
Expert Systems with Applications 36 (2009) 9319–9332
Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa
Pedagogically founded courseware generation based on HTN-planning

Carsten Ullrich a,*, Erica Melis b

a Dept. of Computer Science and Engineering, Shanghai Jiao Tong University, 1954 Hua Shan Road, 200030 Shanghai, China
b DFKI GmbH, Stuhlsatzenhausweg 3, 66123 Saarbruecken, Germany

a r t i c l e i n f o a b s t r a c t
Keywords:
Technology-supported learning
Courseware generation
Adaptivity
Pedagogical knowledge
0957-4174/$ - see front matter � 2008 Elsevier Ltd. A
doi:10.1016/j.eswa.2008.12.043

* Corresponding author.
E-mail addresses: ullrich_c@sjtu.edu.cn (C. Ullr

Melis).
Course generation enables the automatic assembly of course (ware) adapted to the learner’s competen-
cies and learning goals. It offers a middle-way between traditional pre-authored ‘‘one-size fits all” course-
ware and manual resource look-up. Such an assembly requires pedagogical knowledge, represented, for
instance, as expert system rules or planning operators. In this article, we describe the course generation
framework PAIGOS that enables the formalization and application of complex and realistic pedagogical
knowledge. Compared to previous course generation approaches, it generates structured courses that
are adapted to a variety of learning goals and to the learners’ competencies. We describe basic operators
and methods for course generation, which are used to formalize seven different types of courses. Further-
more, we present the results of technical evaluations that investigated the performance of the proposed
framework. Among others, the results show that PAIGOS takes less than a second to generate complex
courses with an average learning time of about twelve hours. The results also show that large amounts
of educational resources are required for an adaptive pedagogically founded course generation.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Course generation uses information about learning objects, the
learner and his learning goals to automatically generate an adapted
sequence of resources that supports the learner in achieving his
goals. Course generation offers a middle-way between pre-authored
‘‘one-size fits all” courseware and individual look-up of learning ob-
jects: on the one hand, pre-authored courses will never do justice to
every individual learner since it is practically impossible to cater for
individual learning goals and characteristics by providing manually
authored courses. On the other hand, searching for resources on
your own requires a very competent and self-organized learner
who is able to assess and to structure the retrieved content. In par-
ticular, low-achieving students rarely possess these skills – actually,
several empirical studies show that these learners benefit from con-
tent organized form them according to pedagogical principles
(OECD, 2003; Prenzel, Carstensen, & Ramm, 2004).

However, existing course generators cannot handle complex
learning goals nor do they generated structured courses. In most
previous course generators the learning goal consists of the target
concepts the learner wants to learn about, for instance in mathe-
matics ‘‘the definition of the derivative function”. Then the course
generator retrieves all necessary prerequisite resources. But during
learning, a user will have different objectives and requires different
ll rights reserved.

ich), erica.melis@dfki.de (E.
resources. For instance, when the content is unknown to him, he
requires detailed, comprehensive information. Later, he might
want to rehearse the content, which requires different content.

In this article, we describe PAIGOS, a course generator used in the
Web-based learning environment ACTIVEMATH (Melis et al., 2006).
PAIGOS advances the state of the art of course generation by using
novel techniques from the (Semantic) Web, Artificial Intelligence
and technology-enhanced learning.

The article is structured as follows. In Section 2, we define the
basic terminology relevant for this article, followed by a brief
description of Hierarchical Task Network Planning (HTN-planning),
which is used for formalizing the pedagogical knowledge. The sub-
sequent sections describe the main contributions of this work. Sec-
tion 3 introduces the course generation planning domain and
contains detailed descriptions of axioms, operators and methods
that together realize basic building blocks for course generation.
Then, in Section 4 we show how complex course generation sce-
narios can be assembled by using this basic knowledge. Each of
these scenarios caters for a specific high-level learning goal, e.g.,
discovering new content or rehearsing previously learned material.
Section 5 discusses technical evaluations of PAIGOS. The figures
prove that course generation based on non-trivial pedagogical
knowledge results in huge amounts of queries to learning object
repositories (e.g., a course that consists of about 360 educational
resources requires about 100000 queries). The results also show
that techniques we introduced with PAIGOS (such as dynamic sub-
task expansion) reduce this amount of queries significantly, result-
ing in planning times of less than a second.

mailto:ullrich_c@sjtu.edu.cn
mailto:erica.melis@dfki.de
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


9320 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
2. Preliminaries

2.1. Terminology

Following Wiley (2000), we define learning objects as ‘‘any dig-
ital resource that can be reused to support learning”. Automatic
(re-) use of learning objects requires a more narrow definition that
also addresses how to locate a learning object and granularity.
Thus in the scope of this article, instead of learning object, we will
use the term educational resource, with the following characteris-
tics: an educational resource is an atomic, self-contained learning
object that is uniquely identifiable and addressable by an URI, i.e.,
an Uniform Resource Identifier.

To put it differently, educational resources are entities that can
be presented in a Web-based learning environment (and thus must
be identifiable and addressable). In the following, the term ‘‘re-
source” is often used as a short form of ‘‘resource identifier”.

Learning consist of more than reading and experiencing educa-
tional resources. Usage of tools such as concept mapping tools,
graph plotters, etc, is an essential part of the learning process. Ide-
ally, a course generator includes opportunities to use such tools at
appropriate moments. In the following, a learning-support tool is
any application that supports the learner during his learning pro-
cess in a targeted way and can be integrated into the learning pro-
cess automatically (a related concept is ‘‘cognitive tool”, (Mayes,
1992)).
2.2. Course generation

Brusilovsky and Vassileva (2003) distinguish between course
(ware) generation and course(ware) sequencing. Course generation
generates a structured sequence of learning objects that is adapted
to the learner. The course is generated before it is presented to the
learner. This pre-usage generation has the advantage that the
course can be shown to the learner, so that its structure is
conveyed.

Course sequencing dynamically selects the most appropriate re-
source at any moment. Thus, the course is not generated before-
hand but step-by-step. The benefit of this approach is that it can
react to the current context and thereby circumvent problems that
arise in course generation if assumptions about the learner change.
However, this local approach makes it hard to convey information
about the structure of a course and the sequence from start to end
can not be presented to the learner. In this article, we focus on
course generation with a extension for local sequencing.

