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Abstract    

Current processors provide high performance through parallelism by integrat-
ing more and more computational cores on a single chip instead of increasing the 
clock rate. This is true for both the CPU (multi-core of up to 8 cores) and even 
more so for the GPU (many-core of up to 240 cores). GPUs are still being pro-
grammed in vendor specific languages (like Nvidia’s CUDA) but cross-vendor 
initiatives like OpenCL will allow for providing performance on a standard desk-
top PC that was previously only possible on supercomputers. With is upcoming 
Larrabee processor, Intel goes one step further and tries to combine the concepts 
and advantages of multi-core CPUs with that of many-core GPUs. It moves the 
entire rendering process into software providing more flexibility to realtime graph-
ics applications like games or visualization applications. 

In this paper we present a highly parallel System consisting of the completely 
new Realtime Ray Tracing engine „RTfact“ and the Realtime Scene Graph 
„RTSG“ that allow making good use of modern parallel hardware. RTfact acceler-
ates rendering via ray tracing to the point where it can be used for interactive Vir-
tual reality applications, while RTSG allows for flexible and high-level descrip-
tions of 3D environments on the basis of the X3D standard that enable the 
description of 3D objects and their behavior. RTSG is thus the interface between 
Virtual Reality systems and a number of different rendering modules that includes 
ray tracing as well as fast rasterization via the OGRE library. 

RTSG currently is the fastest X3D browser that optimally supports construction 
and design decisions through high image quality, exceptional visual realism, as 
well as the high degree of detail in scenes. 

Introduction 

One application area for Virtual Reality (VR) applications is he support for visual 
decision making for design, product development, as well as architectural visuali-
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zation. Those use cases need the ability to accurately visualize the object proper-
ties such as the type of material, roughness, color, shape, or curvature. This in turn 
requires an accurate simulation of the illumination in an environment, possible 
from many light sources. 

Current VR systems mostly use classical rasterization techniques to generate 
images. However, in contrast to computer games where the content development 
and optimization of visual display may require several man years, VR applications 
must be able to display and interact with a 3D scene almost immediately and es-
sentially without much preprocessing or manual tuning of scene and display pa-
rameters. Even though, the results must abide to even higher standards, as the dis-
played images should not only look nice but are the basis for possibly far reaching 
decision – and therefore should be reliable and correct. 

This is where traditional rasterization technology reaches its limitations, despite 
its high, hardware-accelerated rendering performance: The predefined graphics 
pipeline (Möller und Haines, 2002) makes it hard to flexibly use it also for other 
rendering techniques. Most of the available techniques put visual effects before 
physical realism, and the development effort as well as the rendering cost in-
creases tremendously when realism for arbitrary scenes must be supported. A 
good example is Nvidia’s demo “Medusa” (Golem, 2008), which requires a total 
of 120 separate rendering passes per frame. 

 

      
     Figure 1: Ray tracing of realistic reflections of glass and varnish surfaces 

 
Realtime Ray Tracing (Wald, 2001) is an alternative approach to rasterization 

that supports the physically correct simulation of illumination, reflection, hard and 
smooth shadows, dynamic light sources, and measured materials and luminaires. 
The resulting images are of high visual quality and with good input data hard are 
hard to distinguish from reality (Figure 1). However, ray tracing has very high 
computational demands that are not supported by specialized hardware. 
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The Realtime Ray Tracing Engine „RTfact“ 

Modern CPUs offer high performance through parallelism in the form of many 
cores and SIMD (Single Instruction Multiple Data) processing, which makes them 
well suited to accelerate ray tracing. New algorithmic approaches replace the pre-
defined graphics pipeline by the flexibility and modularity of software that enables 
new kinds of visual realism. SIMD instructions are most effective when many 
similar computations have to be done simultaneously. We can exploit this by trac-
ing an entire packet of rays together instead of individual rays because similar rays 
typically require very similar computations. However, the implementation of these 
advanced ray tracers is significantly more complex, these SIMD instructions must 
still be manually coded due to limitations in current C/C++-Compiler that have 
difficulties to automatically convert code to SIMD form. Instead, a programmer in 
the past had to code the core algorithms as well as the individual shaders in what 
is essentially assembly level programming using so called “instrinsics”. Such ray 
tracing application were fast but inflexible, hard to extend, and largely non-
portable to new processor versions. More flexible software approaches using 
common object-oriented design techniques and external libraries simplify pro-
gramming but suffer significantly in performance. 

