusion of a representation phase in the

reverse engineering process is described in the next section.

1

signature’s

member

«metaclass»

Blu Age Entity

«metaclass»

Blu Age Business Object

1

1

«metaclass»

Blu Age Service *

«metaclass»

Blu Age Complex Service

«metaclass»

Blu Age Controller

1..*

implementation

s

interface

* superclass

subclass

«metaclass»

Blu Age Screen Process

1

1

«metaclass»

Blu Age Use Case 1..*

«metaclass»

Blu Age Business Rule
text : String

type : Blu Age Business Rule Formalism

*

business object’s

operation

1

«enum»

Blu Age Business Rule Formalism

OCL

HQL
SQL

EJB QL

«metaclass»

Blu Age Service Operation

1

*

«metaclass»

Blu Age Screen

1

main

*

external

{xor}

* * user

context Blu Age Service inv:

implementation->isEmpty() implies user->notEmpty()

* /caller
*

/callee

1
1

1..*

Figure 10. BLU AGE® metatypes

Figure 11. COBOL code management within Eclipse (right hand side)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

46

7. Lessons learned from the case study

The first phase (the extraction phase) required 4 man-months (2 persons). This was

to design and perfect the reverse engineering method itself; while making slight

implementation amendments in the CASE tool possible. In order to obtain appropriate

knowledge, support and any kind of access to the SCAFRUITS application, a ½ man-
month support was provided by STIME. Minor modifications of the REVERSE

component of BLU AGE® occurred during this first stage. The unique result of this

phase was a beta “industrial” version of this component. The application-independent

nature of the process leads to success, even though a functional subset of

SCAFRUITS was used for the experimentation.

The second phase is an ongoing phase (3 months). This phase covers the

interpretation and publication phases. This last phase includes BLU AGE® training:

the construction within Eclipse of BLU AGE® models for reversing and

implementing in Java EE or .NET. It also includes the following use cases: product

referencing and product ordering. Each TP requires a 2 man-day support and each

batch process requires a 1 man-day support from each side (BLU AGE® expert group

and STIME). Even though the manual building of models within BLU AGE® is
strongly inspired by the success of the commented output of the reverse engineering

process; a significant gap in research and development remains. One must indeed

obtain maximum automation. Due to the ongoing nature of this experimentation,

further details and insights will be provided when orally presenting this paper.

8. Perspectives, generalizing the approach

The reverse engineering process above described is strongly coupled with a given

tool: VAP. Another modernization context associated with another legacy

development tool or language requires other metamodels and other transformation

chains. In short, the ultimate intention of the BLU AGE® REVERSE module is to

become free from a legacy technology. To avoid the redefinition of such metamodels

and transformation chains, a more generic framework is expected (Figure 12).

About transformation chains. The complexity of certain model transformations
leads to unintelligible transformation programs. The need for segmentation of

these complex transformations amounts to creating transformation chains.

Transformation chains involve a special kind of models: weaving models. Instead

of having sizeable metamodels which capture an entire domain, relationships
and correspondences between the considered models could be described by

specialized weaving models. Weaving models in essence depend upon the source

and the target models of a transformation. This dependence is expressed in terms

of processed model elements from the source, from the target and from markers

in profiles.

In the transformation workflow from Figure 12, VAP may be viewed as a technical

ontology: a set of technical concepts, terms (Table, Column… see prior sections) and

their semantic relationships. These concepts are currently (manually) implemented by

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

47

means of an Ecore metamodel. This means that, facing another legacy technology, a

new metamodel of this technology has to be constructed. To eliminate, as much as

possible, such tasks, a meta-metamodel is needed for instantiating a technology as a

metamodel which conforms to this meta-metamodel. Besides, to create some

interoperability not only within BLU AGE® but with other reverse engineering tools,

a normative meta-metamodel is required. KDM may opportunely play this role.
The primary purpose of an enhanced reverse engineering process is thus the

discovering of the technology itself in order to, interactively, populate the metamodel

describing this technology. A knowledge base of the legacy technology is then

produced which acts as a referent. The interactive aspect corresponds to the fact that

manual interventions are necessary to classify all concepts of the targeted technology.

Figure 12. Transformation chain with its required input and output models

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

48

At this time, KDM is not supported but the transformation workflow in Figure 12

has been prepared to move to KDM. The macro/micro dichotomy is indeed a key

notion in KDM and is linked to the Micro KDM domain [2]. This package includes

the model elements which allow the characterization of elementary actions in the

target legacy technology. For instance, a MOVE statement in COBOL which is also

present in the VAP dialect maps to an instance of ASSIGN in KDM, a micro action.
The transformation chain in Figure 12 shows as outputs of the Extraction phase12,

five models13. The Micro TP model records all the concepts of the VAP programming

language to manage a TP within the reverse engineering process. In the same logic,

the Macro TP addresses small-scale architectural issues like, for instance, function

keys in old character terminals which are used for screen linking.

The Micro TP and Macro TP models are thus two sets of VAP markers. Ideally,

according to the KDM philosophy, they come from the extraction process. In our

experiment (see prior sections), they have been constructed from scratch. In any case,

they are independent of the application being reversed.

In contrast, the MMA TP model standing for MAcro Annotated TP and the MIA TP

model standing for MIcro Annotated TP refer to all of the data capturing the nature

and the status of a given TP. These two types of models are business-oriented. For
example, one may find in a MAA TP model how display screens are linked, more

precisely, which function key of the TP of interest leads to another TP. In a MIA TP,

one may find, in a structured way, all the material found when parsing the code

relating to a TP. By definition, the MMA TP and MIA TP models are annotated with

markers coming from the Micro TP and Macro TP models but annotations are

physically present in the weaving model: the MMA TP model (MMA stands for

Merged Model with Annotations).

Annotations are twofold. First, as much as possible, the MMA TP and MIA TP

models are automatically annotated. Next, business-oriented marks are appended by

experts. Functional experts (requirements engineers) annotate extracted elements to

make emergent and visible the application’s functionalities while, by complementary,
the technical material is distinguished from functionalities. The VAP profile (Micro

TP + Macro TP) used to annotate more or less automatically the extracted models, is

thus subject to increasing. This results from the need of contextual markers which

refer to the discovered technology or the specific nature of the application: business

domain, company, end-users…

The more interesting point is the availability of the MMA TP model, a weaving

model. This model is not self-contained in the sense that it depends upon MMA TP

and MIA TP. It is the global view of the reversed system since it formalizes and

maintains the consistency between the macro and micro views promoted by KDM.

As shown in Figure 12, the interpretation phase is iterative. Several loops enable the

identification, analysis and classification of the reversed material. For instance, (a) the

marking of dead code14, (b) the delimitation of “system code” like a CICS command,
are important actions within the interpretation phase. The latter (b) can be either

12 The XML TP and XML Dialogue input models as just results of filter application (e.g., control

character cleaning) on VAP rough files.
13 A M mark on the top of a rectangle means “model”.
14 For example, specific database accesses which have no counterpart in the modern

application, international date formatting which is already available the Java core library…

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

49

automatically detected with relevant information in the technology model or it is

captured on-the-fly when no pre-existing knowledge exists.

This phase is strongly based on knowledge capitalization, i.e., refactoring in order

to determine what are the common (currently duplicated) parts of the application, the

creation of reverse strategies like viewing a GOTO VAP command as a Java

exception for instance, etc.
The representation aims at producing models in the BLU AGE® formalism (Figure

10). The current scheme in Figure 12 shows a TP-per-TP approach but a consolidation

is absolutely necessary: each TP is a small piece of business functionality in the

legacy application but only the merging of all TP and batch processes is the expected

tangible result for end-users.

At this time, the representation phase generates the BLU AGE® PIM for a given TP

only. The MOCKUP PIM is a mixing of XHTML code and BLU AGE® markers to

make screens concrete in the new technology, here Web pages.

Another feature is the fact that the BLU AGE® models are also marked by means

of VAP markers to create some traceability in the reverse engineering process.

Moreover, these traces are intended to be used for assembling the different

PIM/MOCKUP models resulting from different TP.
As for the publication phase, it is the ordinary BLU AGE® application generation

process.

9. Conclusion

MDD is a promising technology to build large-scale applications from scratch, but

the challenge of transforming legacy code into models stumbles over the

heterogeneity of old systems. In this paper, the proposed approach benefits from the

preexisting structuring of COBOL code and some associated environmental

information (configuration parameters…) based on VisualAge PACBASE (VAP).

Starting from an extraction module (PAF) of VAP, several layered metamodels and

models are instantiated in sequence. The paper describes a case study that serves as a

benchmark for perfecting a reverse engineering method and its implementation in the

REVERSE module of the BLU AGE® CASE tool. At this time, several TP of the

SCAFRUITS application have been redesigned and deployed in the Java EE platform.

However, there is still no attempt about the assembling of these rebuilt TP to obtain a
global renewed business application.

A key research focus is the systematic discovering of the legacy technology itself.

The described project (as a perspective) is to concomitantly create knowledge about

the reversed application and its support technology. This project is currently greatly

inspired by the KDM standard. A transformation framework under specification and

development is on purpose offered.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

50

10. Bibliography

1. R. France, S. Ghosh, T. Dinh-Trong and A. Solberg: Model-Driven

Development Using UML 2.0: Promises and Pitfalls, IEEE Computer, 39(2),

pp. 59-66 (2006)

2. Architecture-Driven Modernization (ADM)/Knowledge Discovery Meta-
Model (KDM), version 1.1, January 2009

3. S. Eveillard and A. Henry, Transforming VAP metamodels into UML, talk at

the industrial track of MODELS’2008, Toulouse, France (2008)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

51

Participation of Business Stakeholders in MDD

Frank Wille, Novulo, Auke Vleerstraat 6, Enschede, The Netherlands

Abstract. The trend of creating higher abstraction levels in software
development has moved to the next step with Model Driven Development.

Higher productivity, better quality, and easier maintenance are already well-
known advantages, as well as simplifying the communication process.
However, do our model presentations foster effective communication with the
business users? Can we be certain that presenting a UML diagram or a data
model to business stakeholders will allow them to confirm that it fits their
specific needs?
At Novulo, we believe that the gap between business and IT is not bridged by
MDD in its current form. Rather, by providing a no-nonsense and fully

graphical presentation of UI, conditions and workflows in the model, and by
facilitating the dependencies of data modeling and application modeling, we
have created a new means of communicating productively with business
stakeholders in the modeling phase. written.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

52

Model-driven software development of distributed

heterogeneous systems

Alexander Broekhuis (luminis) and Jeroen Kouwer (Thales)
Thales-luminis, The Netherlands

Thales radar systems are highly complex and demanding products. These distributed

real-time systems are modeled on heterogeneous platforms with multiple technologies

(languages, RTOSes and protocols). A typical radar system consists of more than 50

boards and processes data at a rate over 140 Mbytes per second.

This presentation is aimed on sharing the experiences of a model-driven approach
to the software development of radar systems. Technical experiences on defining

correct meta-models, model validation through the use of OCL and writing

proprietary transformation rules. Important success factors in introducing MDA in the

Thales software development process will be discussed. Such as the use of modeling

guidelines, first level support and experience exchange meetings.

Within Thales the first step of introducing software development based on MDA is

aimed on: the modeling of system structure, data communication between distributed

software components and the mapping of software on specific hardware components.
Using an Eclipse based tool chain UML models are validated through the use of OCL

and transformed to XML. Finally code is generated in the form of component specific

interfaces and technology specific optimized code for the target hardware platforms.

Used tools and technologies: openArchitectureWare, Eclipse Modeling

Framework, UML 2, QVT, OCL. The audience is expected to be familiar with: UML,

XSD/XML and MDA principles in general

Alexander Broekhuis has a background as an experienced software engineer,
designing object-oriented software for high-impact industrial systems. Over the last

years, Alexander has been involved in the introduction of MDA patterns and

technologies in multi platform environments. This with a strong focus on meta-model

definitions, model2model transformations and MDA tool chains.

Jeroen Kouwer is working as an architecture engineer within Thales Surface Radar.

