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Abstract: Even in introductory textbooks on mathematical proof, intermediate proof steps are generally skipped when
this seems appropriate. This gives rise to different granularities of proofs, depending on the intended audience
and the context in which the proof is presented. We have developed a mechanism to classify whether proof
steps of different sizes are appropriate in a tutoring context. The necessary knowledge is learnt from expert
tutors via standard machine learning techniques from annotated examples. We discuss the ongoing evaluation
of our approach via empirical studies.

1 INTRODUCTION

Our overall motivation is the development of an
intelligent tutoring system for mathematics. Our par-
ticular interest is in flexible, adaptive mathematical
proof tutoring. In order to make progress in this
area it is important to reduce the gap between the ex-
isting formal domain-reasoning techniques and com-
mon mathematical practice. In particular, the step
size (granularity) of reasoning employed in proof as-
sistants and automated theorem provers often does
not match the step size of human-generated proofs.
This hampers their usability within a mathematical
tutoring environment. For example, when the the-
orem prover Otter (McCune, 2003) was used in the
EPGY learning environment for checking student-
generated proof steps, it sometimes verified seem-
ingly large student steps easily, whereas other, seem-
ingly trivial steps were not verified within an appro-
priate resource limit (McMath et al., 2001). This
criticism applies foremost to machine-oriented the-
orem proving systems, for example, systems based
on fine-grained resolution or tableaux calculi. Tech-
niques and calculi that are apparently better suited
in this context include, for example, tactical theo-
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rem proving (Gordon et al., 1979), hierarchical proof
planning (Bundy et al., 1991; Melis, 1999), assertion
level theorem proving (Huang, 1994; Autexier, 2005),
(super-)natural deduction (Wack, 2005), and strategic
proof search (Sieg, 2007). Such techniques reduce the
amount of unnecessary technical details in the gener-
ated proofs, support the application of sequences of
inference steps as tactics or even the direct applica-
tion of entire lemmas in single inference steps (asser-
tion level theorem proving). However, the question
remains how large a proof step shall or may be within
a tutoring context (comprising a particular proof prob-
lem, the didactic goal, and the (assumed) prior knowl-
edge of the student) and how many and which inter-
mediate reasoning steps may be performed implicitly.

To investigate this issue we have analyzed a cor-
pus – the DIALOG corpus (Benzmüller et al., 2006)
– of tutorial dialogs on proofs. This corpus has
been collected in experiments in the DIALOG project
(Benzmüller et al., 2007). Exploiting assertion level
proof search (where each inference is justified by
a mathematical fact, such as a definition, theorem
or a lemma) proofs in this corpus have been recon-
structed and represented formally in the mathemati-
cal assistant systemΩMEGA (Siekmann et al., 2006)2.
The analyzed students’ proof steps generally corre-

2We did not attempt to model erroneous proof steps.



1 We assume (y,x) ∈ (R ◦ S) and show
(y,x) ∈ S−1◦R−1

︸ ︷︷ ︸

Γ

.

2 Therefore,(x,y) ∈ R◦S
3 Therefore,∃zs.t. (x,z) ∈ R∧ (z,y) ∈ S

4(a) Therefore,∃zs.t. (z,x) ∈ R−1∧ (z,y) ∈ S
Tutor: “too small”

∃z : (z,x) ∈ R−1∧ (z,y) ∈ S⊢ Γ
∃z : (x,z) ∈ R∧ (z,y) ∈ S⊢ Γ

De f.Inv.

4(b) Therefore,∃zs.t. (z,x) ∈ R−1∧ (y,z) ∈ S−1

Tutor: “appropriate”

∃z : (z,x) ∈ R−1∧ (y,z) ∈ S−1 ⊢ Γ
∃z : (z,x) ∈ R−1∧ (z,y) ∈ S⊢ Γ

De f.Inv.

∃z : (x,z) ∈ R∧ (z,y) ∈ S⊢ Γ
De f.Inv.