Generally speaking, course generators consist of a domain model
that represents the content to be taught (typically modeled by a di-
rected graph). Metadata provide additional information about the
resources (e.g., difficulty level, typical target audience). Ideally,
every resource has a type that specifies its instructional role, e.g.,
whether it is a definition, example, exercise, etc. (Ullrich, 2005).
Based on observations of the user’s interactions, the learner model
stores, infers and updates information about an individual user
(Brusilovsky & Millán, 2007). The teaching model contains the ped-
agogical knowledge how to assemble a course by using the infor-
mation provided by the domain and learner model.
2.3. Hierarchical task network planning

HTN-planning is a practically oriented type of AI planning with
applications in various domains such as evacuation planning, soft-
ware systems integration or project planning (Nau et al., 2005).
Briefly speaking, in HTN-planning, the goal of the planner is to
achieve a list of tasks, where each task is a symbolic representation
of an activity to be performed. The planner formulates a plan by
decomposing these tasks into smaller and smaller subtasks until
primitive tasks are reached that can be carried out directly. Sacerd-
oti (1975) and Tate (1977) developed the basic idea in the mid-
1970s.

The course generator described in this article uses the HTN-
planner JSHOP2 (Ilghami & Nau, 2003). JSHOP2 is a member of the
SHOP2 planner family (Nau, Muñoz-Avila, Cao, Lotem, & Mitchell,
2001). Unlike most other HTN planners, SHOP2 planners decompose
tasks into subtasks in the order in which the tasks will be achieved
in the resulting plan. This search-control strategy is called ordered
task decomposition. As a result of this strategy, the current state is
known in each step of the planning process (Nau et al., 2005). This
allows incorporating sophisticated reasoning capabilities into the
planning algorithm, such as calling external functions, which can
perform complex calculations or access external information
sources.

The JSHOP2 formalism uses different kinds of symbols: variable
symbols, constant symbols, predicate symbols, function symbols,
compound task symbols, primitive task symbols, and name sym-
bols. All these sets are mutually distinct. To distinguish among
these symbols, we will use the following conventions:

� variable symbols begin with a question mark (such as ?x);
� primitive task symbols begin with an exclamation point (such as

!unstack);
� constant symbols, predicate symbols, function symbols, and

compound task symbols begin with a letter;
� square brackets indicate optional parameters or keywords.

A term is any one of the following: a variable symbol; a constant
symbol; a name symbol; a number; a list term; a call term. A list
term is a term of the form (t1t2 � � � tn) where each ti is a term.

A call term is an expression of the form (call f t1t2 . . . tn) where f
is a function symbol and each ti is a term. A call term tells JSHOP2
that f is an attached procedure, ie, that whenever JSHOP2 needs to
evaluate a structure where a call term appears, JSHOP2 should re-
place the call term with the result of applying the external function
f on the arguments t1, t2, . . ., and tn. In JSHOP2, any Java function can
be attached as a procedure, as long as it returns a term as a result.

A logical atom has the form (p t1t2 � � � tn) where p is a predicate
symbol and each ti is a term. For instance, the fact that a resource
r was inserted in course is represented by (inserted r). Logical
atoms can be combined to logical expressions using the standard
logical operators: conjunction, disjunction, negation and implication.

A task atom is an expression of the form (s t1t2 � � � tn) where s is a
task symbol and the arguments t1t2 � � � tn are terms. The task atom
is primitive if s is a primitive task symbol, and it is compound if s is a
compound task symbol. For instance, the primitive task (!insert r)
represents the goal that a resource r should be inserted into a
course. The compound task (rehearse r) represents that a course
should be generated that supports the learner is rehearsing r.

An HTN-planning problem consists of an initial state (repre-
sented as a set of logical atoms that are assumed to be true at the
time when the plan executor will begin executing the plan), the ini-
tial task network (a set of tasks to be performed), and a domain
description that contains

Planning operators describe various kinds of actions that the
plan executor can perform directly. These operators have precondi-
tions, add and delete lists. An instantiated operator carries out the
primitive task associated with it and changes the world state upon
its execution according to its add and delete lists. An operator has
the form (:operator h P D A) where h is the head; P is the precondi-
tion; D is the delete list; A is the add list.

Methods describe various ways of decomposing non-primitive
tasks into subtasks. These are the ‘‘standard operating procedures”
that one would normally use to perform tasks in the domain. Each



C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9321
method may have a set of constraints that must be satisfied in
order for the method to be applicable. A method is a list of the form
(:method h L1T1 L2T2 � � � LnTn) where h is called the method’s head;
each Li is called a precondition for the method; each Ti is called a tail
or the subtasks of the method. In the following, we will often refer
to a method by its head only.

Axioms are Horn-clause like statements for inferring conditions
that are not mentioned explicitly in world states, but can be in-
ferred from the world state.. An axiom is a expression of the form
(:�a L1L2 . . . Ln), where the axiom’s head is the logical atom a, and
its tail is the list L1L2 . . . Ln, and each Li is a logical precondition. The
intended meaning of an axiom is that a is true if L1 is true, or if L1 is
false, but L2 is true, . . ., or if all of L1,L2, . . . ,Ln�1 are false but Ln is
true.

Planning is done by applying methods to non-primitive tasks to
decompose them into subtasks, and applying operators to primi-
tive tasks to produce actions. If this is done in a way that satisfies
all constraints, then the planner has found a solution plan; other-
wise the planner will need to backtrack and try other methods
and actions. Our version of JSHOP2 applies operators and methods
in the order given in the domain description. In the following,
primitive tasks are prefixed with ! and variables with ?

3. The course generation planning domain

In this section, we will describe the basic course generation
knowledge, that is, a basic set of building blocks from which com-
plex course generation scenarios can be constructed. Before we ex-
plain the knowledge in detail, we will briefly discuss the
peculiarities of the course generation domain.

