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Abstract

A key limitation of current layout analysis methods is
that they rely on many hard-coded assumptions about doc-
ument layouts and can not adapt to new layouts for which
the underlying assumptions are not satisfied. Another ma-
jor drawback of these approaches is that they do not return
confidence scores for their outputs. These problems pose
major challenges in large scale digitization efforts where a
large number of different layouts need to be handled and
manual inspection of the results on each individual page
is not feasible. This paper presents a novel statistical ap-
proach to layout analysis that aims at solving the above-
mentioned problems for Manhattan layouts. The presented
approach models known page layouts as a structural mix-
ture model. A probabilistic matching algorithm is presented
that gives multiple interpretations of input layout with asso-
ciated probabilities. First experiments on documents from
the publicly available MARG dataset achieved below 5%
error rate for geometric layout analysis.

1 Introduction and Related Work

A number of different approaches for geometric layout
analysis of scanned documents have been presented in the
literature. Some of these approaches have come to wide-
spread use like the X-Y Cut algorithm by Nagy et al. [14],
the smearing algorithm by Wong et al. [21], the whitespace
analysis algorithm by H. Baird [1], the constrained text-line
extraction algorithm by T. Breuel [3], the Docstrum algo-
rithm by O’Gorman [15], and the Voronoi algorithm by K.
Kise [11]. These approaches have shown to work quite well
on standard datasets like UW-III [16]. Most of these algo-
rithms rely on many hard-coded assumptions about docu-
ment layouts. For instance, a common assumption is that
larger structural divisions inside a document are indicated
by larger amounts of whitespace. This assumption holds for

many simple document layouts, but it may break for more
complex or non-stereotypical layouts.

An example of a non-stereotypical layout from the
Google 1000 books dataset is shown in Figure 1. The
dataset was released by Google Inc. in September 2007
and contains 1000 scanned books with hOCR-format [4]
ground-truth. It contains scans of old books for which copy-
rights have expired. Therefore, most of the books have sim-
ple one-column page layouts. The results of applying the
state-of-the-art page segmentation algorithms to this image
are shown in Figure 1. Interestingly, none of the algorithms
was able to segment the two-column part of the page cor-
rectly.

A closer look at the example image reveals that the gap
between the two text columns is not larger than the global
inter-word spacing of the document. Hence the basic as-
sumption of most of the research algorithms and commer-
cial systems - that larger structural divisions inside a docu-
ment are indicated by larger amounts of whitespace - does
not hold for this layout. This results in incorrect segmenta-
tion of the page both by research algorithms and commer-
cial systems.

There are two traditional solutions to this problem. One
solution is to manually correct the output of the page seg-
mentation algorithm. However, it does not fit the needs for
large scale digitization tasks since the user has to manually
fix the results for all incorrectly handled pages, which is not
feasible due to the scale of the problem. The second so-
lution is to tune the parameters of the page segmentation
algorithm such that it segments the target document cor-
rectly. However, parameter tuning is not trivial for most
of the page segmentation algorithms especially for an end-
user. Additionally, the assumptions made by an algorithm
might prohibit it altogether to segment a particular layout
correctly. Experiments on automated parameter tuning of
generic layout analysis methods for the example layout in
Figure 1 are part of ongoing work and will be reported in an
upcoming paper.
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Figure 1. Segmentation results of applying state-of-the-art page segmentation algorithms on an ex-
ample image from the Google 1000 books dataset. None of the algorithms segmented the page
correctly.

Another major issue in large scale digitization projects is
to find the documents on which the page segmentation al-
gorithm failed so that these can be presented to the operator
for manual correction. The state-of-the-art layout analysis
algorithms and commercial software do not give any con-
fidence of their output. Hence the user has no clue when
an algorithm fails to segment a page until he takes a look at
the segmentation result of the algorithm. Manual inspection
of the results of a segmentation algorithm for each scanned
image becomes prohibitive in large scale applications where
hundreds of thousands of pages are involved.

This paper presents a statistical approach to layout anal-
ysis aimed at solving these problems. A statistical layout
analysis system is based on statistical modeling of layouts.
These layout models can be learned from training data and
hence can be adapted to segment non-stereotypical layouts.
Secondly, the use of statistical layout models to segment a
page allows to get the probability of a performed segmenta-
tion. This probability can be used as a confidence value of
the output of the algorithm. Hence, the user can look at the
segmentation results of only those documents for which the
statistical layout analysis algorithm gives a low probability.