He has been working specifically on the introduction of UML modeling and automatic

code generation for Thales radar architectures. This strongly focussing on high-

throughput data communication and deployment on heterogeneous hardware and
software platforms.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

53

traceMAINTAINER – Tool Demonstration

Patrick Mäder1, Orlena Gotel2, and Ilka Philippow1

1 Department of Software Systems
Ilmenau Technical University, Germany

patrick.maeder|ilka.philippow@tu-ilmenau.de
2 Department of Computer Science
Pace University, New York, USA

ogotel@pace.edu

Abstract. This paper outlines a proposed demonstration that will pre-
sent the core functionality of traceMAINTAINER, a prototype tool that
enables the semi-automated maintenance of traceability relations held
between different models of software systems expressed in UML. The
demonstration will cover: how traceMAINTAINER integrates with UML
modeling tools, such as Enterprise Architect; how traceability updates
are handled based upon the recognition of development activities; what
happens when decisions about a traceability update cannot be made fully
automatically; and how to tailor the rules that guide the traceability
maintenance process.

1 Introduction

traceMAINTAINER is a prototype tool that enables the semi-automated main-
tenance of traceability relations held between different models of software sys-
tems expressed in UML ([1], [2]). The approach analyses changes undertaken to
structural UML models while working within a CASE tool that supports UML
modeling. Change events are captured and sequences of events are sought that
correspond to predefined rules. These rules represent the various ways in which
recurring development activities can be undertaken and directives to update
the impacted traceability relations once identified. This paper is provided as a
companion to the architectural description of traceMAINTAINER provided in
[3].

2 Integration with Case Tools

traceMAINTAINER is designed to work with traditional UML modeling tools
to expand their support for traceability. The demonstration will begin by il-
lustrating traceMAINTAINER’s integration with Enterprise Architect and by
explaining how such integration can be extended to other UML modeling tools.
The integration relies upon two specific components: an event generator that
captures changes to supported model elements and a traceSTORE that extends

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

54

the traceability functionality of the base CASE tool. traceSTORE holds trace-
ability relations in an additional class model within the development model and
we will discuss the benefits of this realization over the vanilla traceability func-
tionality (of Enterprise Architect in this case). We will then create a small UML
model for demonstration purposes. This will involve creating a use case model
with two use cases, relating these to elements of a design model, and demon-
strating traceSTORE’s ability to show and navigate the traceability relations
in both models. We will also emphasize the role of the indicators that we have
introduced to recognize the existing traceability relations on an element and
their count. We will further explain the structure of the element references and
relations while creating the example model.

3 Recognizing Development Activities that Impact

Traceability

In this part of the demonstration, we will show how traceMAINTAINER is used
in the context of software development. Expanding the above example, we will
show how an analysis model may need to be changed based upon a change
request relating to a use case. We will use the development activity of extracting
an attribute into its own class to discuss the functionality resulting from this
change request and the use of traceMAINTAINER to account for it. We will then
provide a step-by-step walkthrough as to the tasks undertaken and the response
of traceMAINTAINER to automatically maintain the traceability. During these
activities, we will show the rule engine status window (see Figure 1) to explain
how the development activities are recognized by traceMAINTAINER. We will
also explain how the traceability relations are updated after recognizing the
development activity and the kind of feedback the user receives.

4 Semi-automated Traceability Maintenance

In the preceding parts of the demonstration, we will have presented the use of
traceMAINTAINER in a context were no user interaction was necessary (au-
tomated traceability maintenance). Nevertheless, while development activities
can be recognized by traceMAINTAINER, it is not always possible to make a
definitive update of traceability relations. In the next part of the demonstration,
we will present an example according to Figure 2 in which user interaction is re-
quired. After recognizing the development activity, traceMAINTAINER presents
the user with a dialog that lists all the existing and potentially new traceability
relations involved in the activity. The user is required to decide how to handle
certain relations. We will explain when there is the necessity for user interac-
tion, as well as the reason for the different alternatives presented. After choosing
the preferred alternative, we will show how the traceability relations then get
updated (as per the previous section).

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

55

Fig. 1. Before performing the last change of the development activity, the traceMAIN-

TAINER status window shows that the correct rule has been instantiated as an Ope-
nActivity and that all already performed changes have been correctly assigned to it.
The remaining mask is comparable and requires creating an association between both
classes involved in the development activity.

5 Changing Traceability Maintenance Rules

The current rule catalog used by traceMAINTAINER has been in use for about
one year in different experiments and by industry partners. During this period
it has been stable. However, it is unlikely that this set of rules is fully com-
plete and correct. Furthermore, there are development activities that may be
carried out in different ways depending on the domain of the project and the
pre-disposition of the developers. It is therefore desirable to be able to customize
the existing rules and to support the traceability of new model elements. In this
part of the demonstration, we will present the underlying rule catalog of trace-

MAINTAINER. We will describe how these rules were derived and function. We
will also illustrate how they are stored and describe their internal structure. We
will further create a new rule and, using this example, discuss the concept of
properties, masks, alternatives and traceability updates (all key concepts under-
lying the traceability maintenance process supported by traceMAINTAINER).
We will demonstrate different ways to define properties and explain how they
help in creating good rules. Finally, we will highlight the process for validating
new or changed rules.

6 Status

traceMAINTAINER provides an extensive set of features for maintaining trace-
ability between a broad spectrum of UML model element types. Results show
that the approach is capable of reducing the effort (and so the cost) of maintain-
ing traceability quite dramatically and at quality levels comparable to manual

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

56

Fig. 2. traceMAINTAINER dialog that informs the user about a recognized develop-
ment activity and requires a decision to be made between several options in those cases
where the traceability maintenance cannot be determined automatically.

maintenance. The approach is intended as a complement to those approaches
that initially create traceability relations using either manual or automated
techniques. The reader is directed to a companion publication for a detailed
architectural description on traceMAINTAINER [3].

Acknowledgments The authors would like to thank Tobias Kuschke, Christian
Kittler and Arne Roßmanith for implementing the traceMAINTAINER proto-
type.

References

1. Mäder, P., Gotel, O., Philippow, I.: Rule-based maintenance of post-requirements
traceability relations. In: Proc. 16th Int’l Requirements Eng. Conf., Barcelona,
Spain (September 2008)

2. Mäder, P., Gotel, O., Philippow, I.: Enabling automated traceability maintenance
by recognizing development activities applied to models. In: Proc. 23rd Int’l Conf.
on Automated Software Engineering ASE, L’Aquila, Italy (September 2008)

3. Mäder, P., Gotel, O., Philippow, I.: traceMaintainer: A Tool for the Semi-automated
Maintenance of Model Traceability. In: (submitted), Enschede, Netherlands (June
2009)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

57

SOA and SHA Tools Developed in SHAPE Project

Andrey Sadovykh1, Christian Hahn2, Dima Panfilenko3, Omair Shafiq4, Andreas

Limyr5,

1 SOFTEAM, Paris, France

andrey.sadovykh@softeam.fr
2 DFKI MAS, Saarbrücken, Germany

christian.hahn@dfki.de
3 DFKI IWI, Saarbrücken, Germany

dima.panfilenko@iwi.dfki.de
4 STI, Innsbruck, Austria

omair.shafiq@sti2.at
5 SINTEF, Oslo, Norway
andreas.limyr@sintef.no

Abstract. This article presents the SHAPE project tool set dedicated to Model

Driven Engineering (MDE) methodology for Service Oriented Architectures
(SOA) and Semantically-enabled Heterogeneous service Architectures (SHA)

Keywords: SOA, SHA, SoaML, SHAPE, Web Services, Agents, CIM, PIM,
PSM.

1 Introduction

The SHAPE FP7 project [1] aims at the following goal:

To specify, develop and test a tool supported methodology for designing

implementing flexible business models and parameterized services on a

Semantically-enabled Heterogenious service Architecture (SHA) through model

driven engineering (MDE) approaches and standardization of these results.
In this context the SHAPE relies on the OMG SoaML specification and intends to

extend it for heterogeneous service architectures.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

58

SoaML

Core

Service Variability

PIM4

WS-A

PIM4

SWS

PIM4

Agents

P2P/Grid/

Components

SoaML-SHA

WSDL, WSMO, OWL-S, JACK, JADE, JXTA, OGSA, J2EE, CORBA

J2EE, NetWeaver, .Net, …

BPMN BPDM BMM EPC

PIMs for different

Architectural Styles

Realization Technologies

PSM
Implementation Models

CIM
Business Models

PIM
System Models

…

Fig 1 SHAPE Concept Overview

The SHAPE tool set has to cover all MDA layers for SOA and SHA as presented

in Fig. 1.

The implementation of the SHAPE tool set is presented in details below.

2 SHAPE Tool Set

The project intends to integrate various MDE tools in the field of flexible business

models, Enterprise Architectures, SOA Semantical Web Services and Agents.

The SHAPE partners develop the following components:

• Flexible business models – CIMFlex by DFKI IWI and Objecteering

Enterprise Architect by SOFTEAM

• System models – Objecteering Enterprise Architect and UML Designer by

SOFTEAM, PIM4Agents by DFKI MAS, Composition Studio by

SINTEF

• Implementation Models – Objecteering Java Developer and Web Services

Developer by SOFTEAM, semantic Web Services Modelling Toolkit by

STI

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

59

Eclipse 3.4

WSMT

Plugins

Objecteering

SoaML

model

PIM4Agents Solution

Plugins

Semantic

Web

Services

SoaML Plugins

(default tree editor)

UML2 SoaML

Profiled

model

Jack / Jade

CIMFlex Plugins
T

ra
c
e

a
b

ility
 (S

IN
T

E
F

)

Web

Services
J2EE

SINTEF Composition

Studio

Grid / P2P

Fig 2 SHAPE Tool Set Components

Fig. 2 depicts the current component architecture for the SHAPE tool set.

The tool set is integrated using Eclipse EMF technologies over SoaML models

export/import, while the individual aspects of SOA or SHA are treated by

corresponding tools.

The details on each component are provided in the sections below.

2.2 Objecteering CASE Tool

Description:

In the context of the SHAPE project SOFTEAM proposes Objecteering 6 CASE

Tool [2]. It provides a complete, simple to use model-driven development solution,

dedicated to expressing and managing requirements, building complete and accurate

UML, Enterprise Architecture and Business models, generating a full range of

documentation and automating application code production for Java/EJB, C++,

C#/.Net, SQL, CORBA and Fortran. With more than 250 interactive real-time

consistency checks, Objecteering 6 manages model consistency in order to guarantee

high quality models and correct code generation. Live traceability links are managed
throughout the entire development cycle, from requirements, analysis and design

through code generation, tests and application deployment.

In addition, Objecteering 6 provides teamwork facilities through a multi-user

repository and flexibly supports cooperative work, with no limits regarding large-

scale developments. In order to allow concurrent modeling, a lock mechanism can be

applied down to class level, thereby guaranteeing the consistency of the model shared

by team members. Branches are managed through the model diff/merge function. A

powerful model component feature can be used to organize project development over

several different teams. Once packaged, model components can be easily deployed to

efficiently manage communication and model delivery between the different teams

involved in a project.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

60

The Objecteering MDA Modeler automates the OMG’s MDA approach, using

standardized or specialized UML profiles. Objecteering MDA Modeler is used to

define dedicated tools for code generation, to support specific target platforms, and to

support methodologies and modeling processes specific to each organization.

Fig 3 Objecteering Enterprise Architect - Logical Architecture View

Role in SHAPE:

In the frame of the SHAPE project, SOFTEAM implements a dedicated tool

support for SoaML and ShaML. These specifications are implemented as UML2

Profiles in the Objecteering CASE Tool. In addition the SOFTEAM works on

integration of the SoaML to its Enterprise Architecture and Business modeling

solution.
The Objecteering tool is used main means to edit and visualize the SoaML models.

The SoaML models are then exported in order to make them available for the other

tools presented below.

In the context of the industrial use cases the Objecteering is used for the forward

MDE in the SOA field. The business models created in BMM are translated in

Enterprise Architecture models in order to finally obtain the models for conventional

Web Services and Java platform. The Java code and conventional Web Services are

automatically generated.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

61

2.3 CIMFlex

Description:

The CIMFlex Editor allows the user to create and refine a semi-formal model of a

business process, an organisational structure, a data structure or business rules based
on the input coming from the domain users (see Fig 4). The editor is able to create,

change and store these types of models in EPC or BPMN notation. As storage format

XML files are generated. The target users of this component are the domain user and

especially the business analysts.

From an architectural point of view the component has two interdependencies with

other components for its output. The information, which is required for the creation of

a CIM model, will be derived from the use cases by the domain users.