4(c) This finishes the current part of the proof.
Tutor: “too big”

Γ ⊢ Γ(closed)

∃z : (z,x) ∈ R−1∧ (y,z) ∈ S−1 ⊢ Γ
De f.◦

∃z : (z,x) ∈ R−1∧ (z,y) ∈ S⊢ Γ
De f.Inv.

∃z : (x,z) ∈ R∧ (z,y) ∈ S⊢ Γ
De f.Inv.

Figure 1: Proof sample (for the proof problem(R◦S)−1 =
S−1 ◦R−1, where−1 denotes relation inverse and◦ denotes
relation composition) with three alternatives for the fourth
step, together with tutor’s granularity rating (taken fromthe
ongoing experiments), and (partial) assertion level proofre-
construction (as sequent trees).

sponded to one, two or three assertion level proof
steps and very seldomly to four or more. This pro-
vides evidence that the step size of assertion level
proof comes quite close to the proof step sizes ob-
served in the experiments. However, often combina-
tions of single assertion applications are preferred –
even in very elementary proofs.

An example (partial) proof is presented in Fig-
ure 1: the student has already performed steps (1)-
(3) and three alternatives, 4(a)-4(c), for the next step
are investigated. They have been annotated (cf. Sec-
tion 5) by a mathematician concerning their step size.
Below these alternatives we outline parts of the cor-
responding assertion level proofs. Note that the step
consisting of only one assertion level inference has
been annotated as too small. Here the different classes
of step size coincide with different lengths of the asso-
ciated assertion level reconstructions. Our hypothesis
is that such a coincidence generally exists – clearly,
not as simple as here – and that we can learn and rep-

resent it and exploit it for intelligent proof tutoring.
To confirm this hypothesis we are currently perform-
ing an empirical study which we discuss in this paper.

In Section 2 we present our modeling technique
for classifying the step size of proof steps in a tutoring
context. Our approach uses data mining techniques to
generate models from samples of proof steps which
have been annotated by human experts. Our system
can be used in the diagnosis of student steps (to de-
tect whether a student proceeds with unusually small
or unexpectedly large steps (Schiller et al., 2008)),
or for the presentation of proofs at a particular level
of detail (Schiller and Benzmüller, 2009). In order
to facilitate and support the collection of annotated
sample proofs, we have developed a dedicated, new
system environment, which is motivated in Section 3
and presented in Section 4. We report on an ongoing
empirical study using this new environment in Sec-
tion 5. Key questions of this ongoing study are: (i)
How well can we model the judgments of the expert?
(ii) How much do judgments differ among various ex-
perts? (iii) How well do learned models transfer to
other domains? (iv) What are (empirically) relevant
properties for classifying the step size of proof steps?
We present a summarizing discussion of our approach
in Section 6.

2 GRANULARITY AS A
CLASSIFICATION PROBLEM

As the basis of our approach to granularity, we hy-
pothesize what properties of compound proof steps3

may be relevant to judge about their perceived step
size. As a result of reviewing our DIALOG corpus
of proofs (Benzmüller et al., 2006), we identified the
following key features (among others):
• How many different concepts (mathematical

facts, such as a particular definition or theorem)
are involved within the same compound step?
(featureconcepts)

• How many (assertion level) inferences does a
compound step correspond to? (featuretotal)

• Are the employed concepts mentioned explicitly?
(featureverb)

• Is the student familiar with the employed con-
cepts of the compound step? (featuremas-
tered/unmastered)

3We use the notioncompound proof stepin the following
for any proof step, including those that can be decomposed
into the application of several individual inferences - which
is not the case for (atomic) proof steps such as single natural
deduction inference applications.



1. total∈ {0,1,2} ⇒ “appropriate”
2. unmastered∈ {2,3,4} ∧ relations∈ {2,3,4} ⇒

“step-too-big”
3. total∈ {3,4} ∧ relations∈ {0,1} ⇒ “step-too-

big”
4. unmastered∈ {0,1} ⇒ “appropriate”
5. ⇒ ”appropriate”

Figure 2: Sample rule set generated using the data mining
tool C5.05 on sample data. Rules are ordered by confidence
for conflict resolution.

