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Abstract. We present an extension of the first-order logic sequent cal-
culus SK that allows us to systematically add inference rules derived
from arbitrary axioms, definitions, theorems, as well as local hypotheses
– collectively called assertions. Each derived deduction rule represents a
pattern of larger SK-derivations corresponding to the use of that asser-
tion. The idea of metadeduction is to get shorter and more concise formal
proofs by allowing the replacement of any assertion in the antecedent of
a sequent by derived deduction rules that are available locally for prov-
ing that sequent. We prove the soundness and completeness for atomic
metadeduction, which builds upon a permutability property for the un-

derlying sequent calculus SK with liberalized δ
+

+

-rule.

1 Introduction

In spite of almost four decades of research on automated theorem proving, mainly
theorems considered easy by human standards can be proved fully automatically
without human assistance. Many theorems still require a considerable amount
of user interaction, and will require it for the foreseeable future. Hence, there
is a need that proofs are presented and ideally constructed in a form that suits
human users in order to provide an effective guidance.

To come close to the style of proofs as done by humans, Huang [8] introduced
the so-called assertion-level, where individual proof steps are justified by axioms,
definitions, or theorems, or even above at the so-called proof level, such as “by
analogy”. The idea of the assertion-level is, for instance, that given the facts
U ⊂ V and V ⊂ W we can prove U ⊂ W directly using the assertion:

⊂Trans: ∀U.∀V.∀W.U ⊂ V ∧ V ⊂ W ⇒ U ⊂ W

An assertion level step usually subsumes several deduction steps in standard
calculi, say the classical sequent calculus [7]. To use an assertion in the classical
sequent calculus it must be present in the antecedent of the sequent and be
processed by means of decomposition rules, usually leading to new branches in
the derivation tree. Some of these branches can be closed by means of the axiom
rule which correspond to “using” that assertion on known facts or goals.

Huang followed the approach of a human oriented proof style by hiding de-
composition steps once detected by abstracting them to an assertion application.
Since he was mainly concerned with using the abstract representation for proof
presentation in natural language [8, 6] there was no proof theoretic foundation
for the assertion level. Hence, assertion level proofs could only be checked once
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expanded to the underlying calculus, and the actual proof had still to be found
at the calculus level and only proof parts of a specific form could be abstracted.

More recently, work was devoted to analyze the assertion-level proof theo-
retically: [10] defined supernatural deduction that extends the natural deduction
calculus by inference rules derived from assertions and showed its soundness and
completeness. This work was extended to the classical sequent calculus in [5]
to obtain the superdeduction calculus. However, both approaches are restricted
to closed, universally quantified equations or equivalences and the premises and
conclusions of the derived inference rules are restricted to atomic formulas. In
this paper we extend that work to derive and use inference rules from arbitrary
formulas, including non-closed formulas such as local hypotheses, but still allow
only for atomic premises and conclusions. Hence the name atomic metadeduction.
Compared to [5] we use a different meta-theory based on a sequent calculus with

a liberalized δ-rule (δ++

, [4]) which enables the necessary proof transformations
to establish soundness and completeness.

The paper is organized as follows: In Sec. 2 we present a minimal sequent
calculus for first-order logic with liberalized δ++

-rule and give two permutability
results due to the use of that rule. In Sec. 3 we present the technique to compute
derived inference rules from arbitrary assertions. In Sec. 4 we prove the sound-
ness and completeness of the calculus using derived inference rules, define the
metadeduction calculus and prove that the rule that allows us to move assertions
from sequents to the inference level is invertible, i.e. we do not lose provability
by applying it. We conclude the paper by summarizing the main results and
comparing it to related work in Sec. 5.

2 Sequent Calculus with Liberalized Delta Rule

The context of this work is first-order logic. First-order terms and atomic for-
mulas are build as usual inductively over from functions F , predicates P and
variables V . The formulas are then build inductively from falsity ⊥, atomic for-
mulas, the connective ⇒ and universal quantification ∀. For the formal parts of
this paper we use the restricted set of connectives, but also the other connectives
for sake of readability. Finally, syntactic equality on formulas is modulo renaming
of bound variables (α-renaming) and denoted by =. Our notion of substitution
is standard: A substitution is a function σ : V → T (Σ,V) which is the identity
but for finitely many x ∈ V and whose homomorphic extension to terms and
formulas is idempotent. We use tσ to denote the application of σ to t.