The output of the CIM level editor can have two different forms depending on its

purpose. On the one hand, a model on CIM level in BPMN notation can be used as

the technical information description draft, giving a starting point for the

transformation into BPEL for further execution of the resulting model or the

enrichment with further technical information.
On the other hand the output of the CIM level editor is the starting point for the

CIM to PIM transformation. In this case the editor doesn’t provide the models in

BPMN notation, but transforms them into SoaML models. This functionality is now

under development on a conceptual level and should be implemented as soon as the

initial version of a transformation is agreed upon.

Fig 4 CIMFlex process editor

Role in SHAPE:

One of the main usages of the CIMFlex tool and its underlying metamodel is

description and deployment of services and services architectures at the CIM-level to

support business scenarios. On the other hand, SHAPE project promotes the usage of

MDA idea to improve the development process and SoaML idea for the description of

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

62

the services. In order to enable Flexible Business Models to accomplish this, it is

necessary to align them with the SoaML. The CIMFlex language is needed to

integrate domain experts which are involved in a business process and their

knowledge into the software development. It has to be a trade off between the “non-IT

oriented” people who are the target users of a new system and the people who

implement it.
The CIMFlex tool should provide a means for aiding domain experts with the

documentation of their knowledge on the CIM-level in a set of models including data,

organisational, business rules and process diagrams. Provided that, these CIM-level

models should be then transformed into the PIM-level models, thus transferring the

domain expert knowledge on the technical level, allowing for further enrichment and

amendments. At the same time, the models in BPMN notation can serve as a starting

point for the further transformation to BPEL in order to provide the input for the

execution engines.

The component was implemented at the Institute for Information Systems at the

German Research Center for Artificial Intelligence (DFKI IWi1).

2.4 PIM4Agents

Description:

For designing multiagent systems (MASs), DFKI developed a platform-independent

domain specific modeling language for MAS called Dsml4MAS [7] in accordance to

the language-driven initiative. Like any other language, Dsml4mas consists of an

abstract syntax, formal semantics, and concrete syntax:

• The abstract syntax of Dsml4MAS is defined by a platform independent
metamodel for MAS called PIM4Agents defining the vocabulary in terms of

concepts and their relationships

• The formal dynamic and static semantics is expressed using the specification

language Object-Z which is a stated-based and object-oriented specification

language.

• The concrete syntax is defined as set of notations facilitating the presentation and

construction of Dsml4MAS. It is specified using the Graphical Modeling

Framework (GMF) that provides the fundamental infrastructure and components

for developing visual design and modeling surfaces in Eclipse.

The corresponding Dsml4MAS Development Environment2 (DDE) allows us to

specify MASs with Dsml4MAS and to transform the created models to agent

execution platforms like Jack Intelligent Agents and Jade (Java Agent Development
Framework).

Role in SHAPE:

The role of Dsml4MAS and PIM4Agents in particular is to serve as intermediate level

that is already enriched with platform specific information on agent-related aspects.

1 http://iwi.dfki.de
2 http://dsml4mas.sourceforge.net

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

63

Consequently, the model transformations to Jack and Jade can be used to generate

executable code based on the SoaML description.

Fig 5 The PIM4Agents Development Environment

Through the model transformation from SoaML to PIM4Agents and the formal

semantics of PIM4Agents, SoaML gets a clear formal semantics that can be used for

reasoning purposes.

Moreover, particular concept from the PIM4Agents metamodel could be lifted to

make SoaML more comprehensive with respect to modeling agent systems which

might be necessary for complex scenarios like the Saarstahl use case that will be

introduced in Section 3.1.

2.5 Web Services Modeling Toolkit

Description:
The Web Services Modeling Toolkit (WSMT)3 [7] is an Integrated Development

Environment (IDE) for Semantic Web Services implemented in the Eclipse

framework. WSMT aims to aid developers of Semantic Web Services through the

WSMO paradigm, by providing a seamless set of tools to improve their productivity.
As already mentioned an Integrated Development Environment (IDE) is defined as a

3 http://sourceforge.net/projects/wsmt

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

64

type of computer software that assists computer programmers to develop software.

IDE's like the Eclipse Java Development Toolkit (JDT) and NetBeans for developing

java software have proven that good tool support can improve the productivity of

engineers. It could be said that the time of ontology and Semantic Web Service

engineers is a more precious commodity, as the number of people who are currently

skilled in conceptual modeling is much less than those that can code in Java. This
underscores the need for adequate tool support for working with semantic

technologies and an IDE can tie together these tools in such a way that the whole

application is more than the sum of the parts that make it up. WSMT facilitates users

in validating the semantic description of services in WSML, text editor as well as

visualizing the ontologies and service descriptions.

Fig 6 Ontology in WSML Visualizer

Role in SHAPE:
Role of WSMT in SHAPE MDE Toolkit is to validate and show the generated

WSML code from SoaML, using text-based editor as well as visualizer. The WSMT

further provides support to engineers in developing further the generated Semantic

Web Service descriptions using text-based editors and visualizers of WSMT.

WSML Validation is supported in WSMT through an object model (WSMO4J) for

manipulating WSMO descriptions and is capable of parsing and serializing WSML

documents to and from this object model. It also provides a validator for WSML

variants, which is exploited within the WSMT to validate the files that are located

within the WSMT workspace as the user edits these documents. This validation

ensures that the engineer of the semantic descriptions gets immediate feedback of

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

65

errors they create, both in the syntax and the semantics of the semantic descriptions,

as they create them.

Creation of Semantic Web Services descriptions by hand is also supported by

WSMT through text-editor. It is very tempting when creating a toolkit to abstract

away from a text editor and to provide more advanced editing support; However in

many cases the engineer is more comfortable with editing the raw text of the semantic
description. This is especially true with respect to WSML, as the WSML human

readable syntax is a very lightweight syntax. WSMT caters for such users and provide

them with additional features including syntax highlighting, syntax completion, in line

error notification, content folding and bracket highlighting.

WSML based Semantic Web Services description code can also be visualized

using WSMO visualizer provided in WSMT. The visualizer allows engineers to learn

more information about their semantic descriptions as they create them. Normally

visualization solutions are bolted on top of existing ontology engineering solutions

after the fact, by providing an integrated solution the user need not switch back and

forth between an editing environment and a visualizer to understand the effects of

changes to the ontology.

2.6 Composition Studio

Description:

Service Oriented Architecture and Semantic Web Services have emerged as

solutions for achieving interoperability between computer systems. Unfortunately,

these fields comprise a large set of languages and standards, and intimate knowledge

of these languages and standards is often needed when developing web services.
Hence, considerable training time is required to educate service developers. There is

also a lack of tools that support the development process so that the cost of

development is high.

Composition Studio is a general toolkit for composition of semantic web services,

and uses OMG's Model-Driven Architecture (MDA) [8,9] approach to software

development. MDA separates the application logic from the execution platform by

using models and transformations. It enables the user to specify the software with

platform independent models that hide the details of the execution platform. The

platform independent models can then be transformed automatically into platform

specific models that include the details of the execution platform. Knowledge of the

technical details of the execution platform is thus not needed with this methodology.

However, the platform independent model must be defined in a language. For this
purpose, the Composition Studio uses a variant of UML Activity Diagrams. UML has

become an important standard for software engineering, and many software engineers

are familiar with this standard. By using MDA and UML, the Composition Studio

should be able to hide some of the complexity of the web service technology and thus

reduce the entry level of building web service compositions.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

66

Local dictionary with

imported services,

service operations and

data types

Property view for the

currently selected model

element

Palette with available

model element types

Tree view of the

composition

Visual editor with the

composition

Eclipse project view

Composition Studio

menu

Local dictionary with

imported services,

service operations and

data types

Property view for the

currently selected model

element

Palette with available

model element types

Tree view of the

composition

Visual editor with the

composition

Eclipse project view

Composition Studio

menu

Fig 7 Composition Studio

Role in SHAPE:
Composition Studio will be seen in relation to SoaML and how it can be integrated

with the rest of the SHAPE toolset. Integration will mainly be performed by creating a

set of transformations to and from the Composition Studio so that the results of other

tools can be used in the Composition Studio and so that the result of the Composition

Studio can be used as input to other tools.

Composition Studio creates models of service compositions with help of a visual

model-based editor based on UML activity diagrams. The goal of this task is to be

able to generate executable code that can be deployed on an execution platform. We

will specifically look into BPEL as the execution platform.

The relation with high-level business modeling will also be investigated. Activity

diagrams have much in common with many of the business process languages that
exist today. Maybe modeling business processes in a service oriented context can give

some advantages when it comes to generating code from such a high level of

abstraction.

2.7 Traceability Tool by SINTEF

Description:
One of the main challenges in MDD is the management of relations between

different artefacts produced in the development process. As systems become more

complex, the number of artefacts is increasing. Furthermore, the artefacts are often

generated. Therefore, trace links are needed to fully understand the many

dependencies that exist between the different artefacts.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

67

The reason to create and update traceability links is that the links can be used to

support and document the development process. The information can be used in

several ways, but the most obvious scenario is simple trace inspection. Through trace

inspection it is possible to browse the trace information and get insight in how the

different artefacts are connected. This is becoming more useful as an increasing

number of artefacts are generated automatically from model to model and model to
text transformations.

The TRAMDE Trace Analyser Tool is a prototype that implements the TRAMDE

trace model. The tool is mainly focused on storing automatic traces produced by

model transformation technologies like ATL and MOFScript. It also gives a view to

the trace model and the possibility to analyse the trace model in different ways.

Fig 8 TRAMDE Trace Analyser Tool

Role in SHAPE:

The TRAMDE Trace Model and Trace Analyser Tool will be used to create and

analyse trace models generated by different transformations performed by tools in the
SHAPE toolset.

It will be possible to get information on transformations to and from different tools.

The trace model can be used to see if the transformation is sound.

Coverage analysis is useful for checking and ensuring that all relevant parts of the

model are actually utilised by a transformation. If there are no traces from a particular

model element, it is not used in the transformation.

Impact analysis in text transformation can allow for checking the impact of a

model change to existing generated code. A limitation in this regard is unprotected

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

68

areas in the code that use model references, which cannot be seen from the traceability

model.

Orphans can occur in the code if model elements are deleted. There will then be

traces from old model elements to the code. The transformation needs to be re-run in

order to synchronise the model, the code, and the traces.

3 Use Cases Overview

The SHAPE methodlogy and tools are validated with two industrial use cases

presented in the section below.

3.1 Saarstahl

Saarstahl AG, with its locations in Völklingen, Burbach and Neunkirchen along with

Roheisengesellschaft Saar in Dillingen (Saarstahl and Dillinger Hütte each with 50%)

is one of the most important manufacturers of long products in the world.

Steel works

Völklingen

Rolling mills

Burbach

Rolling mills

Neunkirchen

Rolling mills

Nauweiler

Sales Department
Semi-finished

product inventory

Tech. Inspection

Planing Department

Steel works

Völklingen

Steel works

Völklingen

Steel works

Völklingen

Rolling mills

Burbach

Rolling mills

Neunkirchen

Rolling mills

Nauweiler

Rolling mills

Burbach

Rolling mills

Neunkirchen

Rolling mills

Nauweiler

Sales Department
Semi-finished

product inventory

Tech. Inspection

Planing Department

Fig 9 An abstract view on Saarstahl’s supply chain

The Saarstahl case within SHAPE is a proof of concept for designing the main

processes within the supply chain based on the results of SHAPE. Several challenges

have to be addressed when it comes to a service-oriented design of the complete

supply chain. From the viewpoint of Saarstahl it is fundamental that (i) business

requirements that are specified by Saarstahl can easily be translated into a running
system and (ii) existing systems (e.g. data bases) can be re-used within the SOA to

maintain the high product quality. Both requirements match nicely with the SHAPE

approach of a semantically-enabled heterogeneous service architecture as:

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

69

• SHAPE provides a full transformation path from the business level to

adaptive platforms through MDE and thus allows Saarstahl to define

executable artefacts in a very abstract manner on the CIM level.

• SHAPE supports the integration of existing legacy systems that are situated

at different locations (e.g. Völklingen, Burbach and Neunkirchen) through a

combination of Web Services and agents. A combination of adaptive
execution platforms offers various advantages that allow to increase

efficiency during run-time. The Saarstahl pilot consists of the following

steps:

• Specification of business models and requirements: Saarstahl will formalize

business models and requirements on the CIM level using CIMFlex. The

business models will contain information with respect to involved

organizational units, provided functionalities and exchanged data and

resources.