A feature that distinguishes the course generation planning do-
main from other domains is that there exist a number of tasks that
should be achieved if possible, but failing does not cause back-
tracking. We call these tasks optional tasks. An example is the moti-
vation of a concept. If there exist educational resources that can
serve as a motivation, then they should be included in the course.
If no appropriate resource can be found, the course generation
should continue anyway, since in this case it is preferable to give
the student a sub-optimal course rather than no course at all. In
contrast, other tasks are critical, and have to be achieved (we will
mark these tasks with a ! suffix). Whether a specific task is critical
or optional depends on the scenario. Therefore, in PAIGOS, for almost
any critical task there exists an equivalent optional task. A second
notable feature of the course generation domain is that, in general,
resources are not consumed in the sense that they are no longer
available. This is different from other domains, such as the travel
domain in which fuel is consumed. An educational resource that
is added into a course can be added again at a later time (the only
potential constraint is that it makes sense from a pedagogical point
of view). Similarly, starting/ending a section can be realized at any
time and repeatedly without consuming resources. As a conse-
quence, several operators do not have preconditions (neither do
some methods) nor delete or add lists.

3.1. Course generation planning problems

The course generator constructs a course for a given user and a
learning goal (also called ‘‘goal task”). A learning goal is a pair
t = (p,L), where p represents the pedagogical objective and L is a list
of educational resource identifiers. L specifies the course’s target
concepts, and p influences the structure of the course and the edu-
cational resources selected. The order of the resources in L is rele-
vant, ie, another order can result in a different course. As an
example, the learning goal t = (discover, (def_slope, def_diff)) rep-
resents the goal of a user who wants to discover and understand
the concepts def_slope and def_diff in depth.
Table 1 contains a selection of goal tasks formalized within
PAIGOS, partly designed in cooperation with pedagogical experts.

The general form of a planning problem for a user with identi-
fier userId and the learning goal (ped_Obj f1 . . . fn) looks as follows:

1 (defproblem Problem CourseGeneration
2 (user userId)
3 (goalTask (ped_Obj f1 . . . fn))
4 (scenario ped_Obj)
5 (targetFundamental f1) � � � (targetFundamental f1)
6 ((ped_Obj f1 . . . fn)))

The first line defines a problem with the name Problem to be
solved in the domain CourseGeneration. The initial state (lines 2–
5) contains the user identifier (line 2), the complete goal task (line
3) and the decomposed goal task (split in the scenario name, line 4,
and the target resources, line 5). This information is redundant
since it can be generated from the goal task, but is nevertheless
represented in the initial state to simplify access to that informa-
tion during course generation. The initial task network consists
of the learning goal (line 6). Notably, the world state contains nei-
ther information about the resources nor about the learner (be-
sides the identifier). All this information is retrieved dynamically,
when required.

3.2. Basic course generation operators and methods

We will now describe the details of the course generation plan-
ning domain. The following two axioms implement basic general
functionality. The equality of two given terms is tested by the
axiom (:- (same?x?x) ()). The axiom’s head matches only if the
terms passed as arguments are the same. Otherwise the variable
?x would need to be bound to two different values, which is impos-
sible. If the axiom’s head matches, its body is evaluated. Since it is
empty, the axiom is satisfied.

In JSHOP2, an assignment expression (assign?var t) binds ?var to
the term t. The following axioms extend this behavior to a list:

(:- (assignIterator ?var (?head. ?tail)) (assign ?var ?head))
(:- (assignIterator ?var (?head. ?tail)) (assignIterator ?var ?tail))

If the precondition of an operator or method contains (assignI-
terator ?var termList), all bindings of ?var to the elements of the list
termList will be generated. The first axiom binds ?var to the first va-
lue of the list (split in its head and tail by using the JSHOP2 ‘‘�” oper-
ator); if the planning process fails at any time later, backtracking
causes the second axiom to be applied, which recurses into the list
and thus applies the first axiom to bind ?var to the next value. This
process is repeated until the list is empty, which means the axiom
cannot be satisfied. Then the planning process backtracks.

The result of a planning process in the course generation do-
main is a plan consisting of a sequence of operators that, when ap-
plied, generates a structured list of references to educational
resources and learning-support services. Several operators and
methods handle the insertion of references to educational re-
sources in a course. The basic operator is (:operator (!insertResource
?r) () () ((inserted ?r))). It has no precondition and delete list. It adds
a logical atom to the world state that describes that a resource ?r
was inserted into the course.

Two methods use this operator. The method (:method (insert-
ResourceOnce! ?r) ((not (inserted ?r))) ((!insertResource ?r))) is appli-
cable only if the given resource was not yet inserted into the course
and in that case inserts the resource, otherwise it fails. The method
shown below inserts a given resource if it was not yet inserted (line
2), otherwise (the second precondition/tail pair, line 3) achieves
the task directly since it has no subtasks.



Table 1
A selection of pedagogical objectives used in PAIGOS.

Identifier Description

discover Discover and understand fundamentals in
depth

rehearse Address weak points
trainSet Increase mastery of a set of fundamentals by

training
guidedTour Detailed information, including prerequisites
trainWithSingleExercice Increase mastery using a single exercise
illustrate Improve understanding by a sequence of

examples
illustrateWithSingleExample Improve understanding using a single

example

1 The axiom uses the term ‘‘fundamental” instead of ‘‘concept” due to the
terminology used in the ontology used to represent the different types of the
educational resources.

9322 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
1 (:method (insertResource ?r)
2 ((not (inserted ?r))) ((!insertResource ?r))
3 ()())

Two additional methods operate over lists of resources. The
method insertAllResources inserts in a course all resources of a gi-
ven list. The method addInWorldStateAsInserted marks a list of re-
sources as inserted.

The operators (:operator (!startSection ?type ?refs) () () ()) and
(:operator (!endSection) () () ()) are used for creating structure with-
in a course. The intended meaning is that all references that are in-
serted between a !startSection and an !endSection operator are
contained within the same section (sections can be nested). The
parameters of the !startSection operators allow to provide informa-
tion about the type of the section and the principal resource of the
section. This information can be used to generate detailed section
titles. For instance, the type introduction with reference def_slope
will generate the section title ‘‘Introduction for Definition of a
Slope” in several languages. A related operator (:operator (!text
?type ?parameters)) generates short bridging and introductory
texts that explain the purpose of sections.

