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ABSTRACT

Visual simultaneous localisation and mapping (SLAM) is since the
last decades an often addressed problem. Online mapping enables
tracking in unknown environments. However, it also suffers from
high computational complexity and potential drift. Moreover, in
augmented reality applications the map itself is often not needed
and the target environment is partially known, e.g. in a few 3D an-
chor or marker points. In this paper, rather than using SLAM, mea-
surements based on optical flow are introduced. With these mea-
surements, a modified visual-inertial tracking method is derived,
which in Monte Carlo simulations reduces the need for 3D points
and allows tracking for extended periods of time without any 3D
point registrations.

Keywords: augmented reality, camera tracking, visual SLAM, in-
ertial sensors, sensor fusion, optical flow

Index Terms: I.4.8 [Image processing and computer vision]:
Scene analysis—Motion, Photometry, Sensor fusion, Tracking;
I.2.9 [Artificial intelligence]: Robotics—Kinematics and dynam-
ics, Sensors;

1 INTRODUCTION

The past few decades extensive research has been carried out in
the area of simultaneous localisation and mapping (SLAM). This
is apparent from reviewing computer vision and robotics litera-
ture [1, 2]. New algorithms are constantly developed in order to
tackle computational complexity and drift. Another successful line
of work is visual-inertial tracking, i.e. fusion of visual information
and kinematic data from miniature MEMS inertial sensors. Corke
et al. [3] give an introduction to the field.

SLAM has great success in many applications. However, in aug-
mented reality it is often the case that the 3D structure is partly
known or can easily be marked in the scene. The expensive esti-
mation of a denser map has no value in itself besides enabling sta-
ble pose estimation. This paper investigates an alternative strategy.
Instead of mapping, visual-inertial tracking with the available 3D
information is used as a basis, and optical flow measurements are
added to enable accurate estimation of the camera pose and kine-
matics. Optical flow is a well-known concept in computer vision.
However, in most cases it is used to initialise a visual SLAM pro-
cess [4] or to approximate relative camera motions [5]. The idea
of combining very few 3D anchor points with 2D optical flow mea-
surements — without attempting to recover depth — has hardly
been considered in this context.

The contribution of this paper is to extend the model-based
visual-inertial tracking system presented in [6] with the capability
to exploit the information in 2D optical flow measurements. Op-
tical flow measurements can be obtained from the camera images
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Figure 1: Filter architecture and data flow.

at any time, without knowledge of the scene structure. It is well-
known that the resulting constraints do not provide full observabil-
ity. However, as will be shown, they reduce the need for features
with known depth and allow tracking for extended periods of time
without any 3D point registrations.

2 SENSOR FUSION

Recursive filters can estimate the pose and kinematics of a moving
camera-IMU system from camera and inertial measurements. The
extended Kalman filter (EKF) [7] is used to extract the relevant in-
formation from the respective measurements — 2D/3D point corre-
spondences and optical flow measurements from image processing,
and 3D angular velocities and linear accelerations from the IMU.
The architecture of the fusion system is outlined in Figure 1. Due
to space constraints only an overview of the system and resulting
equations are given here. More details and justifications can be
found in [6] and [8].

The state vector is xT = [TwsT
w , ṪwsT

w ,qT
sw,bωT

s ], where Tws
w de-

notes position, Ṫws
w linear velocity, and qsw the orientation quater-

nion of the IMU, s, with respect to the world frame, w. More-
over, bω

s denotes slowly time varying gyroscope biases. Consider-
ing the gyroscope and accelerometer readings to be known control
input, uT := [yωT

s ,yaT
s ], the system model xt+∆t = f (xt ,ut+∆t ,vt)

describes the evolution of the state through time. The equation
02 = h1(xt ,y1,t ,e1,t) with yT

1 := [mT
n ,mT

w] relates the 3D anchor
points, mT

w, to their measured 2D positions, mT
n , and the state. Here,

v and e denote process and measurement noise, respectively. The
detailed equations and the reasons for the design choices are pro-
vided in [6]. Optical flow measurements are incorporated subse-
quently.