• Model transformations from CIMFlex to SoaML, the generated business

models serve as input.

• Model transformations from SoaML to Dsml4MAS and Web Services.

3.2 StaoilHydro

StatoilHydro is an integrated technology-based international energy company

primarily focused on upstream oil and gas operations. A joint venture Production &

Process Optimization project4 between StatoilHydro and Schlumberger is aiming at

improved reservoir management and optimize the reservoir performance over the life

of the field.
In order to support the change management process, a prototyping process has been

developed for surveillance workflow development and deployment. The dynamic

prototyping process allows a bottom-up development of workflows starting from data

conditioning and reconciliation up to optimization and control. This should work

together with a workflow advisor enabled for improved decision making, streamlining

of model updating and other tasks. The workflows depend on a set of software

components as shown in the figure below.

In the SHAPE project we are investigating how to further improve this process by

applying service-oriented technologies developed in SHAPE.

4 http://www.spe.org/elibrary/servlet/spepreview?id=SPE-110655-

MS&speCommonAppContext=ELIBRARY

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

70

DPO

Analysis

(FPA/APS)

Process
Control

AWR

Workflow
Automation

(WFA)
Subsurface
Production

System
&

Facility

IMS

Model
Repository

Appriopriate
Simulation &

Optimization Tools
(IAM)

WFA: Workflow automation

DPO: Detailed production optimisation

FPA: Field performance analyser

APS: Avocet production surveillance

IAM: Integrated asset modeler

AWR: Automatic wells and reservoirs

Alarms &

events
Actions

MeasurementsFiltered data

Choke

positions

Fig 10 StaoilHydro Use Case

3 Progress and Future Plans

In the current stage all the tools were intentegrated in the single bundle, which will be

available on the SHAPE’s web site [1].

We experimented with the use cases demonstrated the full transformation flow

presented in Fig. 11.

Agents: Jack, JadeSOA: XML, WSDL, BPELCode

Automatic – in MOFScriptAutomatic: in JavaPSM2Code

MAS: Jack, Jade

Metamodels

Web Services SOA:

UML Profiles for XML, WSDL,

BPEL

PSM

Automatic – in ATLAutomatic:

in Java API and Design Patterns
PIM2PSM

PIM4AgentsObjecteering SOAPIMs

Automatic – in ATLManualPIM2PIM

SoaML - ObjecteeringPIM

ManualCIM2PIM

BPMN, EPC - CIMFlex, ObjecteeringCIM

Agents: Jack, JadeSOA: XML, WSDL, BPELCode

Automatic – in MOFScriptAutomatic: in JavaPSM2Code

MAS: Jack, Jade

Metamodels

Web Services SOA:

UML Profiles for XML, WSDL,

BPEL

PSM

Automatic – in ATLAutomatic:

in Java API and Design Patterns
PIM2PSM

PIM4AgentsObjecteering SOAPIMs

Automatic – in ATLManualPIM2PIM

SoaML - ObjecteeringPIM

ManualCIM2PIM

BPMN, EPC - CIMFlex, ObjecteeringCIM

Fig 11 Currently supported transformation flow

In our future work we target implementation of the new coming ShaML

specification that extends SoaML for semantic web services and agents. In addition

the end-users highly require enhanced and seamless tools integration.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

71

References

1. SHAPE project web-site, http://www.shape-project.eu/, visited on 20/04/2009
2. Objecteering web-site, http://www.objecteering.com, visited on 20/04/2009
3. SOFTEAM’s R&D Department web-site, http://rd.softeam.com, visited on 20/04/2009
4. OMG web-site, http://www.omg.org, visited on 20/04/2009
5. OMG SoaML specification, http://www.omg.org/docs/ad/08-08-04.pdf, visited on

20/04/2009

6. Hahn, C.,Madrigal-Mora, C. and Fischer, K. (2008a). A platform-independent metamodel for
multiagent systems, International Journal on Autonomous Agents andMulti-AgentSystems.

7. Mick Kerrigan, Adrian Mocan, Martin Tanler and Dieter Fensel: The Web Service Modeling
Toolkit - An Integrated Development Environment for Semantic Web Services (System
Description), Proceedings of the 4th European Semantic Web Conference (ESWC), June
2007, Innsbruck, Austria.

8. Kleppe, A., Warmer, J. and Bast., W., "MDA Explained, The Model-Driven Architecture:
Practice and Promise" Addison Wesley, 2003

9. OMG, MDA Guide Version 1.0.1, J.M.a.J. Mukerji, Editor. 2003, OMG.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

72

EMFText and JaMoPP - Tool Presentation

Florian Heidenreich, Jendrik Johannes, Sven Karol,
Mirko Seifert, and Christian Wende

Institut für Software- und Multimediatechnik
Technische Universität Dresden

D-01062, Dresden, Germany
{florian.heidenreich,jendrik.johannes,sven.karol,

mirko.seifert,c.wende}@tu-dresden.de

Abstract. Textual Syntax (TS) as a form of model representation has
made its way to the Model-Driven Software Development community
and is considered a viable alternative to graphical representations. In this
demo we present EMFText [1], an EMF/Eclipse integrated tool for TS
development, where we focus on its abilities to generate refineable default
syntaxes and handling of large languages, e.g. Java., with EMFText.

1 EMFText - Tool Introduction

In the last few years, a variety of tools for mapping between models and concrete
syntax have emerged to support the design and implementation of text editing
facilities for modelling languages. The textual syntax built with these tools can be
either generic or custom. Generic syntaxes like HUTN [2] are defined on the level
of metamodelling languages. Thus, they are either instantly available or can be
derived automatically for concrete modelling languages. Custom syntaxes need
manual specification effort. The former are also often more verbose and do not
directly reflect the semantics of a language, in contrast to the latter, which are
more compact and use symbols that ease reading.

To bridge the gap between these two flavours of textual syntax, we developed
EMFText, which allows to stepwise refine specifications that are automatically
derived from given metamodels and, thus, enables the developer to build custom
syntax starting from a generic syntax. To exemplify the broad applicability of
our approach, we present both the derivation of generic syntax from a given
metamodel and the development of a highly customised syntax in this demo.

The remainder of this demo paper is organised as follows: Section 1.1 gives an
overview of the features of EMFText and Section 1.2 summarises some applica-
tions of EMFText. We then present two applications in more detail in Sections 2
and 3. For a detailed overview of EMFText, please refer to [3].

1.1 EMFText Features

EMFText supports text syntax development in the context of MDSD with a
variety of features. Amongst other things, development, evolution and modular-
ization of text syntax are well supported. The most outstanding features are:

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

73

Automatic generation of default syntax With EMFText, an initial syntax
can be generated with a single click for any metamodel. The generation
mechanism conforms to the HUTN standard and the generated specification
can be further tailored towards specific needs.

Simple and precise syntax specification EMFText comes with a simple but
rich syntax specification language called ConcreteSyntax (CS). The language
is based on EBNF and follows the concept of convention over configuration.
This allows for very compact and intuitive syntax specifications, but still
supports tweaking specifics where needed.

Modular specification EMFText has an import mechanism that not only sup-
ports specification of a single text syntax for multiple related Ecore models,
but also allows for modularization and extension of CS specifications.

Default reference resolving mechanisms A default name resolution mech-
anism for models with globally unique names is available out of the box
for any syntax. More complex resolution mechanisms can be realized by
implementing generated resolving methods through which also inter-model
references can be established.

Comprehensive syntax analysis A number of analyses of CS specifications
inform the developer about potential errors in the syntax—like missing syn-
tax for a certain metaclasses.

Generic editor with outline view and preference page The EMFText ed-
itor fully integrates with the Eclipse Platform. It supports the outline and
preference pages concept of Eclipse using the EMF Edit facilities. Through
this, icons and labels defined for a metamodel are reused and can be recog-
nized in the text editor.

Customizable Syntax Highlighting The editor supports code highlighting
that can be individually customized for each text syntax.

Code Completion Code completion is supported for references and can be
easily tailored by customizing the reference resolving mechanism.

1.2 Examples for Textual Syntax

We have gained experience in using EMFText by defining textual syntax for
several domain specific and general purpose languages.1 The examples for EMF-
Text-based syntax range from simple tree-shaped models like feature models, to
more complex graph-structured UML statecharts, to syntax for meta-modelling
languages like Ecore. Last but not least, EMFText has proven powerful enough
to handle full-fledged programming languages: We used it in the JaMoPP project
to create TS tooling for a Java 5 metamodel. Currently, there is ongoing work
on other C-style languages like C#.

For the remaining sections in this paper, we focus on UML statecharts (Sec-
tion 2) and JaMoPP (Section 3) as example applications of EMFText.

1 see Syntax-Zoo on http://www.emftext.org/zoo

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

74

2 Textual Syntax for UML State Machines

Motivation In Model-driven Software Development (MDSD) many different
modelling, languages are used and new (domain-specific) languages are defined
constantly. The central point of a language definition is its metamodel. It is
usually defined prior to the specification of a syntax. EMFText was developed
to support exactly this scenario, where metamodels exist or are under devel-
opment independent of the concrete language syntax. As an example for an
existing metamodel, we look at UML state charts, which are one part of the
large standardized UML Metamodel [4]. Note that this application exemplifies
the definition of textual syntax for an existing metamodel with graphical syntax
and (EMF-based) tooling.

Overview The CS specification for state charts is based on the metamodel from
[4]. Therefore, a model defined in this syntax, as the one shown in Figure 1, can
be processed in the same manner as a graphically defined state chart. When
modelling with UML, EMFText can be used in collaboration with graphical
UML editors and advantages of graphical and textual syntax can be combined.
As one can see in the outline view on the right side of Figure 1, EMFText tightly
integrates with EMF and reuses the icons for model elements that are also used
in other UML editors. When clicking an element in the outline, the same element
is highlighted in the text. This helps modellers familiar with UML to understand
the textual syntax by exploring existing models (e.g., state charts printed into
the text syntax by EMFText).

Fig. 1. An UML state chart edited in the EMFText editor and the respective model
tree

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

75

3 Models for Java Programs - JaMoPP

Motivation In MDSD models are refined and finally transformed into code us-
ing code generation techniques. While models are well-structured and formally
defined in terms of metamodels, code generation tools (e.g., template engines) of-
ten create plain text that is eventually passed to a compiler to build the software
defined by the input models. This loss of structure implies several drawbacks.
First, there are no guarantees regarding syntactic or semantic correctness. Sec-
ond, it is hard to trace which model elements triggered the creation of which
parts of the code. If errors are found in the code, developers must figure out the
affected parts of the model manually. To close this gap between models and code
for the Java language, we developed Java Model Printer and Parser (JaMoPP)
with the help of EMFText. Based on an Ecore metamodel, which defines the con-
cepts of the Java language, and a CS specification of the Java syntax, JaMoPP
treats Java programs like any other models in MDSD processes.

Overview JaMoPP consists of the aformentioned syntax definition from which
a parser and a printer were generated by EMFText. Furthermore, to resolve
cross-references between elements (e.g., targets of method calls or variable ref-
erences), custom resolvers were implemented to reflect Java’s scoping and refer-
encing rules. For testing purposes, a huge set of test input files (e.g., the Eclipse
source code) was passed to the JaMoPP parser. Figure 2 shows a simple Java
class side by side with its model representation in the outline view.

Fig. 2. A Java class edited using the EMFText editor and the respective model tree

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

76

Acknowledgement

This research has been co-funded by the European Commission within the 6th
Framework Programme project Modelplex #034081, by the German Research
Foundation within the project HyperAdapt and by the German Ministry of
Education and Research within the projects feasiPLe and SuReal.