3.3. Accessing information from external knowledge sources

Planning in the course generation domain requires up-to-date
information about the learner (in order to adapt to his competen-
cies and preferences) and about existing resources (for knowing
which sections and references can be inserted). In the course gen-
eration domain, it is practically impossible to know the world state
in advance. Typically, educational resources are too numerous to
be represented in the world state. Thus, the planner’s information
about the world is incomplete. Various approaches in AI address
this problem, for instance trough sensing actions (Etzioni et al.,
1992). Similarly, we propose retrieving the necessary information
during the planning process. In the following, we will describe the
call terms, ie, the external functions that PAIGOS uses to access infor-
mation from external knowledge sources.

The function (GetResources query) returns the list of identifiers
of those educational resources that fulfill the given query. The
query consists of a partial metadata description with three parts:
the classes of the educational resources, property metadata, and
relational metadata. Using a mediator architecture, this query is
passed to all connected learning object repositories (and translated
into their specific terms, if necessary) (Kärger, Ullrich, & Melis,
2006). The set of identifiers that meet the description is then re-
turned to the planner. As an example, the call term (GetResources
((class Exercise) (relation isFor def_slope))) returns the list of all
exercises for the educational resource with the identifier def_slope.

Often, it is necessary to find educational resources which are
connected to a given resource by some relation. A typical example
is to find the prerequisites of a concept. In PAIGOS, the function Get-
Related provides this functionality. Sorting a set of resources with
respect to a given relation is done using the function Sort.

The function (learnerProperty ?property ?value ?ref) accesses
information about the learner. It takes a property as input and
binds the variable ?value to the value stored in the learner model
for this property for the current user. ?ref is optional and allows
to pass a resource identifier, thereby enabling to query information
about the user with respect to a given resource. For example, (lear-
nerProperty hasEducationalLevel ?edlev) binds ?edlev to the educa-
tional level of the current learner, e.g., universityFirstYear for a
first year university student. (learnerProperty hasCompetencyLevel
def_slope ?cl) binds ?cl to the current competency level that the
learner has reached with respect to the concept def_slope, e.g., 3.
The specific properties that can be queried depend on the learner
model. In ACTIVEMATH, the properties include static information
such as the current level of education and his field of interest,
and dynamic information such as the competency level, motiva-
tional and affective state and whether a resources was already
seen. This latter property is used by the axiom sortByAlreadySeen
to divide a list into unseen and seen resources.

In the PISA competency framework (OECD, 2003) that underlies
ACTIVEMATH, a learner who has reached a competency level of three
(on a range from 1 to 4) is able to perform extensive computations.
In PAIGOS, this is represented by the axiom (:- (known ?f) ((learner-
Property hasCompetencyLevel ?f ?cl) (P?cl 3))). The axiom is satis-
fied if the learner has reached a competency level greater or
equal to three with respect to the given concept.

Several axioms are based on this elementary axiom: the axiom
(allKnownOrInserted?refs) is satisfiable if all resources in the given
list are either known or were inserted into the course.

The axiom removeKnownOrInsertedFundamentals removes from
a list of concepts1 those concepts the learner ‘‘knows”. The axiom
readyAux checks whether the learner is prepared to understand a gi-
ven resource by testing whether all concepts that the resource is for
are either known or were inserted into the course (in other words
whether an opportunity is provided to the learner to understand
the necessary concepts before he reaches the resource).

The operator !insertWithVariantsIfReady inserts a resource into a
course and marks all its variants as inserted. Two educational re-
sources are considered being variants if they are almost equivalent
and differ only insignificantly. This fact is represented in the meta-
data with the relation is-variant-of. For instances, two exercises a
and b are marked as being variants if they present the same prob-
lem but a uses a graph in addition to the text. More often than not,
only either a or b should be included in a course. In PAIGOS, this is
achieved by using !insertWithVariantsIfReady instead of
!insertResource.

3.4. Structure and dynamic adaptivity: dynamic tasks

Course generation faces a dilemma: on the one hand it makes
sense from a pedagogical point of view to generate a complete
course immediately after receiving the learner’s request, instead
of selecting and presenting one resource after another, as it is done
in dynamic content sequencing. The learner is provided with the
complete sequence of content that leads him toward his learning
goal, and can recognize how the content is structured and can
freely navigate.

On the other hand, if a long time passes between the generation
and consumption of a page, assumptions about the learner may
have become invalid. Then, some presented material would be



C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9323
inadequate. Hence, the course generation should adapt dynami-
cally and use the most up-to-date information about the learner
that is available.

Execution monitoring and re-planning offers a framework that
can cope with situations in which assumptions made during plan-
ning can change while the plan is executed (for an overview, see
Russell & Norvig (2003, p. 441ff)). However, this framework cannot
be applied to course generation as realized in PAIGOS. Here, the plan
is completely applied before the course is presented, in fact, apply-
ing the plan produces the course.

The solution implemented in PAIGOS is based on dynamic subtask
expansion. That is, planning may stop at the level of specially
marked primitive tasks, called dynamic tasks. Each dynamic task
encloses a pedagogical task t and is inserted into the course instead
of t. Since a dynamic task is primitive, it counts as directly achieved
by its operator and is not further expanded.

Later, at presentation time, when the learner first visits a page
that contains the dynamic task, the task t it encloses is passed to
the course generator. Then, the course generator assembles the se-
quence of resources that achieve t. The resulting identifiers of edu-
cational resources replace the dynamic task in the course structure
with a list of instances of educational resources. Hence, when the
page is revisited, the elements do not change, which avoids confu-
sion of the learner reported by De Bra (2000). This means a course
is partly static, partly dynamic, and thus the goal of presenting the
complete course to the learner while still being able to adapt is
realized.

Dynamic tasks can be introduced by human ‘‘course genera-
tors”, too. That is, Authors who manually compose courses can de-
fine a course for which parts of the course are predefined and
others dynamically computed. In this way, an author can profit
from the best of both worlds: she can compose parts of the course
by hand and at the same time benefit from the adaptive features of
the course generator.

Dynamic task expansion offers an additional benefit: since the
course generation stops at a higher level and does not expand all
subtasks, the planning process is much faster. The technical evalu-
ations (see Section 5) show an increase of performance up to a fac-
tor of 10 due to this technique.