The goal of the newly developed ray tracing engine “RTfact” (Georgiev, 2008) 
was to maximize performance on modern CPUs as well as GPUs without com-
promising flexibility. RTfact is no complete rendering system but a template C++ 
library that offers building blocks for the assembly of optimized and well adapted 
ray tracers. Through the use of C++ temples we combine the performance of 
SIMD code with the flexibility of object-oriented programming. However, in con-
trast we typically separate the algorithms from the concrete data representations 
that would normally put into the same class into separate template constructs 
(“concepts”), which follows the design principles used by the STL and Boost C++ 
libraries. 

However, the result is no longer a binary ray tracing library but a set of source 
code files from which the compiler selects and combines the suitable features dur-
ing compile time, based on very high level C++ template instantiations. This code 
is then automatically inlined into big basic blocks, which would be hard to write 
and maintain by hand but which offer great optimization opportunities for a com-
piler. In order to still provide traditional binary interfaces and shared libraries 
(DLLs), we create preconfigured binary libraries that cover the most used and op-
timized applications scenarios. For other cases the developer can directly use the 
original templated interface. 
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The Ray Tracing Scene Graph „RTSG“ 

The ray tracing engine RTfact offers rendering functionality on a level comparable 
to OpenGL or DirectX. However, most applications including VR systems prefer 
to work on higher level of abstractions – so called scene graphs. They allow for 
organizing a 3D scene using a set of hierarchically organized elements (e.g. geo-
metric objects, light sources, cameras, sensors, etc.) instead of working with low-
level API calls. For OpenGL there exist a number of scene graph libraries, such as  
OpenSceneGraph (Kuehne et al., 2007), or OpenInventor (Wernecke, 1994). 

The significantly different rendering approaches makes it largely impossible to 
integrate RTfact with any of them as they have been optimized for OpenGL-style 
rendering that is hard to emulate in a ray tracing engine. The resulting system 
would be too inefficient and slow to support realtime VR applications (Dietrich, 
2004). Instead we designed a new scene graph better suited also for ray tracing. 
The resulting library RTSG is based on the ISO standard “X3D” (Kloss et al., 
2009).  

The current version supports both RTfact for ray tracing as well as the “Object-
Oriented Graphics Rendering Engine (OGRE)“ (Junker, 2006) which in turn uses 
OpenGL und DirectX for rendering. The programming interface of RTSG is based 
on the “X3D Scene Access Interface” (SAI) and is completely renderer agnostic. 
This level of abstraction also allows for creating hybrid rendering systems that si-
multaneously talk to multiple renderers and may even combine their results. No 
changes are required in the application as the rendering configuration can be 
specified in a separate application-independent configuration. Despite its separa-
tion between scene graph and rendering RTSG today is clearly one of the fastest 
X3D viewers available. 

The Distribution Framework “URay” 

RTSG and in particular RTfact are able to fully exploit the computational 
power of a PC but for very large scenes and highly realism the processors of a sin-
gle PC may not be sufficient. In those cases it would be advantageous to be able to 
also exploit the capacity of other computers in the form of an on-the-fly or dedi-
cated cluster of PCs. For that purpose we developed the “URay” framework (Rep-
plinger et al., 2008) that can distribute and synchronize the computation across the 
Internet. This framework is based on the “Network-Integrated Multimedia Mid-
dleware (NMM)” (Lohse et al., 2008) operating on distributed flow graphs (see 
Figure 2). 
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Figure 2: Example of a NMM flow graph within URay 

 
The nodes of this graph represent individual processing steps (like ray tracing, 

tone mapping, or display) and can be distributed across multiple machines. For 
distributed rendering, a master node splits the frame buffer into tiles that are sent 
to a number of rendering nodes, which are typically separate machines so we can 
use all of their combined computational power. The resulting tile of pixels data are 
finally composited and displayed in additional nodes.  