References

1. TU Dresden: Software Technology Group: EMFText. http://emftext.org (2009)
2. Object Management Group: Human Usable Textual Notation (HUTN) Specifica-

tion. Final Adopted Specification ptc/02-12-01 (2002)
3. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and

Refinement of Textual Syntax for Models. In: Proc. of ECMDA-FA, To appear
(2009)

4. The Eclipse Foundation: EMF-based implementation of UML2 metamodel.
http://www.eclipse.org/modeling/mdt/?project=uml2 (2008)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

77

eXtreme Model-Driven Design with jABC

Demo track ¨Tools and Consultancy¨at ECMDA 2009

Christian Kubczak1, Sven Jörges1, Tiziana Margaria2, and Bernhard Steffen1

1 TU Dortmund, Chair of Programming Systems kubczak, jörges,

steffen@cs.tu-dortmund.de
2 Universität Potsdam, Chair of Software Engineering margaria@cs.uni-potsdam.de

Abstract. eXtreme Model-Driven Design (XMDD) is a new development paradigm

designed to continuously involve the customer/application expert throughout the

whole system’s life cycle. In technical practice, user-level models are succes-

sively enriched and refined from the user perspective, until a sufficient level of de-

tail is reached, at which elementary services can be implemented that solve tasks

at the application level. The realization of the individual services should be typi-

cally simple: they are often based on functionality provided by third-party and by

standard software systems. We demonstrate jABC, a flexible framework designed

to support systematic development according to the XMDD paradigm. jABC

allows (end-)users to develop service-oriented systems by composing reusable

building blocks into flow graph structures. As a case study we present a hetero-

geneous service mashup that makes extensive use of today’s service technolo-

gies like REST or Web services. Furthermore we introduce a temporal logic-

based synthesis approach that automatically delivers process flows that conform

to declarative formal specifications on the basis of semantic information anno-

tated to the service components.

1 eXtreme Model-Driven Design with jABC

eXtreme Model-Driven Design (XMDD) is a new development paradigm designed to

continuously involve the customer/application expert throughout the whole system’s

life cycle. In technical practice, user-level models are successively enriched and refined

from the user perspective, until a sufficient level of detail is reached, where elementary

services, solving tasks at the application level, can be implemented. The realization of

the individual services should typically be simple and are often based on functionality

provided by third-party and standard software systems. As the continuously enriched

model is the central and sole artifact of this methodology, we also call this the ¨One-

Thing Approach¨ [1].

jABC is a flexible framework designed to support systematic development according to

the XMDD paradigm. It allows users to develop service-oriented systems by composing

reusable building blocks into flow graph structures, called Service Logic Graphs (SLG).

The building blocks are called Service Independent Building Blocks (SIBs), and may

represent a single atomic service or also a whole subgraph (i.e. another SLG). Thus

SLGs can be hierarchical, which facilitates the refinement along the lines of the One-

Thing Approach, and which grants a high reusability not only of the building blocks,

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

78

but also of the models themselves, within larger systems. Besides SIBs and hierarchical

SLGs, there are constraints which define the rules of a system and can be verified by

formal methods like model checking. Finally, the modelled SLG can be compiled and/or

synthesized to a running system (see Sect. ?? and Sect. 4.

Furthermore, an extensible set of jABC plugins provides additional functionality that

adequately supports all the activities needed along the development lifecycle.

Typically, we distinguish different roles for the development process, depending on the

various areas of expertise:

– Programming Experts, the software engineers responsible for the software infras-

tructure, the runtime environment for the compiled services, as well as the pro-

gramming of the SIBs.

– Domain Modelling Experts: They build, use, modify and curate the underlying do-

main models, typically in some knowledge basis that can be expressed via ontolo-

gies. These experts classify the SIBs, typically according to technical criteria like

their version or specific hardware or software requirements, their origin (where they

were developed) and according to their intent for a given application area.

– Application Experts: They develop concrete applications just by defining their Ser-

vice Logic structure. This happens without programming: they graphically combine

building blocks into coarse-granular flow graphs (the SLGs) and graphically con-

figure the data path.

End Users may customize a given (global) service according to their needs by

parametrization and specialization.

Fig. 1 shows a screenshot of jABC’s user interface, which can be personalized to

serve all roles named above, except of the programming experts. The GUI consists of

three main parts (indicated by the numbers):

1. the project & SIB explorers, which enable the user to browse available jABC

projects and the library of building blocks that can be used for modelling,

2. the graph canvas, which is used for composing SLGs, and

3. the inspectors, which provide detailed information about selected SIBs and may be

used by plugins to add further functionality.

2 Full Application Code Generation with Genesys

Once the SLG of a jABC application is fully designed and the SIBs are all implemented,

it is ready for deployment. The SLG is transformed into an executable and deployable

piece of code in a desired programming language resp. for a desired target platform.

This is supported by the jABC code generation library Genesys [2], which is available

via a jABC plugin. The library’s philosophy is not to be an ¨all-in-one device suitable

for every purpose¨, but rather to provide readymade, highly specialized and domain-

specific code generators for different target formats like Java, C#, BPEL, Web Services

etc.

If a custom code generator is required for a specific domain, Genesys also offers a

powerful methodology for easily and quickly creating a new code generator. The con-

struction and evolution of the code generation library is itself based on the application

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

79

Fig. 1. The jABC User Interface

of the XMDD paradigm, i.e. that the code generator are not programmed by hand, but

all modelled within jABC. This way developers of new generators immediately bene-

fit from already implemented generators by reusing SIBs as well as whole models. As

currently most of the generators in the library are template-based, the easiest way to

build a new generator often is to simply modify the templates of an existing generator

accordingly. Furthermore, the generators can be easily verified using the jABC verifi-

cation mechanisms, thus assuring a certain quality of the generation process.

In contrast to existing MDSD/MDA code generation frameworks like AndroMDA or

openArchitectureWare, Genesys code generators always produce complete source code,

which does not require any manual editing by a developer. For instance, AndroMDA

mostly produces stubs or skeletons which have to be manually completed in order to be

executable.

This fact is especially due to the limitations of the usage of UML as the modelling no-

tation for most MDSD/MDA frameworks. UML is well suitable to describe technical,

static and infrastructural aspects of a system interesting for programming experts, but

has clear weaknesses when it comes to the dynamic parts, where jABC and Genesys

play to their strengths.

Thus existing MDSD/MDA solutions and jABC/Genesys can perfectly be used in con-

junction to capture the static as well as the dynamic aspects of a system, and to generate

full application source code without the need of manual post-editing.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

80

3 Heterogeneous Service Mashups

When talking about mashups especially in terms of service oriented computing one usu-

ally means the combination of diverse tools from different providers to end up with a

completely new and more powerful application making extensive use of single features

from each reused service. With its intuitive but powerful user interface and modeling

concepts jABC is to combine different technologies of appropriate vendors strictly fol-

lowing the concepts of Service Oriented Architecture (SOA) [3,4,5] and User-Centric

Modeling [1,6].

During demonstration we show how jABC can be used to easily create mashups using

local service components, web services and REST. As a showcase we pick some well

known providers like Google, Amazon, Flickr & Wikipedia.

When talking about mashups especially in terms of service oriented computing one

usually means the combination of diverse tools from different providers to end up with

a completely new and more powerful application making extensive use of single fea-

tures from each reused service. Big internet companies and vendors thereby support

programmers by providing web services like through the Amazon Web Service Devel-

oper Connection 1 or APIs as the Google Web Tool Kit 2. These technologies are easy to

use for programmers on the code level but inappropriate for experts or end users trying

to combine their own special service mashup. To overcome this we use jABC [7,8], a

service oriented framework for graphical orchestration and choreography of tools and

services.

3.1 Service Handling.

As stated in Sect. 1 services within the jABC framework are represented as SIBs which

are grouped together by taxonomic descriptions inside a service library. Each SIB has a

collection of parameters to take input and generate output data (see bottom left corner

of Fig. 2) as well as a set of outgoing branch labels to define the control flow within an

SLG. Typically the implementation of a single SIB is split up into two parts forming

the final service component: A SIB container and a SIB adapter. The whole service

functionality is thereby encapsulated inside the latter. As shown in Fig. 3 the SIB itself

just invokes the appropriate service routine and denominates a corresponding adapter

which can of course serve more than only one SIB. Using this technique it is therefore

possible to group service functionality together into one powerful adapter serving a

whole set of different SIBs. This concept is completely hidden to the end user. Speaking

technically each SIB and each adapter always correspond to an underlying Java class

implementing one or more interfaces depending on the plugin support a component

would like to offer. For example, to make a SIB an executable component one has to

implement a code fragment telling the service what to do when invoked by the runtime

environment. Reusability is one of the main concepts of Service Oriented Architecture

jABC is based upon. Dealing with SIBs like this, the library grows over time leading

to an increasing flexibility of component usage and service mashups. In Sect. 3.2 we

1http://aws.amazon.com
2http://code.google.com/webtoolkit

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

81

Fig. 2. jETI’s web service import process.

show how to import service components with less and partly without programming

knowledge.

3.2 Remote Service Technology.

As briefly described above jABC offers the possibility of application modeling. For

the integration of remote services and tools we introduced jETI [9] as an enhancement

framework to jABC. jETI provides a powerful but easy to use framework to simplify

both, the integration and usage of remote tools and services. Fig. 4 gives an overview

of jETI’s architecture. Tools and services are provided by vendors using a toolserver or

Service Provider Site (SPS) depicted in the top right corner. The components are hosted

on the server and described using an XML formated document. Service provider specify

what command should be executed on the server and which parameters it has to take to

operate successfully. Afterwards the SPS can be registered at a Component Server (CS)

managing a set of toolservers. Thereby a CS handles certificates, policies and general

information about service provision (like locations and redundant services) and acts as

the main interface to the client which in fact is a plugin to jABC. During application

modeling the user is able to browse services hosted on various SPS by using this client

and import SIBs representing the provided tools. These SIBs are thereby generated by

the CS using the tool descriptions stored at the different SPS. Nevertheless sometimes

a service has to be even more open or powerful to be integrated in complex process

flows or service environments. During the last few years REST and web services have

become standard technologies for this purpose. Today most vendors inside the mashup

community provide their functionality as web services to the users.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

82

Fig. 3. SIB adapter concept.

When talking about web services one usually means an application defining its in-

terface by a Web Service Description Language (WSDL) document [10] and handling

communication via SOAP [11]. To handle web services inside jABC the plugin of jETI

offers a set of features. As WSDL is based on plain XML the description is a formal

specification of this service which can be used to automatically generate client site code

to invoke the appropriate functions of an application. To this purpose there exists a set

of toolkits and frameworks. Dealing with Java which is the underlying technology of

jABC and jETI the most common of them are AXIS, AXIS2 and JAX-WS 3. Those

frameworks provide mechanisms to automatically generate client stubs and data type

bindings out of a given WSDL specification. In the following subsections jETI’s capa-

bility to import and export web services based on these three frameworks are described

in detail.

Web Service Import. The basic idea of web service usage inside jABC is to have a

single SIB for each operation a web service provides. As we intend to provide a con-

venient solution jETI offers an automatic import for web services using three different

data binding frameworks underneath (AXIS, AXIS2, JAX-WS). Regarding the con-

cepts of SOA this functionality is not coded from the scratch using Java or any other

programming language but developed under service oriented aspects using the model-

ing framework itself. Modeling the workflow makes the application much clearer to the

developer during implementation and reusing services helps to save time during devel-

opment. The final process is described as follows. Fig. 2 shows the web service import

process modeled inside jABC.

Set WSDL Location, Set Output Package, Set Java Version, Add Web Service to current

project and Set Output Directory. First some input parameters have to be set which is

done using the first five SIBs inside the grey area in the top left corner. The latter is only

needed if the generated SIBs are not imported directly to the current working project.

3http://ws.apache.org/axis, http://ws.apache.org/axis2, https://jax-ws.dev.java.net

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

83

Web Service

Web Service

Web Service

W
S

 I
m

p
o

rt
e

r

WS

RMI

...

Tools

jETI Toolserver

WebDAV Filesystem

jETI Library/Client

Service
Invocation

SIB
Param 1
Param 2

...

jETI Componentserver

Tool Lists

Certificates

SIBs
Certificates

Service Call

Registration

Data

LDAP Authentification

Data

Fig. 4. Architecture of jETI.

Afterwards some temporary directories are created using a trivial subgraph hidden by

the hierarchical so called Graph SIB Create temporary sub directories. As this sub-

structure is just a linear chain of services creating directories on the hard disc it is not

depicted here.

The next Graph SIB (Generate Web Service Handler) encapsulates the generation of

web service handler classes using either AXIS, AXIS2 or JAX-WS. The subgraph is

shown in Fig. 5.

First there is a decision inside Use cascade mode whether to use a specific framework

(this is using the path on the right including Set Generation Framework and Switch-

Framework) or to try a cascading style for choosing a framework. The latter starts

trying the JAX-WS environment and goes down with AXIS2 and AXIS if an error oc-

curs during generation. This could be because of incompatible features a WSDL defines

and cannot be handled equally by every framework for instance.