Since dynamic subtask expansion is not natively supported by
JSHOP2’s planning algorithm, it is simulated in PAIGOS by the operator
(:operator (!dynamicTask ?ped_Obj ?refs) ()()()). If a subtask t of a
method is not to be expanded, then t is given as parameter to
the primitive task atom !dynamicTask. Since the operator that per-
forms this task atom has no preconditions, it can be performed di-
rectly. When the operator is applied during plan execution, it
creates a special element called dynamic item. At a later time,
when the course is presented to the learner and the server that
handles the presentation detects a dynamic item on the page, it
passes the associated dynamic task to the course generator. Then,
the course generator assembles the educational resources that
achieve the task. In a final step, these resources replace the
dynamic item and are presented to the learner.

In order to avoid that new dynamically generated sequences
duplicate references to previously inserted resources, dynamic task
expansion needs to take the current course into account. Thus,
each reference to a resource r contained in the current course re-
sults in a logical atom (inserted r) that is inserted into the world
state the course generator is started with.

3.5. Converting a Plan into a Course

After a plan is found, it is used to generate a course, more pre-
cisely, a table of contents. PAIGOS represents courses using the ele-
ment omgroup, which is an element from the OMDOC standard, a
semantic knowledge representation for mathematical documents
(Kohlhase, 2006). The purpose of the omgroup element is to repre-
sent collections of resources. It is independent of the mathematical
domain OMDOC was developed for. It can be easily mapped to other
data structures with similar aims, such as IMS CP (IMS, 2003).

An omgroup element consist of metadata information (e.g., the
author and title of the element), references to other OMDOC ele-
ments, other omgroup elements, and dynamic items that allow
the dynamic inclusion of resources generated by services.

From a plan, a course represented as an omgroup is
constructed:

� !startSection triggers the opening of an omgroup element.
� !endSection inserts the closing tag of an omgroup element.
� !insertResource inserts the ref element that OMDOC uses for

resource references.
� !text inserts a dynamicItem element that serves as a symbolic

representation for text generation.
� !dynamicTask inserts a dynamicItem element that is used for

dynamic task expansion.
� Internal operators (marked with the prefix ‘‘!!”) serve JSHOP2’s

internal bookkeeping purposes and are ignored.

The resulting OMDOC grouping consists of nested sections in
which the leaves are pointers to educational resources.
4. Moderate constructivist competency-based scenarios in
PAIGOS

In this section, we explain how we used the pedagogically neu-
tral operators, methods and axioms described in the previous sec-
tion to build complex course generation scenarios. We will focus
on a scenario that should lead to moderate constructivist teaching
in which learners play an active role and are to a large extent
responsible for the outcome of their learning process. As a result,
the course generation scenario aims at supporting the students
in structuring their learning activities and developing strategic
competence. In addition, this and other scenarios implement a
competency-based approach. Competency-based pedagogy argues
that literacy in, e.g., mathematics requires mastering different
competencies, such as performing calculations and being able to
argue mathematically (Niss, 2002).

First this section explains the example and exercise selection,
followed by a detailed description of a scenario that supports
learners in reaching an in depth understanding of a given list of
concepts. Finally, we sketch the other scenarios that we
implemented.
4.1. Selecting exercises and examples

The methods presented in this section implement the pedagog-
ical knowledge of selecting exercises that are ‘‘appropriate” for the
learner. The meaning of ‘‘appropriate” differs depending on the
individual learner. For instance, if he is highly motivated then a
slightly more difficult exercise might be selected. The most rele-
vant factors are the educational level of the learner and his compe-
tency level.

The learning context of an educational resource describes the
educational level of its typical target audience. In general, re-
sources that are selected for a learner should to correspond to
his/her educational level. Otherwise, it may be inadequate in its
formulation or difficulty, e.g., either too simple or too difficult
(think of a second year university student reading a definition for
elementary school).

The competency level of a resource measures to which extend a
specific competency has to be developed by the student in order to



Fig. 1. Example of a method for trainWithSingleExercise.

9324 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
solve/understand the particular exercise/example with a certain
probability. In most cases, resources presented to the learner
should have a competency level that corresponds to the learner’s
since these are the resources he is able to understand and work
with.

The task that governs the exercise selection is (trainWithSingle-
Exercise! f), which triggers the insertion of an exercise for the con-
cept f. All methods that formalize the knowledge of how to select
an exercise follow the same basic scheme, which we will explain
using the method in Fig. 1. In short, this method specifies that if
a learner is highly motivated, then it inserts a subtask that selects
an exercise of the next higher competency level. This method is
based on the strong positive correlation between motivation and
performance (Pintrich, 1999): in general, with increasing motiva-
tion, performance increases, too (and vice versa).

In the figure, lines 3–8 prepare the ground for selecting the
exercise. The lines 3–4 specify the condition under which the
method can be applied (the learner is highly motivated). The axiom
learnerProperty binds the current motivation represented by a
number between 1 and 4 to the variable ?m (line 3). The expression
in line 4 tests whether ?m is equal to 4, the highest motivational
level. The subsequent lines 5–7 collect information about the lear-
ner, which is used to specify the metadata constraint, ie, the field of
interest of the learner (line 5), his educational level (line 6), and his
competency level (line 7). The information collected up to now is
used to instantiate a mediator query. The query includes the con-
straints that the resources have the type exercise (line 10) and that
they are for f (line 11). The competency level that the exercise
should be for is one higher than the current competency level of
the learner since the exercise should be slightly more difficult (line
13). In case the learner has reached the highest competence level,
increasing the value has no effect. In lines 9–14, the query is sent to
the mediator. If there exist any educational resources that fulfill
the constraint, then these resources are bound to the list variable
?unsortedExercises in line 8. Line 15 sorts the list and moves any
not yet seen resources to the front of the list. The axiom assignIter-
ator causes the planner to iterate through the list of exercises (line
16), and the subtask of the method inserts the first exercise that
the learner is ready to see (line 19). If there is such an exercise, it
is inserted and all its variants are marked as inserted. Otherwise,
if none of the exercises bound to the list ?exercises can be inserted
or no exercises was found at all, then the planning algorithm back-
tracks and applies the next possible operator or method.

All in all, about 60 methods govern exercise and example selec-
tion. They are too numerous to describe all of them in detail, and
thus we will only describe them briefly in the following. They all
follow the scheme explained in Fig. 1, ie, they define a metadata
constraint which is send to the mediator.