• What theories do the employed concepts belong
to (e.g. naive set theory, algebra, topology)? (fea-
turessettheory, algebra, topology, etc...)
Respective feature observations can easily be ex-

tracted from assertion level proofs4. We also employ
a simple student model to keep track of the concepts
the student is (presumably) already familiar with.

We treat the decision whether a particular step
is of appropriate granularity as a classification prob-
lem. Given the properties of a particular step (as
a collection of its features) we use a classifier (a
mapping of feature vectors to class labels) to as-
sign one of the three labelsappropriate, step-too-
big and step-too-smallto it. As classifiers, we use
rule sets, which are learned from annotated sam-
ples. As an example of such a rule set, consider
Figure 2. All our features are numeric, e.g.,un-
masteredcounts the number of concepts we assume
the student is not yet familiar with,total counts
the number of assertion level inference applications,
etc. For example, the proof step 4 (b) in Figure 1,
which results in a feature vector (concepts:2, total:1,
verb:false,mastered:0,unmastered:1,relations:1, ...)is
assigned the labelappropriatevia the rule set in Fig-
ure 2 (the first rule fires). Such rule sets can be gen-
erated from annotated samples via data mining tools,
such as C5.05.

3 PREVIOUS EMPIRICAL DATA
COLLECTION AND LESSONS
LEARNED

The DIALOG corpus collected data from proof-
tutoring dialogs. In these dialogs human tutors
(mathematicians) were asked to judge the step size

4Even though the approach is generally not limited to
assertion level proofs, we use this proof representation in
our study for convenience.

5Data Mining Tools See5 and C5.0:http://www.
rulequest.com/see5-info.html

of each student proof step, resulting in a corpus
with granularity annotations. This was then used for
evaluating the classification approach outlined above.
Using standard data-mining tools (e.g. C5.0 and
Weka6), we generated classifiers from the data and
estimated their performance (as reported in (Schiller
et al., 2008)). However, it became apparent that
for an in-depth study of granularity, more focused
studies are needed since (i) both the students and
the wizards were experimental subjects, and the
resulting interactions were more geared towards the
identification of specific phenomena rather than a
controlled experiment, and (ii) both parties were
allowed to use natural language freely, which resulted
in a large variety of surface realizations of proof
steps, often including comments and questions,
which may have had an influence on the judgments of
the tutors. Consider for example the dialog fragment:

Student:(R ◦ S)−1 = {(x,y)|(y,x) ∈ R ◦ S} =
{(x,y)|∃z(z ∈ M ∧ (x,z) ∈ R−1 ∧ (z,y) ∈
S−1)} = R−1◦S−1

. Can I do it like that?

Tutor: That’s a little too fast. Where do you take
the second equality from?

By adding the question to the equation, the student
reveals uncertainty, which might have effected the
tutor’s judgment and reaction to some degree.

4 A SYSTEM ENVIRONMENT
FOR EMPIRICAL PROOF
GRANULARITY STUDIES

The idea of our new environment is to better con-
trol the parameters pertaining to the student, in order
to more accurately observe their effects on the judg-
ments of the tutor. Therefore, we simulate the student,
using: (i) assertion-level proof search inΩMEGA, (ii)
pattern-based generation of simple natural-language
output, (iii) randomization of proof step output (pro-
ducing compound steps of random size, counting as-
sertion level inferences, and randomizing whether
concept names are explicitly named, or only the re-
sulting formulae are displayed), (iv) automatic collec-
tion of all relevant data, including the proof step out-
put, the names of the employed assertion level infer-
ences, the corresponding granularity features, and the
corresponding granularity judgments from the tutor.

The expert providing the granularity judgments
uses the interface in Figure 3. It presents the proof

6http://www.cs.waikato.ac.nz/ml/weka/



Proof Step Output Inferences Granularity Feature Vector Judgment

We assume(y,x) ∈ (R◦S)−1 and show
(y,x) ∈ S−1 ◦ R−1...because of defini-
tion of equality and definition of subset

Def.⊆,
Def.=

hypintro:1, total:2, concepts:2, verb:1, ...appropriate

Therefore,(x,y) ∈ R◦S Def. Inv. hypintro:0, total:1, concepts:1, verb:0, ...appropriate

Therefore,∃zs.t. (x,z) ∈ R∧ (z,y) ∈ S
...because of relation composition

Def. ◦ hypintro:0 ,total:1, concepts:1, verb:1, ...appropriate

Figure 4: Sample of the data collected in our study.