The generated handler source files are compiled during runtime by Compile using the

Java version defined in the parent graph structure at the beginning of the import process

(see Fig. 2, top left corner).

AXIS and AXIS2 also provide a list of all operations defined inside the WSDL speci-

fication while generating the handler code. As JAX-WS does not, in case of its usage

there has to be a separate parsing of the WSDL done by the ParseWSDL service.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

84

Fig. 5. The subgraph to generate handler stubs.

After retrieving all the operations the subgraph returns to the parent process initializing

to loop iterators by invoking Initialize PortTypeIterator and Initialize ServiceIterator.

The following loop now iterates over all the defined Services and PortTypes inside a

WSDL (usually one of each kind) and pops up a GUI querying the user for input to

specify which operations of a web service to import. This is done by a trivial subgraph

inside Query Operations which is not depicted due to the fact that it just defines a

minimal workflow to show a window containing a list.

During the next step Generate SIBs is invoked. The underlying substructure is shown

in Fig. 6.

First the output packages to generate the SIBs in are defined.

Afterwards the adapter (see Sect. 3.1) classes are generated and compiled containing all

the operations chosen for import before in the parent workflow.

Following the adapter generation the SIB sources are generated inside GenerateSIB-

Source by using API calls to jABC’s SIBCreator plugin.

As each of the used WS frameworks generates single Java objects for a service, a port

type and the operation itself and the SIBCreator provides a single SIB for each of these

classes the next step is to build a linear SLG out of the generated SIBs calling the service

which contains the port type used to invoke the operation. This is done by invoking

BuildWebServiceCallSIBGraph .

Afterwards information about input and output type bindings of the imported web ser-

vice operation is collected and written as annotations inside the generated SIB sources

(StartVelocityEngine and GenerateTypeInformationBaseClass .

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

85

Fig. 6. The subgraph to generate SIBs out of a given WSDL.

The subprocess ends by combing the generated web service call graph into only one

single SIB (CombineSIBGraphs) which is then compiled using the Compile service

once again.

Returning to the parent workflow some output parameters are set (Set Jar Suffix, Set

Jar Prefix and Set Jar Name) and the generated and compile classes are packed inside a

JAR archive invoking PackJAR.

If there are no more port types (which is the usual case as stated before) the gained JAR

is optionally added to the current working project’s classpath (Add JAR to SIB-Path) and

the generated source files are removed if one not wants to explicitly keep them (Keep

generated file, Delete Generic Output Directory).

For a convenient usage of the import mechanism inside jABC, the Genesys plugin

[2,12] is used to generate Java code out of the above workflow which is then triggered

through jABC’s GUI. Therefore a user basically has to provide a WSDL location like

a URL or a file and automatically gets a set of SIBs representing the operations of the

appropriate web service.

Web Service Export. Analogous to the web service import described in Sect. 3.2 jETI

is able to handle web service exports meaning to generate a running web service out of

a modeled process. In general there are two approaches for implementing web services

named code first and contract first:

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

86

Fig. 7. jETI’s web service generation process.

– In a code first approach, some implemented functionality is available that should be

published as a web service. The related WSDL file is ideally generated by the used

web services toolkit or framework like AXIS, AXIS2 or JAX-WS at deployment.

– In a contract first approach, one starts by writing a WSDL by hand or tool-supported

and then generates the web services stubs and skeletons with a generation tool

usually provided by the used framework.

To start using contract first and writing a WSDL document one needs to be at least

familiar with programming concepts and XML syntax while one ends up with source

file stubs to be filled with functional programming code. As jABC is intended to be

used by non-technical users and one usually starts with modeling an application, jETI

only support code first which is accessible as a plugin using jABC’s GUI like the web

service import. The underlying export functionality is again modeled using the jABC

itself. Fig. 7 shows the export process as an SLG.

First, Make Temp Dir creates a dedicated temporary directory for the work of the sub-

sequent SIBs. This is a trivial subgraph like the one used during the above import SLG.

Afterwards the Genesys plugin is used to extrude Java Code out of the modeled appli-

cation invoking Extrude Java Class. The result is a Java class that performs the same

execution of the model as it would be done by the jABC.

As the generated Java class depends on some core jABC libraries Copy jABC Libraries

is used to put them together for the resulting web service.

Copy Project Classpath Entries does the same with user specified libraries needed for

the execution of the modeled workflow.

Finally Copy Project SIB Entries copies all the SIBs used inside the SLG representing

the future web service.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

87

If the web services interface definition contains more than simple XSD [13] types, one

can provide separate XSD type denition documents which is done by the Copy XSD

Resources SIB.

The next steps consist of generating the web service wrapper and main classes (Gener-

ate WS Wrapper and Generate WS Main).

The process is afterwards finished by providing a corresponding Apache ANT 4 script

file (Generate ANT script) containing all the necessary information to start the resulting

web service and by packing the generated files inside a ZIP archive for convenient

provision (Package ZIP Archive).

To clean up the temporary directory Delete Temp Dir is invoked as the final SIB.

The web service generation process results in a complete web service, with all its

sources and dependencies being generated and packed together. As the underlying

framework JAX-WS is used as it not only provides a complete set of web service stubs,

handlers and a WSDL interface description (like AXIS or AXIS2 would of course) but

also contains a minimal but fully working HTTP server to host the resulting service.

Unlike AXIS/AXIS2 where the user has to deploy the final web service onto a dedi-

cated web server, one can easily startup the service by running a command from the

ANT script generated during the export of the service’s SLG.

REST Services. In addition to web services defining their interface by using a WSDL

document a common technology is the concept of Representational State Transfer (REST)

[14]. Web sites, pictures or servlet code can be seen as resources which are accessible

only using a simple URL as direct access is forbidden. Now, if a client, which can be

a browser for instance, navigates to the location, a representation of the underlying re-

source is sent back as an HTML document for example. If this hypertext document

contains links to other document the client could change its status by navigating to one

of them. Therefore using the representation of a resource a transfer of the client’s state

is performed. As REST uses a generic interface based on semantics of the HTTP pro-

tocol there is no formal specification like WSDL for those services. Operations to be

performed are restricted to request the representation of a resource (GET), to create a

new resource (PUT), to add content to a resource like variables (POST) and to remove

a resource (DELETE). Unlike WSDL specified web services REST services in general

provide no formal definitions of their used variables and data format. Integration of such

tools as SIBs within a process therefore assume the user to have a basic knowledge of

their functionality which is usually provided through natural language documentations.

The Google Maps Geocode service 5 takes a natural address and provides the relating

longitude and latitude as a returning string for example whereas the Geonames service 6

takes a latitude and longitude and returns an XML document containing a set of nearby

4http://ant.apache.org
5http://maps.google.com
6http://www.geonames.org

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

88

Fig. 8. Mashup with Google, OpenStreetMaps, Geonames, Wikipedia, Amazon, Flickr.

points of interest with its details. As these information significantly differ from one

service to another integration of REST services inside jABC is done by implementing

SIBs from the scratch invoking the appropriate method with a specific set of variables

and returning and manipulating the data returned by the service.

3.3 Google, Amazon & Co Service Mashup.

This case study mashes up some of todays most used web services on the internet. As

an overview we divide the whole process shown in Fig. 8 into 3 parts:

1. We locate and display an address in Google Maps or OpenStreetMap 7 (services

marked green and yellow).

2. We try to find nearby points of interest (POI) using GeoNames (pink service).

3. Afterwards when clicked on an POI we look for a relating WikiPedia 8 article,

Picture on Flickr 9 and search for likely interesting products on Amazon 10 (red and

blue services).

First a REST service from Google Maps is called to get a geocode location (which is

longitude and latitude) to a given physical address. As the SIB returns a complex type

Location the data encapsulated by this type has to be extracted using the ConsumeLo-

cation SIB.

7http://openstreetmap.org
8http://www.wikipedia.org
9http://flickr.com

10http://www.amazon.com

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

89

Afterwards an OpenStreetMap is displayed inside a window by invoking the REST

service SIB ShowOpenStreetMap.

A waypoint is added to the map at the position from the beginning and the map view is

centered around this point. The next step defines a zoom level for the displayed part of

the map.

While we now see a detailed view of the specified address a REST Service provided

by GeoNames is called returning a given number of interesting waypoints added to the

map within the following iteration. The returned Location types of the POIs also contain

information about relating Wikipedia entries.

After this a special control flow SIB called ForkSIB is invoked. It splits the current

execution into several new threads running parallel at the same time. All these new

execution paths lead to a DefaultListener SIB each waiting for a specified event to

occur inside the map.

The most left wait for a mouse hover on a waypoint inside the map and displays the

name of this waypoint by calling ShowLabel. The second thread wait for a mouse

hover off and hides the previously showed title by invoking HideLabel. The most right

execution path consumes a mouse click on any waypoint reading the data out of the

returned Location type (see above) and opens up a web browser to display the relating

Wikipedia entry.

By executing SearchFlickrPhotos during the next step, a given number of photos tagged

with the title name of the waypoint is returned and diplayed inside the following loop

using viewInBrowser once again.

The last service to call is AWSECommerceServiceItemSearch which is an automatically

imported web service provided by Amazon returning a given number of items on sale

relating to a specified searchRequest. As the latter is also encapsulated inside a com-

plex type (see Location above) a SIB providing it has to be called first ProvideSearchRe-

quest. Same is for the returned item information read out by the ConsumeItemSearchRe-

sponse SIB. All found items are displayed again by invoking viewInBrowser inside an

execution loop. Finally the DefaultListener SIB waits for the next mouse click until the

application is quit by the user or the appropriate event occurs.

After modeling the application as stated above one is able to generate different kinds

of source code or a web service out of it. One could easily extrude machine code for a

mobile handheld for example using jABC’s Genesys code generator plugin and making

extensive use of GPS and other features of a specific device.

3.4 Message.

Using jABC/jETI to implement a mashup like this case study has several advantages

than dealing with todays common technologies like scripting or real programming lan-

guages even if simplified by toolkits and clean APIs.First of all even non programmers

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

90

Fig. 9. An extract of the mouse hover reaction.

can access the technology by graphically designing their appropriate workflows.Second,

once a (web) service was implemented as a SIB or imported into jABC one gains a high

degree of reusability by sharing the SIB library. Any other mashup using single features

of the presented application can fall back on the appropriate SIB without changing a sin-

gle line of code. Third, convertibility of the modeled application is very intuitive and

easy to realize. On the left hand side of Fig. /reffig:hover the three listener SIBs to react

to mouse hover on/off and POI clicks are shown. If one wants to deactivate the mouse

hover effect for instance it is realized just by removing the appropriate branches like

depicted on the right hand side of Fig. 9. Same could be done for changing the flow of

an application by simply make a branch point to another service, for example changing

the mashup to show information about a POI while hovering over a waypoint instead of

clicking it.

A more detailed view on service mashups with jABC and the case study shown above

is currently under review and will soon be published at [15].

4 Synthesizing process flows (Model generation)

jABC features a fully integrated synthesis framework to automatically generate pro-

cess flows by specifying temporal logic constraints. As to show business related service

composition in context of synthesis we will demonstrate our contribution to media-

tion scenarios of the Semantic Web Service Challenge (SWSC) [16] (see workshops

of ECMDA’09) whereas participants have to implement a middle/communication layer

that mediates protocols and data between two business parties.

We show how to automatically generate the SWSC mediators service logic, as a declar-

ative alternative to a typical hands-on approach like Sect. 3. Here we use an LTL model

generation algorithm which works on the basis of the existing jABC library of available

services (SIB library) already introduced in Sect. 1. It uses an enhanced description

of their semantics that is given in terms of a taxonomic classication of their behaviour

(modules) and abstract interfaces/messages (types). The resulting approach is a forward

synthesis algorithm that users can congure to provide the set of shortest, or cycle-free,

or all orchestrations, that satisfy the given LTL specication.