The sequent calculus for first-order logic is given in Fig. 1 is mostly standard.
The specificities are: (i) The axiom rule Axiom is restricted to atomic formulas;
(ii) the ∀L-rule allows us to substitute terms with free variables to postpone
the choice of instances; (iii) there is a substitution rule Subst to substitute free
variables globally in the derivation tree; the idempotency of substitutions ensures
the admissibility of the substitution; (iv) the ∀R-rule uses Skolemization with
an optimization regarding the used Skokem-function: Standard Skolemization
requires that the Skolem-function f is new wrt. the whole sequent and takes
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Axiom
Γ, A ⊢ A, ∆

A atomic ⊥L
Γ,⊥ ⊢ ∆

ContrL

Γ, F, F ⊢ ∆

Γ, F ⊢ ∆

⇒L

Γ ⊢ F, ∆ Γ, G ⊢ ∆

Γ, F ⇒ G ⊢ ∆
⇒R

Γ, F ⊢ G, ∆

Γ ⊢ F ⇒ G, ∆

∀L

Γ, F [t/x] ⊢ ∆

Γ, ∀x.F ⊢ ∆
t term that
may contain
free variables

∀R

Γ ⊢ F [f[∀x.F ](
−→
Z )/x], ∆

Γ ⊢ ∀x.F, ∆

where
−→
Z = FV(∀x.F )

Subst x
σ
→ t if σ substitution

Fig. 1: The Sequent Calculus SK with liberalized δ++

-rule and Skolemization

as arguments all variables that occur free in the sequent. Contrary to that we
use the even more liberalized δ++

approach [4]: when eliminating the universal
quantification for some succedent formula ∀x.F , first it allows us to take the
same Skolem function for all formulas that are equal modulo α-renaming to
∀x.F ; such Skolem-functions are denoted by f[∀x.F ] where [∀x.F ] denotes the set
of all formulas equal to ∀x.F . Secondly, the arguments to the Skolem function
are only those variables that actually occur freely in ∀x.F . The result of using
the δ++

-approach is that ∀R for some sequent Γ, ∀x.F ⊢ ∆ is invariant with
respect to different Γ and ∆, and that it allows for shorter and also more natural
proofs (see [11] for a survey and [12] for soundness and completeness proofs1).
The Cut-rule Γ⊢F,∆ Γ,F⊢∆

Γ⊢∆ is admissible for this sequent calculus, that is every
proof using Cut can be transformed into a proof without Cut.

For every rule, any formula occurring in the conclusion but not in any of
the premises is a principal formula of that rule,2 while any formula occurring
in some premise but not in the conclusion is a side formula. All rules have the
subformula property, that is all side formulas are subformulas of the principal
formulas (or instances thereof).

Permutability. The use of the liberalized δ++

-rule (∀R) allows for a spe-
cific permutability result on proof steps. The observation is that applying it to
Γ ⊢ ∀x.F, ∆ the used Skolem function and variables used as arguments only
depend on the formula ∀x.F and variables that occur free in it. Hence, if we
always introduce new free variables in ∀L-applications and postpone the appli-
cation of Subst to the end of any proof attempt (only followed by Axiom-rule
applications), the chosen Skolem-functions and their arguments only depend on
F and any previous ∀L-applications to a formula of which ∀x.F is a subformula.
As a result the ∀R-step with principal formula ∀x.F can be permuted with any
proof step having a principal formula that is “independent” from ∀x.F . More
generally, any two successive rule applications with principal formulas that are
“independent” of each other can be permuted (cf. Lemma 2.3 in [3])).

1 [12] who uses explicit variable conditions instead of Skolemization and substitution,
but the same Eigenvariable for all syntactically equal formulas.

2 For ContrL, F is the principal formula and its copy in the premise a side formula;
for Axiom both A are principal formulas and so is ⊥ in the rule ⊥L.
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Given two successive sequent rule applications of respective principal formu-
las F and G. F and G are independent from each other, if G is not a side formula
for F , i.e., not a subformula of F . Otherwise we say that G is a subformula of F .
The notion of independent formulas serves to define rule applications that are
irrelevant in a proof. A rule application R in some proof is irrelevant, iff none of
the subformulas of R’s principal formula is an active partner in an Axiom- or
⊥L-rule application in that proof. A proof without irrelevant rule applications
is called concise and it is folklore to show that any proof can be turned into a
concise proof by removing all irrelevant proof steps. Throughout the rest of this
paper we will assume concise proofs.