Some attempts to build a trainable layout analysis system
have been carried out in the past. One of the first attempts
in this direction was made by Gary Kopec et al. [9, 12].
They presented a communication theory approach to docu-
ment recognition and called it “document image decoding”.
The key idea of their approach is to view document recog-

nition as a decoding problem. The decoder estimates the
message, given the observed image, by finding the a poste-
riori most probable path through the combined source and
channel models using a Viterbi-like dynamic programming
algorithm. The approach was used for direct recognition of
text from scanned single-column parts of telephone yellow
pages. However, this approach could not come to wide-
spread use because it can not handle multi-column layouts.

Most of the efforts made by other researchers towards the
development of trainable layout analysis systems have fo-
cused on the use of probabilistic grammars [10,18,20]. The
latest development in the domain of grammatical modeling
of document layouts is by Shilman et al. [18]. They use
a discriminative grammar to model page layout instead of
generative grammars as used in previous work. Their work
is inspired by the advances in research on grammars, where
it is shown that discriminative models are strictly more pow-
erful than the probabilistic context-free grammars. A com-
mon limitation of modeling page layouts using stochastic
grammars is that optimal geometric parsing is exponential
in the number of terminal symbols. Using several geometric
constraints to yield O(n3) complexity, Shilman et al. [18]
were able to achieve a parsing time of 30 seconds for the
task of grouping text-lines into paragraphs and text-columns
(80 terminal symbols) on a 1.7GHz Pentium 4 machine. If
we consider the task of grouping connected components
into text-lines, where the number of terminal symbols is
usually around 4000 for a typical A4 document, the running



time of the algorithm becomes a major bottleneck.
Other attempts for statistical modeling of page layout in-

clude the Markov Random Field (MRF) approach by Liang
et al. [13], and the generative zone model approach of Gao
et al. [8]. Liang et al. modeled the statistical relationships
between the locations of characters, lines, and paragraphs as
a hierarchical MRF. The model is trained by measuring dif-
ferent kinds of distances between terminal and non-terminal
symbols on an extensive training set. Gao et al. present the
approach of generating overlapping zone hypothesis by us-
ing Voronoi diagrams. Then an optimal maximum a poste-
riori non-overlapping zone combination is obtained using a
learned generative zone model. Both these approaches are
capable of learning layout information from training data.
However, they require large amounts of labeled training
data just to capture coarse document layout structure.

In this work, page layout is represented as a structural
mixture model, where each component in the model is a
layout that we are interested in. The primary focus of this
work are document images with a Manhattan layout that
can be represented as an X-Y tree. However, the algorithms
presented here can be readily applied to non-Manhattan lay-
outs if a suitable representation is available for them. An
individual layout is represented as a hierarchical tree of
horizontal or vertical whitespace cuts - that is axis-aligned
whitespace rectangles that divide a particular page segment
into two parts. We consider only skew corrected documents
here since open-source implementations of accurate skew
correction algorithms [2, 5] can be used to deskew scanned
pages. A parametric model is built to model the geometric
variability in position and size of corresponding whitespace
cuts across different documents of the same layout. For
each layout, the distribution of parameters is estimated from
the training set. These learned models are then matched on
the input image and the best matching model is returned
with the positions of best fit and the associated probability.
The details of the layout model and the matching algorithm
are described in Section 2. Experimental results are pre-
sented in Section 3 followed by a conclusion in Section 4.

2 Statistical Layout Analysis

2.1 Statistical Layout Model

The first problem that needs to be addressed for design-
ing a statistical layout analysis algorithm is the represen-
tation of page layout. Although different models for page
layouts have been proposed in the literature, each model
comes with its own problems. The hierarchical MRF model
by Liang et al. and the generative zone model by Gao et
al. require large amounts of labeled training data to obtain
good results. Stochastic grammars, on the other hand, are
not a natural representation of page layouts. Page layouts
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Figure 2. Representation of page layouts as
a structural mixture model. This example
models page layout as a mixture of three lay-
out components. The geometric variability
of these components is visualized by the ar-
rows.

are generated by a number of typesetting rules and hence
exhibit a large amount of regularity. However, parsing a
page with stochastic grammars might result in page layouts
that do not appear in practice.