Optical flow is here defined as the velocity, ṁn, of image loca-
tion mn, with homogenisation m̃T

n := [mT
n ,1] and ˙̃mT

n := [ṁT
n ,0],

respectively. A Kanade-Lucas tracker [9] can be used to measure
optical flow by computing the movement of a distinctive patch in
subsequent camera images. The pose and kinematics of a camera
are directly related to the optical flow via the continuous epipolar
constraint [8]:

0 = ˙̃mT
n (vcw

c × m̃n)+ m̃T
n
(
(ωωωcw

c ×vcw
c )× m̃n

)
, (1)
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(a) One example of estimated trajectory.
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(b) Root mean square error (RMSE) from 100 Monte Carlo simula-
tions.

Figure 2: Tracking results: note how in all cases the optical flow
measurements reduce the error to almost zero, whereas the results
quickly drift off when observing only one single 3D point as com-
plement to IMU measurements.

where vcw
c :=−ωcw

c ×Tcw
c + Ṫcw

c . Here, Tcw
c denotes position, Ṫcw

c
linear velocity, and ωcw

c angular velocity of the camera, c, with
respect to the world frame. These equations results from differen-
tiating the projection of point mw with respect to time and elimi-
nating its depth. An implicit measurement equation exploring op-
tical flow can from this be derived by reformulating (1) in terms
of the measured angular velocity, yω

s , and the quantities in the
state. With yT

2 := [yωT
s ,ṁT

n ,mT
n ], the second measurement model

0 = h2(xt ,y2,t ,e2,t) is obtained.
Since the camera measurements, 2D/3D correspondences and

optical flow, are assumed mutually independent, multiple observa-
tions are processed sequentially, each in a separate EKF measure-
ment update step with the appropriate model and starting with the
3D points.

3 EXPERIMENTAL SETUP AND RESULTS

Simulated data is used to evaluate the proposed method, i.e. the
value of adding 2D/3D point correspondences with 2D optical flow
measurements. The data has camera translations and rotations in
all dimensions at various speeds. The trajectory is simulated so
that the camera focuses on one point of interest (cf. Figure 2(a)).
This is typical for close range camera localisation and visual servo
applications. From the ground truth poses, biased and noisy inertial
measurements and noisy camera measurements are simulated and
then used to recover the camera trajectory.

Figures 2 and 3 demonstrate promising improvements obtained
by incorporating optical flow. Figure 2 shows: when observing only
one single 3D feature — the focus point — at 25 Hz, the filter fails
to estimate the gyroscope biases, which results in a huge drift in
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Figure 3: Velocity RMSE vs. frequency of observing 3D points.

the camera trajectory. By adding four optical flow measurements in
the corners of the camera image, the gyroscope biases are properly
estimated and high accuracy is obtained.

In Figure 3, two 3D features are observed with different frequen-
cies ranging from 10 to 1 Hz. The plot shows how the optical flow
measurements significantly improve the results, as the velocity esti-
mate otherwise degenerates rapidly with an observation rate below
2 Hz.

4 CONCLUSION AND FUTURE WORK

This paper extends the visual-inertial tracking system developed
in [6] with optical flow measurements. Monte Carlo simulations
show that adding optical flow measurements reduces the required
quantity and frequency of observing features with known depth.
This allows for robust and efficient tracking with very few 3D an-
chor points that could be installed or surveyed manually with rea-
sonable effort. As such, the method provides an efficient alternative
to a complete and computationally intense SLAM process. The next
step is to test the method on actual measured data. Here, filtering
using a simple 2D constant velocity model could be used to ensure
accurate optical flow measurements. Moreover, observability of the
camera pose and kinematics obtained from different configurations
of optical flow measurements will be studied and outliers will be
handled.
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