A consequence of being able to permute proof steps working on indepen-
dent principal formulas is that we can group together in any SK∗ derivation all
rules working on a principal formula and all its subformulas, where SK∗ denotes
SK without the Subst rule and the restriction of always introducing new free
variables in ∀L-steps. To formalize that observation, we introduce the concept
of A-active derivations to denote those derivations where only rule applications
with principal formula A or one of its subformulas are applied.

Definition 1 (A-Active/Passive Derivations). Let L, L′ be multisets of for-
mulas and D a derivation (possibly with open goals) for the sequent Γ, L ⊢ L′, ∆.
The derivation D is (L, L′)-active, if it contains only calculus rules having a for-
mula from L or L′ or one of their subformulas as principal formula. Conversely,
we say D is (L, L′)-passive if it contains no calculus rule that has some formula
from L or L′ or one of their subformulas as principal formula. If L = {A} and
L′ = ∅ (respectively if L′ = {A} and L = ∅) then we agree to say D is A-active
if it is (L, L′)-active and A-passive if it is (L, L′)-passive.

It holds that every A-active rule followed by A-passive derivations can be per-
muted to first have an A-passive derivation followed by applications of the A-
active rule on the different open sequents (cf. Corollary 2.7 in [3]). Using that we
can transform any SK∗ derivation into one composed of A-active derivations (cf.
Lemma 2.8 in [3]). However, we can do even better and move in any A-active
derivation all applications of ContrL on A or one of its subformulas downwards
to be applied on A already. To formalize this observation, we introduce the no-
tion of contraction-free derivations which are derivations without applications of
the contraction rule (cf. Lemma 2.9 in [3]).

3 Derived Sequent Rules

In this section we present the technique to obtain derived inference rules for an
arbitrary formula. As motivation consider the derivation from Fig. 2a illustrat-
ing the application of the assertion (⊂Trans)∀A, B, C.A ⊂ B ∧ B ⊂ C ⇒ A ⊂ C.
It shows given the facts Γ = {U ⊂ V, V ⊂ W} we can show ∆ = {U ⊂ W}. The
crucial steps in this derivation are to use the assertion (⊂Trans) with the instan-
tiation [U/A, V/B, W/C] to show U ⊂ W . The other steps can be understood
as unfolding or preparation steps, yielding several branches in the derivation
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∧R

Axiom
¬

Γ ⊢ U ⊂ V, ∆



Γ ⊢ V ⊂ W, ∆
Axiom

Γ ⊢ U ⊂ V ∧ V ⊂ W

®

Γ, U ⊂ W ⊢ ∆
Axiom

∀L

∀L

∀L

Γ, U ⊂ V ∧ V ⊂ W ⇒ U ⊂ W ⊢ ∆

Γ, ∀C.U ⊂ V ∧ V ⊂ C ⇒ U ⊂ C ⊢ ∆

Γ, ∀B, C.U ⊂ B ∧ B ⊂ C ⇒ U ⊂ C ⊢ ∆

Γ, ∀A, B, C.A ⊂ B ∧ B ⊂ C ⇒ A ⊂ C ⊢ U ⊂ W
| {z }

∆

⇒L

(a) Sample Derivation

U ⊂ V, V ⊂ W, U ⊂ W ⊢

·
·
·
·

U ⊂ V, V ⊂ W, ∀A, B, C.A ⊂

B ∧ B ⊂ C ⇒ A ⊂ C ⊢

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

(b)

(⊂ ¬)

Γ
′
, U ⊂ V, V ⊂ W,
U ⊂ W ⊢ ∆′

Γ ′, U ⊂ V, V ⊂ W ⊢ ∆′

(c)

Fig. 2: Motivating Example

(⊂¬®)
Γ ′, U ⊂ V, V ⊂ W ⊢ U ⊂ W, ∆′

(⊂¬)
Γ ′, U ⊂ V ⊢ V ⊂ W, ∆′ Γ ′, U ⊂ V, V ⊂ W ⊢ ∆′

Γ ′, U ⊂ V ⊢ ∆′

(⊂®)
Γ ′, V ⊂ W ⊢ U ⊂ W, U ⊂ V, ∆′

Γ
′
, V ⊂ W ⊢ U ⊂ W, ∆

′
(⊂)

Γ ′, V ⊂ W ⊢ U ⊂ V, ∆′ Γ ′, U ⊂ W, V ⊂ W ⊢ ∆′

Γ
′
, V ⊂ W ⊢ ∆

′

(⊂¬®)
Γ ′, U ⊂ V ⊢ U ⊂ W, V ⊂ W, ∆′

Γ ′, U ⊂ V ⊢ U ⊂ W, ∆′
(⊂®)

Γ ′
⊢ U ⊂ V, U ⊂ W, ∆′ Γ ′

⊢ V ⊂ W, U ⊂ V, ∆′

Γ ′
⊢ U ⊂ W, ∆′

Fig. 3: Further Derived Rules

tree, some of which can be closed using the axiom rule and the available facts Γ
or goals ∆. In general, there will be several possibilities to apply the assertion
(⊂Trans), and the number of the new branches created by the application of the
assertion will depend on the available facts Γ and goals ∆.