Instead of trying to model generic page layouts, we take
the approach of style-directed layout analysis [6, 10, 19]. A
particular advantage of style-directed layout analysis is that
it closely resembles the document generation process, hence
it can obtain better performance on a specific class of doc-
uments. In contrast to previous approaches like [6, 19] that
use rule-based systems to model document style, this work
represents page layout as a statistical mixture model of lay-
outs. Each layout is represented as a hierarchical X-Y tree
of whitespace rectangles. A visualization of the model is
shown in Figure 2. A key difference of our hierarchical
document model to those published before is that we con-
sider the page frame [17] as the top level entity instead of
the complete page image. This allows us to neatly sepa-
rate variations in positions of whitespaces originating from
intrinsic layout variations from those introduced during the
scanning process (e.g. page translation and skew).

Let a layout component be modeled as a sequence of
rectangles M = {m1, . . . ,mN}, each defined by four pa-
rameters describing the center position (x, y), width w, and
height h of the corresponding rectangle. These parameters
are assumed to have independent Gaussian distributions.
The sequence describes the hierarchy of model rectangles.
Some important features of this model tree are:

• Each model rectangle divides a page segment into two
parts. Due to this property a model rectangle will also
be referred as a model cut in the work.

• The parameters of model rectangles are relative to the
page segment to which they are applied.



• The first model cut is applied to the page frame. A hor-
izontal cut divides the page frame into upper and lower
parts, whereas a vertical cut divides the page frame into
left and right parts. As a result of applying the model
cut to the page frame, two new page segments are gen-
erated.

• The generated page segments are inserted as children
of the root node in a pre-defined order. Upper or left
page segment is inserted as the left child, whereas
lower or right page segment is inserted as the right
child.

• If a page segment is not further sub-divided, two
dummy nodes are added as its children.

2.2 Statistical Model Matching

The goal of statistical model matching is to find a set of
whitespace rectangles in a target document that correspond
to the layout model with the highest probability. For this
purpose, first a whitespace cover of the page background is
extracted using the algorithm described in [3]. Then, each
layout component in the structural mixture model is con-
sidered as a candidate that can explain the layout of the
target document. We are interested in finding the layout
model that best explains the target document and then ex-
tracting whitespaces corresponding to that best matching
layout model. An illustration of this layout matching al-
gorithm is shown in Figure 3.

Consider a layout model M = {m1, . . . ,mN} consist-
ing of N model rectangles, and a set S of K whitespace
rectangles {w1, . . . , wK}, where N < K, that constitute
a whitespace cover of page background. We are interested
in computing p(W |M), i.e. the likelihood of observing W
given M where

• W = (w1, . . . , wN ) is an n-tuple with wi ∈ S and
wi 6= wj ∀i, j : i 6= j

• each element of W corresponds to an element of M

Overall, we want to find the most likely subset of whites-
paces:

Ŵ = arg max
W

p(W |M) (1)

The likelihood of observing whitespace rectangles W =
(w1, . . . , wN ) given a layout model M = {m1, . . . ,mN}
can be written as

p(W |M) = p(w1, w2, · · · , wN |mN
1 )

= p(w1|mN
1 )p(w2, · · · , wN |w1,m

N
1 )

= p(w1|mN
1 )p(w2|w1,m

N
1 ) · · ·

p(wN |w1, · · · , wN−1,m
N
1 ) (2)

wherewi is the whitespace cover rectangle thatmi has been
matched on. Due to the hierarchical structure of our layout
models, the likelihood of observing whitespace wi does not
depend on model cuts that are lower in the hierarchy, i.e.
model cuts with indices i + 1 to N . Hence, the first term
on the right hand side of Equation 2 - p(w1|mN

1 ) - can be
computed as

p(w1|mN
1 ) = p(w1|m1,m2, · · · ,mN )

= p(w1|m1)
= N (x1;µx1 , σx1)N (y1;µy1 , σy1)
N (w1;µw1 , σw1)N (h1;µh1 , σh1) (3)

Similarly, other terms in Equation 2 can be written as:

p(wj |wj−1
1 ,mN

1 ) = p(wj |wj−1
1 ,mj

1) (4)

The dependency between a whitespace cut wj and its an-
cestors is modeled by the hierarchy of the tree. The ances-
tors of wj define the page segment to which the cut wj is
to be applied. Since the coordinates of whitespace cuts are
computed relative to the page segment to which they are
applied, these need to be recomputed based on the current
page segment. This is done by first intersecting the whites-
pace wj with the current page segment to trim its part ex-
tending beyond that segment, and then normalizing its co-
ordinates with the page segment’s width or height (x-center
and width are divided by the page segment width, whereas
y-center and height are divided by page segment height).
The likelihood of the updated whitespace can then be sim-
ply computed by using Equation 3.