In case the learner exhibits a low motivation, then an exercise of
a lower competence level is presented if available. Otherwise, the
course generator tries to insert an exercise whose metadata corre-
sponds directly to the learner’s characteristics: if available, an
exercise is selected that has the learner’s field and corresponds
to the learner’s educational and competency level. If no exercise
was found, then the constraint on the field value is dropped. If still
no adequate exercise exists, then several methods search for exer-
cises on the next lower competency level, first with and then with-
out the field constraint. The rationale is that it is better to present a
exercise with a too low competency level than one of a different
learning context since resources from a different learning context
might be harder to understand than ‘‘easier” exercises. Finally,
the constraint on the learning context is relaxed by including exer-
cises from lower contexts.

An additional method applicable on the task atom trainWithSin-
gleExerciseRelaxed! covers least constrained exercise selection. This
task serves as a fallback task in case none of the above methods
could be applied. The method relies on the belief that presenting
a potentially inadequate exercise is preferred over presenting no
exercise at all. The need for such a task became apparent in empir-
ical evaluations involving students who preferred inadequate re-
sources over no resources at all. The method omits the constraint
on the competency level and traverses all potential educational
levels. In addition, it does not check whether the learner is ‘‘ready”
to understand the exercise but directly inserts it if it was not al-
ready inserted (using the task insertResourceOnce!).

Sometimes it is necessary to search for exercises that are of a
specific competency and difficulty level. Hence, a set of methods
equivalent to those described above exists that adds constraints



Fig. 2. Top-level decomposition in the scenario discover.

Fig. 3. IntroduceWithSection! generates an introduction.

C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9325
on difficulty and competency. These methods are applicable on the
task (trainWithSingleExercise! f difficulty competency).

An additional method applicable on the task (train! f) selects a
sequence of exercises for a concept f. The exercises cover all com-
petencies (as far as there exist adequate exercises for the compe-
tencies). A related method for the task (practiceCompetency
competency f) triggers the insertion of exercises that train a specific
competency competency for a given concept f.

The example selection formalized in PAIGOS is very similar to the
exercise selection and thus will not be covered in detail. The main
difference is that the field of an example is considered as being
more important than in exercise selection: examples illustrate as-
pects of a concept and should, if possible, use situations and pro-
vide context of the learner’s field of interest.

4.2. Scenario discover

The scenario discover generates courses that contain those edu-
cational resources that support the learner in reaching an in depth
understanding of the concepts given in the goal task. The course in-
cludes the prerequisites concepts that are unknown to the learner.
It also provides the learner with several opportunities to use learn-
ing-support services.

The basic structure of the scenario follows the course of action
in a classroom as described by Zech (2002), which consists of sev-
eral stages that typically occur when learning a new concept. For
each stage, the course contains a corresponding section. The fol-
lowing sections are created:

Description: The course starts with a description of its aim and
structure. Then, for each concept given in the goal task, the fol-
lowing sections are created.
Introduction: This section motivates the usefulness of the con-
cept using adequate resources (for all stages, the precise mean-
ing of an ‘‘adequate” educational resources is explained in the
formalized methods below). It also contains the prerequisites
unknown to the learner.
Develop: This section presents the concept and illustrates how it
can be applied.
Proof: For some concepts (theorems), proofs, or more general
evidence supporting the concepts are presented.
Practice: This section provides opportunities to train the
concept.
Connect: This section illustrates the connections between the
current concept and related concepts.
Reflection: Each course closes with a reflection section, which
provides the learner with opportunity to reflect on what he
has learned in the course.

The two methods illustrated in Fig. 2 start the generation of a
course for the scenario discover. The upper method decomposes
the task (discover f) into five subtasks. First, a new section is
started, in this case the course itself (line 3). Then, a description
about the course’s aims and structure is inserted (line 4). The third
subtask triggers a method that recursively inserts the task (learn-
FundamentalDiscover g) for each identifier g in the list of identifiers
bound to ?fundamentals. The last two subtasks insert the reflection
section and close the course.

As a consequence, for each concept g, a task (learnFundamental-
Discover g) is created. The bottom method in Fig. 2 decomposes the
task into subtasks which closely resemble the structure of the sce-
nario as described in the previous section:

An introduction of a concept f in the scenario discover consists of
a section that contains one or several educational resources that
introduce f and of a section that contains the prerequisite concepts
that the learner needs to see. The method is defined as (:method
(introduceWithPrereqSection! ?c) () ((introduceWithSection! ?c)
(learnPrerequisitesFundamentalsShortSection! ?c))).

The resources that introduce a concept f are determined by the
method in Fig. 3. The method starts a new section and inserts a text
that explains the section’s purpose. The next three tasks try to in-
sert several resources: a resource that motivates the concept, a
real-world problem involving f, and an example that illustrates
the application of f. The planning tries to maintain the students
motivation by presenting an exercise if there is sufficient evidence
that the learner will be able to solve it, and an example or text of
type introduction otherwise.

In the scenario discover, all prerequisite concepts that are un-
known to the learner are presented on a single page. Thus, the stu-
dents easily distinguish between the target concepts and the
prerequisites.

The axiom shown in Fig. 4 is used to retrieve the prerequisite
concepts. In a first step, all concepts that are required by the con-
cept bound to ?c and whose learning context corresponds to the
educational level of the learner are collected using the function
GetRelated (lines 3–6). In case some are found (line 7), they are
sorted with respect to the prerequisite relationship requires (lines
8–13). Finally, those concepts that are known to the learner are re-
moved using the axiom removeKnownFundamentals and the result
is bound to the variable ?result.

The axiom is used by the method shown in Fig. 5. It first collects
all unknown concepts (in the precondition, line 2) and, if there are
any, adds a task that inserts them (line 4).

The section develop presents the concept, together with re-
sources that help the learner to understand it. Fig. 6 shows the cor-
responding method. Both precondition-subtask pairs start a new
section, include a text that explains the purpose of the section
and insert the concept the section is about. In case the learner



Fig. 4. CollectUnknowPrerq collects all unknown prerequisites.

9326 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
exhibits a high competency level (tested in the first precondition),
a single example illustrates the concept. Otherwise, the learner
does not exhibit a high competency level, and first a text explain-
ing the concept is inserted, followed by several examples that aim
at providing the learner with an understanding of the concept. The
example insertion uses the dynamic task (!dynamicTask illustrate!
(?c)). The planning process does not expand this subtask, hence
the specific examples are selected at a later time. The final subtask
closes the section. We do not describe the methods for the task ex-
plain and prove. Basically, they search for resources of the respec-
tive type.