For instance, if ∆ = {} and Γ = {U ⊂ V, V ⊂ W}, then the axiom rule is no
longer applicable in ® which gets a new open sequent, that is the derivation in
Fig. 2b. Note that this remains a valid derivation, if we add arbitrary formulas
Γ ′ to the antecedent or ∆′ to the succedent. If additionally, we drop the assertion
from the conclusion sequent, then we obtain the derived inference rule in Fig. 2c
(the numbers in the rule name (⊂ ¬) indicate the actually applied axiom
rules). We get a variety of these inferences depending on which application of
axiom rules are enabled by filling the Γ and ∆; these rules all represent one
possible application of the assertion (⊂Trans). However, if there is not at least one
axiom rule application, then we do not consider this as an application of (⊂Trans)
(otherwise the rule would always be applicable); moreover, this derivation is
somehow superfluous if none of the subformulas of (⊂Trans) is used in the proof.
With that restriction, we get 7 possibilities to apply the assertion (3 single
axiom rule applications, 3 double axiom rule applications and 1 triple axiom rule
application). This results in the derived inference rules (in addition to (⊂ ¬))
shown in Fig. 3. Thereby, U, V and W are arbitrary terms as they stem from
applications of ∀L rules. Skolem functions introduced by ∀R-rules are always the
same, which results from the use of the δ++

rule, where we use the same Skolem
function for the same formulas. In the case of derived rules, these are always
the subformulas of the assertion which are always the same. Systematizing that
results in the following rule synthesis procedure:
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Γ1, H1 ⊢ H2, ∆1 . . . Γn, H1 ⊢ H2, ∆n

H1, F ⊢ H2

(a)

Γi1 , σ(H1) ⊢ σ(H2), ∆i1 . . . Γil
, σ(H1) ⊢ σ(H2), ∆il

σ(H1), F ⊢ σ(H2)

(b)

Fig. 4: Intermediate Stages of the Computation of Derived Rules

Definition 2 (Derived Inference Rules). Let SK0 denote the subset of SK∗

without the rule ContrL. Given a not necessarily closed formula F , we compute
the derived rules from F as follows: Take the sequent H1, F ⊢ H2, where H1 and
H2 are place-holders for lists of formulas and apply exhaustively all rules from
SK0. All obtained derivation trees are of the form in Fig. 4a Then enable one
or more application of the Axiom rule by instantiating H1 and H2 with atoms
respectively from some ∆i or some Γi which results in (multiple) derivations of
the form in Fig. 4b, where σ is the respective instantiation of H1 and H2. For
each of these trees we introduce the derived rule

by F
Γ, Γi1 , σ(H1) ⊢ σ(H2), ∆i1 , ∆ . . . Γ, Γil

, σ(H1) ⊢ σ(H2), ∆il
, ∆

Γ, σ(H1) ⊢ σ(H2), ∆

Using that we can derive for any, not necessarily closed formula F a set of
derived so-called F -rules. For (⊂Trans) we get the rules from Figs. 2c and 3. Note
that the derived rules are strongly interrelated; they can be divided in two classes:
forward rules working on antecedent formulas ((⊂ ¬),(⊂ ),(⊂ ¬)), and back-
ward rules working on the succedent and possibly on the antecedent ((⊂ ¬®),
(⊂ ®), (⊂ ¬®), (⊂ ®)). While these rules are in the spirit of Huang’s assertion
level and reflect all possibilities to apply an assertion – hence well suited for an
interactive setting – they introduce redundancy in the search space if used with-
out care in an automated setting. For example, the backward inference (⊂ ®) is
more general than the other backward inferences and sufficient for the search.

4 The Metadeduction Calculus

We now formally define the metadeduction calculus: First, we define theory se-
quent calculi and prove their soundness and weak completeness. We then define
the metadeduction calculus by adding a lifting rule that enables to replace asser-
tions from the antecedent of some open goal sequent by corresponding inference
rules in the meta-level theory of the sequent and prove, besides its soundness,
its inversion property, that is we do not lose provability by this operation.