Using Equations 3 and 4 in Equation 2 gives the likeli-
hood of matching a particular combination of whitespaces
to the layout model. The main challenge then is to find
the global maximum in Equation 1. This is a combinato-
rial optimization problem and brute-force search to find the
globally optimal solution is not practically possible. In this
work, A* search is employed to find the globally optimal
combination of whitespaces that best matches the layout
model. Using A* search, mean running time of matching
one layout model to an image is less than one second on a
2GHz AMD Athlon machine running Linux. A hint from
the implementation point of view is that when using double
precision floating point numbers, the likelihood in Equa-
tion 3 goes to zero when the value inside any of the expo-
nents gets larger than 746. Hence large portions of search
space that do not fit the layout model are quickly discarded
by the search algorithm.

2.3 Learning Model Parameters

An important aspect of the presented statistical layout
analysis approach is that it can be trained without the need



Figure 3. Overview of the statistical layout matching algorithm. First, a whitespace cover of page
background is extracted, as depicted by the yellow rectangles. Then, the whitespace rectangles are
matched to model rectangles for different layout model components. Finally, the best fitting model
and the corresponding whitespaces are extracted.

for page segmentation ground-truth. Learning layout mod-
els from a set of training images can be done in two steps.

In the first step, the goal is to find out the structure of lay-
out model components. This step is done by grouping doc-
uments of the same layout together and defining a structural
layout model for each layout. In the present work, this task
is done manually. First, the user selects documents with the
same layout. Then, a structure layout model is built from
one document of that layout with the help of an interactive
GUI that is specifically designed for that purpose.

In the second step, the goal is to learn geometric variabil-
ity of the structural layout models built in the first step. For
this purpose, an EM-like training algorithm is used. Con-
sider training images {1, 2, · · · , T}. The total quality of
matching a layout model on this training set can be com-
puted as:

q = −
T∑

i=1

log pi(Ŵ |M) (5)

The training algorithm tries to minimize this quantity itera-
tively. An outline of the training procedure is as follows:

1. Initialize model parameters to some fixed values. Set
mean values to the attributes of corresponding whites-
paces selected by the user, and variance to some small
arbitrary values.

2. Compute q(0) for training set using initial model by
matching the initial model to all documents in the
training set.

3. The matching result gives a set of whitespace rectan-
gles for each training image that best match the model
rectangles. Compute model parameters using maxi-
mum likelihood estimation from the obtained whites-
paces.

4. Compute q(1) for training set using updated model pa-
rameters

5. If q(t) ≥ q(t−1), then terminate; otherwise continue at
Step 3

3 Experiments and Results

The statistical layout analysis algorithm presented in this
paper exhibits several key properties that are essential for
layout analysis tasks in large scale application. To evalu-
ate the performance of the algorithm, a subset of the pub-
licly available MARG dataset [7] was chosen. The MARG
dataset is naturally suitable for this purpose since it was
developed as a part of the efforts made in digitizing the
US National Library of Medicine. Therefore, it contains
a large variety of journal layouts with several examples of
title pages from each journal. The journal layouts are cate-
gorized into nine classes based on the geometric arrange-
ment of logical page blocks (title, author, affiliation, ab-
stract). Since this classification is made based on logical
layout elements, layouts from two different classes might
look identical for geometric layout analysis. Secondly, for
two journals belonging to the same class, geometric page
layout might differ a lot.

In this work, six journals were chosen from the MARG
dataset that had different geometric layouts of the page.
These journals are:

• Laboratory Investigations (LabInv)

• Angle Orthodontist (AngOrt)

• Cellular and Molecular Life Sciences (CMLS)

• Poultry Science (PouSci)
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Figure 4. Example images from each of the six journals used in the experiments.