Figure 3: The data collection environment interface. Proofs
are presented stepwise. For each step, the display reminds
the user of the theorem to be proven and the previous steps
in the proof. The user is requested to provide a granularity
rating for the step under consideration.

step output and collects the expert’s judgments. The
expert may deny the judgment for a particular step,
in which case a different option is presented. When
combining several inference steps to a compound
step, only inference steps of the same direction (either
forward, or backward) are combined, a phenomenon
which we clearly observed in the DIALOG corpus.
The knowledge and mastery of the simulated student
– relative to which the expert has to provide the gran-
ularity judgments – is determined by the formal rep-
resentation of the proof exercise (including relevant
definitions and lemmas) provided toΩMEGA and cor-
responding entries in the student model. At the start
of each exercise (and during the exercise on request),
the expert is provided with a list of concepts the (sim-
ulated) student is supposed to know, and a list of con-
cepts the student is supposed to learn. Figure 4 shows
a sample of collected data.

5 AN EMPIRICAL STUDY ON
GRANULARITY

Our approach to granularity relies on two assump-
tions which we investigate empirically:

• We assume that we need an adaptive approach
to granularity, which learns from human experts.
The experiments reported in (Benzmüller et al.,
2006) hinted at the possibility that experts do not
always agree with respect to what step size they
consider appropriate. We want to compare sam-
ples from different experts with tutoring experi-
ence and examine the inter-rater reliability.

• We assume a set of features which we con-
sider relevant for classifying granularity (cur-
rently around twenty features plus indicator fea-
tures for each theory and each concept). Our goal
is to evaluate (i) which features are most salient,
and (ii) what features are potentially relevant?

Therefore, we perform an empirical study, where sev-
eral mathematicians with tutoring experience judge
proof steps presented to them via our data collection
environment. Exercises are taken from the fields of
naive set theory, relations (such as our running ex-
ample), and topology. The recently conducted first
experiment session, where a mathematician judged
135 proof steps using our environment, will be fol-
lowed by sessions with two or three further experts,
so that differences in their judgment can be examined.
The mathematical experts are not instructed about as-
sertion level proofs and the features we use in our
classification before completion of the experiment, to
avoid an artificial bias. Afterwards, we discuss our
approach with the experts to obtain additional feed-
back. The annotated proof steps are then used to gen-
erate classifiers for granularity, and to evaluate their
performance using data mining tools (also concern-
ing the question which features of the proof steps are
most useful for the classification task).



6 DISCUSSION

Granularity is a challenging topic in artificial in-
telligence and education, both from a theoretical
viewpoint (e.g. (Hobbs, 1985; Keet, 2008)) but also
in several applications, for example in the computer-
assisted teaching of programming skills (Mccalla
et al., 1992), or in the modeling of biological infor-
mation systems (Keet, 2008).

In this paper, we have sketched a flexible, adap-
tive approach for modeling and assessing proof step
granularity. It is based on the collection of empiri-
cal data from the observed behavior of expert tutors,
which is then modeled via artificial intelligence and
data mining techniques. These models for granular-
ity can be generated independently of whether the ex-
perts are able to introspect or justify their judgments.
The learnt classifiers serve to imitate the mathemat-
ical practice of the experts (pertaining to granular-
ity) when used within an intelligent tutoring system.
An alternative approach would be to establish an ex-
plicit best practice of judging proof step granularity
by openly engaging tutoring experts in the discus-
sion of the involved cognitive dimensions. It remains
debatable which of the two approaches is more ade-
quate for building a granularity-informed proof tutor-
ing system, and we consider our work and our system
environment as a fruitful first step in both directions.

Future work will address the questions raised in
the introduction. Among other things this is depen-
dent on the successful completion of our ongoing ex-
periments.
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