The methods in the section practice insert a list of exercises that
provide the learner with opportunities to develop her own under-
standing of the concept from a variety of perspectives. The method
illustrated in Fig. 7 creates a corresponding section. Note that the
Fig. 5. Inserting all unknown prerequisites.

Fig. 6. Developing a concept.
result of the function GetResource (lines 5–9) is not bound to a var-
iable. Its only purpose is to test whether there exists an exercise
that can be inserted at a later time, when the dynamic task is ex-
panded. This test is performed for each applicable educational level
until matching resources are found. In case no resource was found,
the method is not applicable and backtracking takes place. If this
test would not be performed, then it might happen that a dynamic
task is inserted even if there are no exercises that can instantiate it.

The subtasks of the method start the section and insert a text
that explains the purpose of the section (lines 10–11).

Line 12 inserts a reference to a learning-supporting service,
called exercise sequencer. An exercise sequencer leads the learner
interactively through a sequence of exercises until a terminating
condition is reached, given by the second parameter. In this case,
the parameter TrainCompetencyLevel specifies that the learner
should reach the next higher competency level. Since some learn-
ers prefer not to use the exercise sequencer, the following sub-
task—a dynamic task—triggers the insertion of exercises (line 13,
the task train! was explained in Section 4.1). Due to the precondi-
tions, it is certain that this subtask can be fulfilled. The final sub-
task closes the section.

The final sections, connect for each chapter and reflect for the
overall course aim at meta-cognitive activities. The section connect
illustrates the connections between the current concept and re-
lated concepts such as theorems. The reflection step provides the
learner with opportunity to reflect on what he has learned in the
course. Preferably, using an Open Learner Model (OLM, Dimitrova,
2002), if such a service is available, or otherwise a text that ex-
plains how to reflect.

Fig. 8 contains a screenshot of a course generated for the scenario
discover and the goal concepts ‘‘definition of the derivative, resp., dif-
ferential quotient”, ‘‘definition of the derivative function” and the
theorem ‘‘sum rule”. The page displayed on the right hand side of
the figure is the second page of the course. It contains the first items
of the prerequisites page: the generated text that describes the pur-
pose of the section and the first of the prerequisite concepts. The sec-
tions displayed in the table of contents vary in the pages they
contain. For instance, the first section does not contain an introduc-
tion page. The reason is that no elements could be found to be dis-
played in this section and therefore, the section was skipped.

4.3. Other scenarios

During the learning process, students will have different learn-
ing goals. For instance, the scenario discover supports students in



Fig. 7. Training a concept.

Fig. 8. A course generated for the scenario discover.

C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9327
learning previously unknown content. In this section, we describe
five additional scenarios that help learners at later stages in their
learning.

Courses of the type rehearse are designed for learners who are
already familiar with the target concepts but do not yet master
them completely. Such a course provides several opportunities to
examine and practice applications of the concepts and illustrates
the connections between concepts. The structure is as follows:

Description: The course starts with a description of its aim and
structure. Then, for each concept given in the goal task, the fol-
lowing sections are created.
Concept reminder: This section presents the concept of the
section.
Illustrate: This section presents example applications of the
concept.
Connect: This section illustrate the connections between the
current concept and related concepts.
Practice: This section provides opportunities to train the
concept.
Illustrate–2: This section contains additional examples.
Practice–2: This section contains additional exercises.

Fig. 9 depicts a screenshot of a course generated for the scenario
rehearse and the same goal concepts as in Fig. 8. The page displayed
on the right hand side of the figure is the second page of the course,
which contains the definition rehearsed in the first section of the
course. Note that this book is more focused on the selected con-
cepts than the discover course (e.g., prerequisites and proofs are
omitted) and offers a wider range of exercises and examples.

The scenario connect helps the learner to discover connections
among the concepts given in the goal task and with other concepts
and to provide opportunities to train the concepts. The rationale of
this scenario is that laws and theorems connect definitions by
describing some relationship between the definitions. For instance,
laws in physics put physical concepts in relation to each other.
Becoming aware of these connections is beneficial to the user’s
learning (Novak & Gowin, 1984).

A course generated for the scenario connect is structured as
follows:



Fig. 9. A course generated for the scenario rehearse.

9328 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
Description: The course starts with a section that describes its
aim and structure. Then, for each concept given in the goal task,
say A, the following sections are inserted.
Present concept: The concept is inserted, together with a concept
map that shows its connections to laws/theorems and definitions.
Connect: For this section, all definitions (excluding A) are
retrieved that are required by those theorems that require A.
Then, for each retrieved definition, say B, the following sections
are created:
Illustrate: This section presents example applications of the
definition.
Train: This section provide opportunities to train the definition.
Develop: This section develops the definition in the following
way:
Present: The definition is presented.
Connect-2: This section presents all theorems that connect the
original concept A with the definition B and all previously pro-
cessed definitions.
Train-Connection: The course ends with a section that contains a
concept map exercise.

A course generated for the scenario train competency trains a
specific competency by presenting sequences of examples and
exercises for a specific competency with increasing difficulty and
competency level. The courses are structured as follows:

Description: This section provides a description of the scenario.
Then, for each concept given in the goal task, the following sec-
tions are created:
Rehearse: This section presents the current concept.
Illustrate and practice: The following two sections are repeated
for each competency level starting with the competency level
one below the learner’s current level:
Illustrate: This section contains a sequence of examples for
the selected competency and of the selected competency
level and of increasing difficulty level.
Practice: This section contains a sequence of exercises for the
selected competency and of the selected competency level
and of increasing difficulty level.
A course generated for the scenario train intensively generates a
course that aims at increasing the competency level of the learning
by presenting a large selection of exercises. The exercises cover all
competencies and are presented in a sequence of increasing diffi-
culty. For each concept, the course consists of two pages containing
exercises, the first for the learner’s current competency level and
the second for the next higher competency level.