Definition 3 (Theory Sequent Calculus). Let Th be a set of not necessarily
closed formulas: Then we denote by Γ ⊢Th ∆ a theory sequent wrt. Th and we
allow to write Γ ⊢Th,F ∆ to denote the sequent wrt. the theory Th augmented by
the formula F . The theory sequent calculus consists of the sequent calculus rules
of SK and for each theory sequent Γ ⊢Th ∆ of all rules derived from all formulas
in Th. The Subst-rule now affects the antecedent and succedent of sequents and
the formulas in the attached theory Th (resp. the derived rules).
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We prove soundness of the theory sequent calculus by constructing from any
proof for some sequent Γ ⊢Th,F ∆ using F -rules a proof for Γ, F ⊢Th ∆ not
using F -rules. This allows us to eliminate step by step all theory formulas and
end up in the classical sequent calculus (that is, Th = ∅).

Theorem 1 (Soundness). For all sets of formulas Th, all formulas F and all
proofs of Γ ⊢Th,F ∆ there exists a proof for Γ, F ⊢Th ∆ without F -rules.

Conversely, we prove completeness by constructing from any proof of some
sequent Γ, Th ⊢ ∆ a proof for Γ ⊢Th ∆. The completeness proof relies on an
self-derivability property for derived rules, that is, if we lift an assertion F from
the antecedent of our current open goal sequent to the calculus level then F is
still derivable using F -rules. This allows us to reuse the proof of Γ, Th ⊢ ∆ using
Cut (cf. [3], Sec. 4 for more details). Because of the use of Cut, we call the
obtained result weak completeness. Future work is devoted to transform a given
proof to an assertion proof without Cut using our permutability results.

Lemma 1 (Selfderivability). For every formula F there is a proof of ⊢F F .

Theorem 2 (Weak Completeness). For all sets of formulas Th and proofs
Π for Γ, Th ⊢ ∆ there exists a proof ΠTh for Γ ⊢Th ∆ possibly using Cut.

We further extend the theory sequent calculus by a rule to lift arbitrary asser-
tions F from the antecedent of sequents to the calculus level at any stage of the

proof and to apply the henceforth derived F -rules at any time: Lift
Γ ⊢Th,F ∆

Γ, F ⊢T h ∆
.

Due to Lemma 1 the Lift-rule has the inversion property. We call the resulting
calculus the metadeduction-calculus which soundness and completeness directly
follows from the Theorems 1 and 2.

5 Conclusion and Related Work

In this paper we have presented atomic metadeduction as an extension to a first-
order sequent calculus to systematically synthesize new derived inference rules
from assertions at any time during the proof search. Using metadeduction, proofs
can directly be constructed, checked, and presented at the assertion level. We
have shown soundness, completeness of the theory sequent calculi and proved
the inversion property of the Lift-rule.

The idea of extending the natural deduction calculus or the sequent calcu-
lus by new deduction rules is not new [9, 10, 5] and was discussed in Sec. 1.
Compared to that, we allow for derived rules from arbitrary, even non-closed as-
sertions, which allows us to use intermediate facts as derived rules, for instance
the induction hypthesis of an inductive proof or case conditions in a case anal-
ysis. However, in contrast to these works we have no cut admissibility result so
far, which is a topic for future work. We expect to obtain similar results at least
for the restricted fragment of closed equivalences of the form P ⇔ Q where P is
atomic – if not even for a larger fragment of formulas – by following ideas of [?].
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Closely related are also focusing derivations [1] to eliminate inessential non-
determinism by alternating phases of asynchronous (invertible) and synchronous
(non-invertible) steps. Focusing derivations decompose a chosen formula and, if
the formula was an antecedent formula, it corresponds roughly to the synthe-
sis of derived rules from it; the difference is that we apply both synchronous
and asynchronous rules and at least one Axiom-rule, which excludes applica-
tions of derived rules of definitely irrelevant formulas. Moreover, derived F -rules
remain available, while focusing consumes F . Finally, the use of derived rules
allows to study in future work how to adapt proof search techniques known from
other calculi, such as, for instance, the use of term indexing techniques on the
level of derived inference rules, or proof strategies based on term orderings as in
superposition calculi.

Further future work will also be concerned with relaxing the atomicity re-
striction (requiring more complex proof transformations) as well as investigat-
ing how to adapt metadeduction to deep inference3 (following ideas from [2]) to
eventually support the application of derived rules on subformulas.
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