The synthesis tool takes a text le containing the knowledge base as an input: the module

and type taxonomy, the module descriptions, and some documentation for the inte-

grated hypertext system. It is steered from the jABC GUI (see Fig. 1). There, users

can input the SLTL formulas that describe the goal and can ask for different kinds of

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

91

activity name input type output type description

Mediator Maps RosettaNet messages to the backend

startService {true} PurOrderReq Receives a purchase order request message

obtCustomerID PurOrderReq SearchString Obtains a customer search string from the req. message

createOrderUCID CustomerObject CustomerID Gets the customer id out of the customer object

buildTuple OrderID Tuple Builds a tuple out of the id of the orderID and the POR

sendLineItem Tuple LineItem Gets a LineItem incl. orderID, articleID and quantity

closeOrderMed SubmConfObj OrderID Closes an order on the mediator side

confirmLIOperation OrderConfObj PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

searchCustomer SearchString CustomerObject Gets a customer object out of the backend database

createOrder CustomerID OrderID Creates an order

addLineItem LineItem SubmConfObj Submits a line item to the backend database

closeOrderMoon OrderID TimeoutOut Closes an order on the backend side

confRefLineItem Timeout orderConfObj Sends a conf. or ref. of a prev. subm. LineItem

Table 1. The SWS mediation Activities

activity name input type output type description

Mediator Maps RosettaNet messages to the backend

buildTuple Order Tuple Builds a tuple out of the id of the orderID and the POR

closeOrderMed SubmConfObj Order Closes an order on the mediator side

confirmLIOperation Order PurOrderCon Receives a conf. or ref. of a LineItem and sends a conf.

Moon The backend system

createOrder CustomerID Order Creates an order

closeOrderMoon Order TimeoutOut Closes an order on the backend side

confRefLineItem Timeout Order Sends a conf. or ref. of a prev. subm. LineItem

Table 2. The SWS mediation Activities with abstract Order

solutions. The tool produces a graphical visualization of the satisfying plans (module

compositions), which can be executed, if the corresponding module implementations

are already available, or they can be exported for later use. The knowledge basis im-

plicitly describes the set of all legal executions. We call it conguration universe, and it

contains all the compatible module compositions with respect to the given taxonomies

and to the given collection of modules.

The typical user interaction foresees a successive renement of the declarative specica-

tion by starting with an initial, intuitive specication, that asks typically for shortest or

minimal solutions, and using the graphical output for inspection and renement.

The ongoing Sematic Web Service Challenge proposes a number of increasingly com-

plex scenarios for workflow mediation and service discovery. We use here the technol-

ogy presented in [17] 11 to synthesise a workflow that realizes the communication layer

for the Challenge’s initial mediation scenario.

11The referenced publication describing the underlaying technology is provided in addition to

the SWS community.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

92

Fig. 10. The SWS Challenge Mediator Type Taxonomy

Fig. 11. The SWS Challenge Mediator Action Taxonomy

4.1 The concrete mediator workflow.

Of course we can easily define the concrete process within our jABC modelling frame-

work, as we have shown in the past [18]. To provide a more flexible solution frame-

works, especially to accommodate later specification changes on the backend side or

the data flow, we synthesize the whole mediator using the jETI synthesis technology

introduced in [17]. We proceed exactly along the lines already presented in that paper.

As in the example described there, Tab. 1 shows the activities identified within the sys-

tem.

The taxonomies regarding the mediation scenario are shown in Fig. 10 (Type Tax-

onomies) and Fig. 11 (Action Taxonomies).

We ask for a workflow that satisfies the following requirement:

Use the mediator service to produce a Purchase Order Confirmation.

The corresponding formal specification is simple: we need to start the service (activ-

ity startService) and reach the result PurOrderCon (a type). We may simply write:

(startService < PurOrderCon) The jABC process model shown in Fig. 12

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

93

Fig. 12. The synthesised SWS mediator (standard)

resembles very closely the expected required solution.

This is in fact the only solution if we adopt the very fine granular model of the types

shown in Table 1, which is a natural choice given the SWS Challenge problem de-

scription (Here we use the abstract type names to model de facto almost the SOS-level

granularity: we distinguish for instance an OrderID from an OrderConfObject,

modelling the described application domain at the concrete level of single datatypes

and objects - a direct rendering of what happens in the memory and in the heap. This is

however already a technical view.

4.2 Using Abstraction and Constraints.

For a specifier and definer of the business domain it is much more realistic to say that

the activities concerned with orders work on an Order type, which is the business-level

abstraction for these objects and records, and leave the distinctions to a problem-specific

specification of the desired solutions via constraints.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

94

Fig. 13. Using Loose Types: the new solution

The taxonomy design and module specification decides the balance between concrete-

ness and flexibility. In this case we change the definition of the modules that deal with

orders as show in Tab. 2. We can be as concrete as we wish, or as abstract and generic

as we wish, and have a semantics or application domain modelling-driven description

that determines how much flexibility we build in into our solutions. At the one extreme

we have very specific types, as fine granular as an SOS description. Then solutions are

type-determined, and basically render the concrete labelled transition system underly-

ing the manually programmed solution. At the other extreme we exploit looseness in the

taxonomies and in the module descriptions, and the solutions are constraint-determined,

in order to reach the same precision.

No matter the choice, the algorithm covers the whole spectrum, leaving it free to the

application domain designer to determine where to be precise and where to be loose,

leaving space for exploring alternatives.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

95

Fig. 14. Adding a LineItem: the new solution

Loose Solution If we now solve the planning problem with the modified module de-

scription and the original goal, we obtain a much shorter solution, shown in Fig. 13.

This is due to the fact that these module specifications now refer to the abstract type

Order. As a consequence, closeOrderMoon is a suitable direct successor of create-

Order. This solution corresponds to the degenerate workflow where an empty order

is sent. Since in the normal case orders contain items, we need to be more precise in

the specification of the solution, adding constraints. If we just know that the items are

referred to via the LineItem type, we may simply refine our goal as follows:

(startService < LineItem < PurOrderCon)

This way, we have added as additional intermediate goal the use of a LineItem type.

Accordingly, at least one of the activities {addLineItem, sendlineItem} must appear

in the required minimal workflow. We see the result in Fig. 14: the solution coincides

with the previous one till the createOrder activity, then the type mediator buildTu-

ple is added, after which sendLineItem satisfies the intermediate goal. The remaining

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

96

Fig. 15. Adding a Confirmation: the complete loose solution

constraint at that point is simply the reaching of the final type PurOrderCon, which is

done by generating the sequence CloseOrderMediator followed by CloseOrder. This

solution however corresponds only to the first webservice realizing the mediator. There

is a subsequent second service that realizes the confirmation part of the mediator.

To obtain this part as well, we have to specify that we need to see a confirmation, e.g.

as confRefLineItem activity:

(startService < LineItem <

confRefLineItem <PurOrderCon)

This generates the solution of Fig. 15, which includes also the rest of the sequence

shown in Fig. 12.

Configuration Universe In this quite constrained example it is not difficult also to gen-

erate all the possible solutions: the space of all the solution (the configuration universe)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

97

Fig. 16. The Configuration Universe

is shown in Fig. 16.

The synthesis and the SWS case study example presented above is decribed in more

detail in [19].

References

1. Cardoso, J., van der Aalst, W., eds.: Business Process Modelling in the jABC: The One-

Thing Approach. IGI Global (2009)

2. Jörges, S., Margaria, T., Steffen, B.: Genesys: Service-oriented construction of property

conform code generators. Innovations in System and Software Engineering - a NASA Journal

(October 2008)

3. Margolis, B.: SOA for the Business Developer: Concepts, BPEL, and SCA. Mc Press (May

2007)

4. Margaria, T., Steffen, B., Reitenspieß, M.: Service-oriented design: The roots. In: ICSOC.

(2005) 450–464

5. Jung, G., Margaria, T., Nagel, R., Schubert, W., Steffen, B., Voigt, H.: SCA and jABC: Bring-

ing a service-oriented paradigm to web-service construction. In: ISoLA’08, Proc. 3rd Int.

Symp. on Leveraging Applications of Formal Methods, Verification, and Validation (CCIS).

Volume 17., Springer Verlag (October 2008)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

98

6. Margaria, T., Steffen, B.: Agile it: Thinking in user-centric models. In: ISoLA’08, Proc.

3rd Int. Symp. on Leveraging Applications of Formal Methods, Verification, and Validation

(CCIS). Volume 17., Springer Verlag (October 2008)

7. Jörges, S., Kubczak, C., Nagel, R., Margaria, T., Steffen, B.: Model-driven development

with the jABC. In: HVC - IBM Haifa Verification Conference. LNCS, Haifa, Israel, IBM,

Springer Verlag (October 23-26 2006)

8. Margaria, T., Steffen, B.: Service engineering: Linking business and it. IEEE Computer,

issue for the 60th anniversary of the Computer Society (October 2006) 53–63

9. Margaria, T., Nagel, R., Steffen, B.: jETI: A tool for remote tool integration. In: TACAS.

(2005) 557–562

10. : Web Service Description Language. (2008) http://www.w3.org/TR/wsdl.

11. : SOAP. (2008) http://www.w3.org/TR/soap/.

12. Jörges, S., Kubczak, C., Pageau, F., Margaria, T.: Model driven design of reliable robot

control programs using the jabc. In: Proc. EASe ’07. (March 2007) 137–148

13. : XML Schemas. (2008) http://www.w3.org/XML/Schema.

14. Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures

- Doctoral dissertation. University of California (2000) http://www.ics.uci.edu/

˜fielding/pubs/dissertation/rest_arch_style.htm.

15. Kubczak, C., Doedt, M., Margaria, T., Steffen, B.: From programming to planning: An

automatic service mashup approach using jACB/jETI. InTech.org (2009, to be released)

http://intechweb.org.

16. : Semantic Web Service Challenge. (2009) http://www.sws-challenge.org.

17. Margaria, T., Steffen, B.: LTL guided planning: Revisiting automatic tool composition in

ETI. In: SEW: 31st Annual Software Engineering Workshop, IEEE Computer Society Press

(6-8 March 2007)

18. Kubczak, C., Margaria, T., Steffen, B., Nagel, R.: Service-oriented Mediation with

jABC/jETI. Springer Verlag (2008)

19. Margaria, T., Bakera, M., Kubczak, C., Naujokat, S., Steffen, B.: Automatic Generation of

the SWS-Challenge Mediator with jABC/ABC. Springer Verlag (2008)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

99

FURCAS: View Based Textual Modelling

Thomas Goldschmidt1, Steffen Becker1, Axel Uhl2

1 FZI Research Center for Information Technology

Karlsruhe, Germany

{goldschmidt, sbecker}@fzi.de
2 SAP AG

Walldorf, Germany

axel.uhl@sap.com

Abstract. Textual concrete syntaxes for models are beneficial for many reasons.

They foster usability and productivity because of their fast editing style, their us-

age of error markers, autocompletion and quick fixes. Several frameworks and

tools from different communities for creating concrete textual syntaxes for mod-

els emerged during recent years. However, these approaches failed to provide a

solution in general. Open issues are incremental parsing and model updating as

well as partial and federated views. Building views on abstract models is one of

the key concepts of model-driven engineering. Different views help to present

concepts behind a model in a way that they can be understood and edited by dif-

ferent stakeholders or developers in different roles. Within graphical modelling

several approaches exist allowing the definition of explicit holistic, partial or com-

bined graphical views for models. On the other hand several frameworks that

provide textual editing support for models have been presented over recent years.

However, the combination of both principals, meaning textual, editable and dec-

orating views is lacking in all of these approaches. In this presentation, we show

FURCAS (Framework for UUID Retaining Concrete to Abstract Syntax Map-

pings), a textual decorator approach that allows to separately store and manage

the textual concrete syntax from the actual abstract model elements. Thereby we

allow to define textual views on models that may be partial and/or overlapping

concerning other (graphical and/or textual) views.

1 Introduction

Textual concrete syntaxes for models are beneficial for many reasons. They foster us-

ability and productivity because of their fast editing style, their usage of error markers,

autocompletion and quick fixes. Several frameworks and tools from different commu-

nities for creating concrete textual syntaxes for models emerged during recent years.

However, they fail to provide solutions for explicit, textual, editable views as well as

incremental update capabilities needed within Universally Unique Ìdentifier (UUID)-

based modelling environments.

It needs to be distinguished between two different flavours of the term view[1]. View

(I): The definition of what elements are displayed in a certain type of view. This is also

called a view-point. View (II): For the same view-point it might still be necessary to

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

100

have different instances showing the abstract concept on the same level of abstraction

but providing different means of presentation. Therefore, information that are only used

for the presentation need to be stored and managed separately from the actual model.