URay offers a large number of rendering and display options, including dis-
playing the same image on multiple displays or tiling the display independently 
from the tiling used for rendering, or full stereo across all displays. Additional im-
age processing nodes can be inserted in the flow graph to perform operations such 
as tone mapping, image warping, edge blending, and others. All displays can be 
synchronized across the network using NMM’s built-in high-quality distributed 
synchronization framework. This general distributed rendering approach makes 
use of the fact that pixels are independent in ray tracing, which leads to a highly 
efficient and linearly scalable distribution approach. 

Integrating Ray Tracing into a VR System 

The software architecture of established VR systems, e.g., Lightning (Bues et 
al., 2008) or VR-Juggler, generally consists of three layers: an application and in-
teraction layer (high-level), a scene graph system (mid-level), and a rendering 
layer (low-level). State-of-the-art systems based on rasterization mainly use 
OpenGL for low-level rendering libraries because of its platform independence 
and wide hardware support. The layer above, responsible for graphic abstraction 
and organization, usually uses classic scene graphs mostly on an OpenGL base, 
such as OpenSceneGraph or OpenSG. Only the application development on the 
top layer discriminates between the concepts of different VR systems, in this way 
defining their target group.  
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To integrate realtime ray tracing into an existing VR system, one can theoreti-
cally begin on any of the three layers. However, the application layer should re-
main unchanged because a change of this layer would affect all existing and future 
applications on the VR system and would necessitate writing them anew.  

Using a rendering engine for realtime ray tracing inside the rendering layer in-
stead of an engine based on OpenGL must fail in practice (as described in Section 
3). The reason for this is that the structure of the scene graphs used is unsuitable 
for a reasonable integration of ray tracing (Rubinstein, 2005). Our approach within 
the VR system Lightning therefore uses the scene graph RTSG, which is com-
pletely independent of a specific rendering technology and supports both ray trac-
ing and rasterization. RTSG already includes the ray tracing engine RTfact, as 
well as the rasterization engine OGRE.  

The rendering specific components of the scene graph OpenSceneGraph origi-
nally used by Lightning are completely replaced by RTSG in our approach. Figure 
3 shows the applied architecture and the different levels of integration. 

 

     
Figure 3: Architecture of a classic VR system (left) and the integrated system 
(right)  

 
RTSG implements the X3D standard, providing standardized interfaces for an 

easy integration into existing VR and visualization systems. X3D also provides in-
terfaces for powerful languages for defining application logic, for instance by the 
scene authoring interface (SAI).  

In a typical VR system, there are many different possibilities for the realization 
of application logic. For example, the VR system Lightning has a C++ and a 
TCL/TK script interface. The developer has to decide on which level applications 
or components of application should be defined.   

The proposed approach separates the application logic into two fundamental 
areas:  object related components that can be directly assigned to the behavior of 
an object within the scene (e.g., a traffic light pre-emption). Components spanning 
different objects define the behavior of the entire system (e.g., traffic simulation). 
The previous ones are implemented directly in X3D and can be reused in different 
applications, while the latter are developed on the level the VR system.  
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Conclusions and Future Work 

Through the development of multi core processors that can be programmed flexi-
bly, ray tracing is a genuine alternative to image rendering using graphic boards. 
In VR applications, ray tracing provides an inherent image quality and a degree of 
realism that the classic methods cannot achieve without enormous effort. Today’s 
flexible hardware increasingly dissolves the borders between rasterization and ray 
tracing. This makes hybrid systems imaginable benefit from the advantages of 
both approaches.  

The integration described above shows that the use of ray tracing in immersive, 
interactive applications with a justifiable amount of hardware. However, there is 
still a need for high performance clusters to achieve a smooth interaction and reac-
tion of the system. The possibilities of visualizing applications with highly dy-
namic scene content are currently very limited, though the image quality is high.  

The big breakthrough is probably only to be expected when ray tracing can be 
used by computer games on desktop computers and is integrated into common 
graphic drivers or development libraries, respectively.  
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