• European Respiratory Journal (ERS)

• Supportive Care in Cancer (SCC)

An example image from each of these journals is shown in
Figure 4. There are 142 images of these journals collec-
tively in the MARG dataset. The number of samples per
class are too small for a reasonable training of the layout
model of that class. Therefore, 1158 more samples from
these journals were obtained through the central library of
Technical University of Kaiserslautern. The PDF files ob-
tained from the library were rendered as images at 300-dpi.
After obtaining a reasonably sized dataset, preprocessing
steps (binarization, skew correction, border noise removal)
were performed where necessary using open-source tools
part of the OCRopus OCR system [5]. The dataset was then
partitioned into five parts to separate training and test sets.
Five fold cross-validation was then used in all experiments
to obtain reliable results.

Three experiments were then designed to evaluate the

performance of the algorithm in three different use-cases.
The first experiment, described in Section 3.1, aims at test-
ing if the obtained page segmentation is correct, given a
document image and its layout model. The experiment pre-
sented in Section 3.2 tests the ability of the proposed ap-
proach to find the correct model for an unknown document
image type. Finally, Section 3.3 shows the results of the
new approach on the subset of the MARG dataset.

3.1 Experiment 1

In this experiment, the performance of the statistical
model matching approach is tested on synthetic document
images where the model is known. Thus, the method tries to
match the correct model to the document image. The most
likely segmentation of the page according to the model is
obtained. A segmentation is considered correct if the result-
ing segmentation is the same as the canonical text to block
mapping, grouping logical text blocks together. If a seg-



mentation maps text of different blocks together (e.g. text
lines from the abstract together with text lines from the ti-
tle), the segmentation is considered wrong.

Total accuracy for this test is 99.6%. In total 1153
samples of 1158 where segmented correctly. Four out of
five errors were made on documents from the ERS journal,
whereas one error was made for the SCC journal.

3.2 Experiment 2

This experiment focusses on the ability of the method
to find the correct model for an unknown document layout
type belonging to one of the trained models. The method
finds the most likely model for a given document image. A
correct segmentation is again defined as being the canoni-
cally correct mapping of the text to the blocks. In this case,
matching the wrong model also leads to an incorrect seg-
mentation.

This test yielded 57.5% of correctly matched models.
The confusion matrix showed that the simple model of
LabInv journal matched many documents with more com-
plex layouts. A closer investigation of this problem showed
that if a layout model is a subset of another layout model,
the simpler model will always fit in the documents of the
more complex model. Additionally, the likelihood of match
defined by: q = log p(Ŵ |M) will usually have lower val-
ues for complex models due to additional Gaussians in-
volved for each model cut (see Equation 2). To avoid this
problem, first the quality per cut is computed by simply di-
viding the log-likelihood of match by the number of model
cuts. Then, the per-cut quality is normalized by the com-
plexity of the model to give complex models a better score
as compared to their sub-models when both have a good
matching score. The quality function thus obtained is:

q = − log p(Ŵ |M)
N2

(6)

The use of this quality function increased the total accu-
racy to 99.6%, which means that 1153 documents out of
the 1158 were segmented correctly. The confusion matrix
can be found in Table 1.

3.3 Experiment 3

The test setup in this experiment is the same as for the
previous one, except for the test data, which in this case
consists of document images from MARG dataset. Match-
ing layout models proceeded in two steps. First a model
for the page frame was matched on the document to find its
page frame. Then, the layout model was matched inside the
detected page frame. Again the canonical correctness of the
text to block mapping is used as correctness measure. The
total accuracy for this test is 95.1% using the normalized

quality of fit (Equation 6). In absolute numbers this means
that 135 out of the 142 documents have been successfully
segmented. The confusion matrix can be found in Table 2.

A closer look at the results showed that the errors are
mainly due to complex models being fit to simple layouts.
In the case of LabInv, which is a two column layout having
a one column title part and a two column footer, the AngOrt
model consisting of a one column title, two column main
text part and a one column footer fitted well, and was chosen
due to the normalization of the quality.

4 Conclusion and Outlook

This paper presented a novel statistical approach to lay-
out analysis. The presented approach is based on top-down
modeling of page layouts using a mixture of structural lay-
out models. The geometric variability of individual layout
components was modeled as a multi-variate Gaussian distri-
bution. An algorithm for finding the globally optimal match
of a layout model to a target document was presented. Ini-
tial results on documents collected by the author and on the
MARG dataset showed high accuracy for geometric layout
analysis. More comprehensive performance evaluations and
comparison to other methods is part of on-going work and
will be reported in an upcoming paper.
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