Within graphical modelling several approaches have been developed that allow to

define explicitly holistic, partial or combined graphical views for models. The Graphical

Modelling Framework (GMF)[2], as part of the Eclipse Modelling Framework (EMF)

provides means to define and generate views for arbitrary metamodels. Furthermore,

these views are not view-only but rather provide functionality to edit the underlying

models through its views. The information on how a specific model element is displayed

in the graphical representation is done using a decorator pattern based approach. The

original decorator pattern is used to non-intrusively, dynamically add functionality to a

class that is wrapped by the decorator. In our concrete case the functionality consists of

information that is added to a model element that describes how it is represented in a

certain view.

This means that the graphical information is clearly separated from the actual model

content, allowing to define different views on the same model elements. Rational Rose

(a UML modelling tool) even showed this separation to the user. If a diagram element

referred to a model element that was not accessible anymore, due to whatever reason,

the diagram element was still shown, however with an indicating small M attached to

it.

On the other hand several frameworks that provide textual editing support for mod-

els have been presented over recent years. Frameworks such as TCS [3] or TEF [4]

allow the definition of textual concrete syntaxes (CTS) for metamodels. TEF even al-

lows the combination of textual and graphical editors [5]. By this, it allows to define

languages that only partially cover a metamodel.

The combination of both principles, meaning textual, editable and decorating views

is currently not supported by any of these approaches. For example, assuming there is

a textual notation for UML, editing the same UML Class using both a graphical editor

and a textual editor, while preserving the layout of both views is not supported. This

means that it is not possible to define views that are on the one hand textual and on the

other hand allow the independent storage and management of their representation.

Furthermore, textual languages in combination with modelling pose further chal-

lenges when a UUID based model repository is employed. Such repositories assign

each element a UUID that remains stable across the lifetime of the element (e.g, the

MOFID in MOF 1.4) [6]. This is problematic if, as it is done in most textual modelling

frameworks [7], model elements are re-created upon re-parsing of the textual represen-

tation. In large scale environments with a high number of model partitions1 and numer-

ous connections between these partitions, such repositories become very important. In

distributed development where developers of one artefact do not always know all refer-

rers from other model partitions to a specific model element it is crucial that elements

have stable IDs. Further advantages of the UUID-based approach can be found in [8].

An initial proposal on how to solve this problem has been published in [9].

1Physical storage units for model elements, such as the Resource concept in EMF

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

101

2 FURCAS

The framework which is presented here is called FURCAS2 (Framework for UUID-

Retaining Concrete to Abstract Syntax Mappings). Two key features distinguish FUR-

CAS from existing text-to-model approaches. First, FURCAS uses a textual decorator

approach that allows to separately store and manage the textual concrete syntax from

the actual abstract model elements (View (II)). Through this separation it also becomes

possible to define different view points (View (I)) on the same model element. Second,

FURCAS provides support for incremental UUID-retaining text to model (parsing) as

well as incremental model-to-text (pretty printing) transformations. This means FUR-

CAS features completely bidirectional and incremental mapping.

2.1 Mapping Definition

Based on the TCS approach [3] for defining mappings for textual modelling languages

FURCAS employs a mapping declaration format that allows to define bidirectional

mappings. The basic constructs that are used in FURCAS are based on the TCS map-

ping language. However, several extensions have been made to enable the language for

incrementality as well as other special needs that occur in large-scale modelling envi-

ronments.

FURCAS allows to use OCL [11] to resolve references within a textual view. This

means that OCL, as a standard language in the modelling world for specifying con-

straints and queries, can be used to define actions (such as type inference) as well as

“refers to” relations within the mapping definition.

Listing 1.1 shows an example for the extended mapping declaration that is used in

FURCAS. Here it can be seen that name based references, such as the to reference of

Class or the name attribute of the TypeAdapter are resolved respectively initial-

ized by using OCL queries.

Furthermore, the query information, which is composed of a query and a where

part can is used by the generic autocompletion as well as the incremental pretty printer.

The autocompletion computes a set of candidates using the query part and uses a mod-

ified, but automatically derived version of the where part to suggest autocompletions

during editing. The incremental pretty printer uses, for cases where no text was present

for a model element, the given information to inversely construct the value that would

have been used to textually reference the pretty printed element. This allows to reuse

the abstractly defined OCL information in all these three different contexts.

2“In demonology, Furcas or Forcas is a Knight of Hell, and rules 20 legions of demons. He

teaches Philosophy, Astronomy (Astrology to some authors), Rhetoric, Logic, Chiromancy and

Pyromancy. Furcas is depicted as a strong old man with white hair and long white beard, who

rides a horse while holding a sharp weapon (pitch fork). He knows the virtues of all herbs and

precious stones, can make a man witty, eloquent, invisible (invincible according to some authors),

and live long, and can discover treasures and recover lost things.”[10].

This actually fits pretty well with the purpose of the framework, meaning the long living UUIDs

and the recovering of model element links based on them.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

102

Listing 1.1. Example mapping definition in TCS/FURCAS

1 template data : : Class main context(root)

2 : (valueType ? ”value”) ”class” name

3 (isDefined(adapters) ? ”implements” adapters{separator=”,”})

4 ”{” ownedSignatures

5 elementsOfType{mode=property}
6 ”}”
7 ;

8 template TypeAdapter

9 : to {refersTo = name,

10 query = ”self .package−>select (c | c.oclIsTypeOf(data : : Class))”

11 where=”c.name = ?”}
12 {{ name = lookIn(” ’From ’ .concat(self .adapted.name).” +

13 ”concat(’ to ’) . concat(self . to .name)”) }}
14 ;

The mapping declaration is also stored using the FURCAS approach and is there-

fore considered a model. This model is then also available at runtime allowing runtime

components such as the incremental parser or the autocompletion processor to access

the language definition. Furthermore, using the bootstrapped version of FURCAS to

edit the mapping declarations themselves enables language developers to use intelli-

gent migration transformations for their syntaxes. Being based on model elements with

UUIDs these migrations are much more safe and controllable.

2.2 Decorator Approach

The approach allows to store all information that is needed to view and edit a tex-

tual representation for a specific model, called domain model while minimizing the

redundancy between both, the textual decorator model, called TextBlocks Model, and

the domain model to an absolute minimum.

The editor that comes with FURCAS is based on the eclipse text editor framework.

However, it does not work on a text document but rather directly on the TextBlocks

model. This means that each editing actions that is performed by the user is mapped

to an action that interacts with this model. This means that the TextBlocks model not

only represents a textual form of the domain model but is also responsible for storing

intermediate (potentially inconsistent) states during the editing process. Figure 1 shows

an overview on the decorator concept. It shows that the text that is visible within an

editor is just a view that is rendered using the TextBlocks model and the domain model.

The FURCAS editor furthermore provides a generic autocompletion capability. The

autocompletion processor uses the mapping definition of the current language to com-

pute the possible completions at a specific place within the editors content. Furthermore,

the OCL queries that are defined within the mapping are re-written to a from that can

be executed using the information that is currently available at the input to get a list of

possible completions at that specific point. Further information on the view concepts of

FURCAS can be found in [12].

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

103

Domain Model (Abstract Syntax Model)

A

B C

TextBlocks Based Docorator Model

Text-

block 1

Text-

block 2

Text-

block 3

Textual View

ModelElement A {

 contains: ModelElement B;

 importantReference B C;

}

View On Decorates

Fig. 1. Overview on the decorator approach.

2.3 Transformations

FURCAS provides transformations that create an initial minimal representation for an

existing domain model and transform this minimal representation into a form that is

editable through our FURCAS editor.

Incremental parsing techniques are used to update the corresponding domain model

from intermediate editing steps. During this transformation sophisticated analysis of the

existing TextBlocks model, its previous versions and its correspondencies to the domain

model are performed to ensure the retainment of model elements during the process. [9]

presents how incremental parsing and editing on a model level is tackled.

Changes to the domain model that are made through another view can be re-synchro-

nized with the textual view using incremental pretty printing. During this process the

current version of the TextBlocks model is checked against the changed domain model.

This process is in a way different than common unparsing/ pretty-printing algorithms as

existing links from the TextBlocks model to the domain model still need to be retained

and maintained to ensure the TextBlocks model still serves as a consistent basis for the

incremental parsing.

3 Example: Type Adapter for a Declaration Language

In this section we provide an example to illustrate the concepts of our approach. The ex-

ample is based on the real-world case study that we are currently doing in cooperation

with SAP AG to evaluate the overall FURCAS approach. However, to keep it under-

standable we only use an excerpt of the full language for illustration purposes. Figure 3

shows an example for the use of the FURCAS editor.

For the sake of simplicity let’s say that the part of the language mentioned here is

quite similar to the syntax of Java. So, it is possible to declare classes which may have

methods. Furthermore, the language explicitly supports associations between classes as

first level entities. An additional concept that is used in this example is that of a type

adapter. A type adapter is used to provide an explicit language construct that allows to

adapt two classes to each other in order to fulfil a certain conformance relation (fol-

lowing the standard adapter pattern). Figure 3 shows a graphical as well as a textual

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

104

Fig. 2. Example of the FURCAS editor.

representation of a type adapter that adapts from “newOrganization” to “Organization”

by providing an implementation of the method “playWithPersistence()” with an adapted

return type from “String” to “Boolean”.

FURCAS is used to generate an editor that allows us to create TypeAdapters

textually. An example for this representation can be seen in Figure 3. Furthermore, the

adapter can be edited in a special view to edit the adapter methods separately. So there

exists one graphical and two different textual syntaxes for the type adapter which allow

the editing of the same adapter model element.

4 Conclusion

FURCAS is a framework that allows to do textual modelling a view based decorator ap-

proach. It facilitates incremental parsing and pretty printing allowing the retainment of

model elements in UUID-based modelling environments. We are currently implement-

ing a version of FURCAS that can be used on top of the Eclipse Modelling Framework.

Further information can be found at http://www.furcas.org.

Future work will deal with improving the incrementality of the approach as well as

the evolution of the mapping declarations.

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

105

class NewOrganization implements Organization {

String playWithPersistence() {

 return "false";

 }

Boolean polymorphismTest(Organization o) {

 return o.playWithPersistence();

 }

 owns Person* persons { ., +=, -= }

}

adapter From_NewOrganization_to_Organization from NewOrganization to Organization {

Boolean playWithPersistence() {

return NewOrganization.playWithPersistence().parseBoolean();

}

}

Fig. 3. Graphical and textual representations of a Type Adapter.

References

1. IEEE: Std 1471:2000 – Recommended practice for architectural description of software

intensive systems. (2000)

2. Eclipse Foundation: Graphical Modeling Framework Homepage. http://www.

eclipse.org/gmf/ (2007) Last retrieved 2008-07-06.

3. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual concrete

syntaxes in model engineering. In: GPCE ’06, New York, NY, USA, ACM Press (2006)

249–254

4. Scheidgen, M.: Textual editing framework. http://www2.informatik.

hu-berlin.de/sam/meta-tools/tef/tool.html (2007) Last retrieved 2008-

07-06.

5. Scheidgen, M.: Textual modelling embedded into graphical modelling. In: ECMDA-FA.

(2008) 153–168

6. Uhl, A.: Model-driven development in the enterprise. IEEE Software 25(1) (2008) 46–49

7. Goldschmidt, T., Becker, S., Uhl, A.: Classification of Concrete Textual Syntax Mapping

Approaches. In: Proc. of the 4th European Conference on Model Driven Architecture -

Foundations and Applications (ECMDA 2008). (2008) 169–184

8. Uhl, A.: Model-driven development in the enterprise. https://www.sdn.sap.com/

irj/sdn/weblogs?blog=/pub/wlg/7237 (2007) Last retrieved 2008-07-06.

9. Goldschmidt, T.: Towards an incremental update approach for concrete textual syntaxes for

UUID-based model repositories. In Gasevic, D., Lämmel, R., Wyk, E.v., eds.: 1st Interna-

tional Conference on Software Language Engineering (SLE). Volume 5452 of Lecture Notes

in Computer Science., Springer-Verlag, Berlin, Germany (2008) 168–177

10. Mathers, S.L.M., Crowley, A.: The Goetia: The Lesser Key of Solomon the King. (1904;

1995 reprint)

11. Object Management Group: Object Constraint Language (OCL) Specification Version 2.0.

OMG Document No 05-06-06

12. Goldschmidt, T., Becker, S., Uhl, A.: Textual views in model driven engineering. In: Pro-

ceedings of the 35th EUROMICRO Conference on Software Engineering and Advanced

Applications (SEAA), IEEE (2009)

5th ECMDA-FA: Proceedings of the Tools and Consultancy Track

106