The scenario exam simulation contains exercises that can be
solved within a specified timeframe. In contrast to the previous
scenarios, the exercises are not selected with respect to learner
properties since this is not the case in a real exam either. The
generated courses consists of a number of pages, with each page
consisting of exercises for the concepts selected as target
fundamentals. The final page of the course contains an estimation
of the amount of minutes it takes a average learner to solve all
exercises.

An additional scenario, not detailed in this article, is based on
Merrill’s first principles of instruction Merrill (2002). This scenario
served to demonstrate that the pedagogical knowledge formalized
in PAIGOS can realize scenarios following different pedagogical
paradigms.

5. Performance of PAIGOS

This section describes the results of a number of evaluations of
PAIGOS that assessed its performance, ie, the time it takes to gener-
ate courses under varying conditions. Since PAIGOS is used for sup-
porting mathematics learning in reality, performance matters. It
was not sufficient to develop a prototype, we also had to make
sure that the generation time is acceptable to students in real-life
usage.

Since the tests were designed to assess the performance of
PAIGOS, influences of other components were minimized as much
as possible. The learner model was replaced by a dummy learner
model that returned a standard value for each query. In addition,
most of the tests were performed with a filled mediator cache.
The mediator uses a cache that stores the results of incoming que-
ries. Thereby it avoids sending the same queries repeatedly to the
repositories connected to the mediator. For the evaluations, the
course was generated once, causing the mediator to store the re-
sults of the queries. Then, the actual test runs were performed,
on the same set of target concepts and thus resulting in the same
queries. In order to minimize influences of latency caused by the
network, all components, ie, the testing framework, ACTIVEMATH



C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9329
and its repository and learner model ran on the same computer, a
standard PC with 2.8 GH Intel Pentium 4 CPU with 2 GB RAM.

The tests were performed using the scenario discover. This sce-
nario includes a large variety of educational resources and is not as
specialized as, say, exam preparation. The data was collected by
generating six courses on 1, 4, 8, 12, 16, and 20 target concepts.
Each course generation was repeated 10 times and the data was
averaged. Prior to the test, the mediator cache was filled as de-
scribed above.

Table 2 provides details on the length of the created courses.
The course generated for a single concept consists of six pages
and a total of 37 educational resources if all dynamic tasks are ex-
panded. A course generated for 20 concepts consists of 83 pages
and 365 resources. If each resource had a typical learning time of
about two minutes, completing this course would take between
11 and 12 h. These figures illustrate that non-trivial course gener-
ation requires a large amount of educational resources: even a
course for 4 concepts consists of more than 100 educational re-
sources, such as texts, examples and exercises.

Table 3 and Fig. 10 plot the number of concepts against the time
required for course generation (in milliseconds). In the table, the
Table 2
The number of concepts, pages and resources of the courses generated in the
evaluations.

Number of concepts 1 4 8 12 16 20

Pages 6 19 36 52 79 83
Resources 37 105 202 254 319 365

Table 3
Required time of course generation vs. increasing amount of concepts.

Number of concepts 1 4 8 12 16 20

Expanded 429 1 204 1 875 2 562 3 360 4 834
Dynamic tasks 205 288 415 446 617 617

429

1204

1875

205 288 415

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9
#C

M
ill
is
ec
on
ds

Expanded

Fig. 10. A plot of the number of concepts vs. time r
condition Expanded provides the time required for a completely
expanded course, ie, all dynamic tasks are instantiated. The gener-
ation of the smallest course (a single concept, six pages and 37
educational resources in total) takes less than half a second. The
generation of a course for 20 concepts takes less than five seconds.
The condition Dynamic Tasks contains the values obtained for
course generation with dynamic tasks. The figures illustrate that
using dynamic items rather planning the complete plan can result
in a significant performance improvement: a course for 20 con-
cepts is generated in slightly more than half a second. (see Fig. 11).

Table 4 compares the times it takes to generates courses using a
filled cache (the same data as in the previous tables) versus an
empty cache. The increase is significant: the generation of a course
for a single concept with an empty cache takes more than a second,
compared to 200 ms with filled cached. A course for 20 concepts
takes about 11 s compared to half a second. This data was obtained
with the repository running at the same server as the course gen-
erator. Hence, accessing a repository over the Web would increase
the required time even more.

The reasons for the increase can be found by taking a closer look
at the mediator. Table 5 provides details about the number of que-
ries that are sent to the mediator during course generation and
about the number of queries that the mediator sends to the repos-
itory. The figures differ since the mediator expands a query for a
class c to include its subclasses. The data is provided for expanded
courses (condition Exp.) as well as for courses with dynamic tasks
(condition DT). The high number of queries came as a surprise.
Generating an expanded course for a single concept results in
about 1 500 mediator queries that are expanded to more than
11000 queries to the repository. The figures are significantly less
in condition DT. Approximately 150 queries are sent to the media-
tor, which expands them to about 1200 queries. On the other end
of the spectrum, generating an expanded course for 20 concepts re-
sults in 21500 mediator queries and more than 100000 expanded
queries. Condition DT requires approximately 2700 and 14100
mediator and repository queries.

A final test investigated the performance of concurrent access to
the course generator. In the test, fifty concurrent course generation
2562

3360

4834

446
617 622

10 11 12 13 14 15 16 17 18 19 20
oncepts

Dynamic Tasks

equired for course generation in milliseconds.



0

2000

4000

6000

8000

10000

12000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#Concepts

M
ill
is
ec
on
ds

Filled cache
Empty cache

Fig. 11. A plot of the number of concept vs. times required for course generation with empty and filled cache.

9330 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
processes were started, for a course with four target concepts.
Table 6 illustrates the results: on average, a completely expanded
course takes 30 s to generate. Using dynamic tasks, it takes about
8 s.

5.1. Discussion

The results show that PAIGOS on its own generates courses fast,
especially if dynamic tasks delay the expansion of subtasks. Thus,
dynamic tasks improve the performance and at the same time en-
able just-in-time adaptivity in generated and authored courses.

The tests were designed to assess the performance of PAIGOS. As a
consequence, external factors needed to be minimized. In particu-
lar, PAIGOS retrieved all resource queries from the mediator’s cache.
However, this test design is not completely artificial: in classroom
Table 4
Times for generating a course with filled and empty mediator caches.

Number of concepts 1 4 8 12 16 20

Filled cache 205 288 415 446 617 617
Empty cache 1218 2176 4258 6502 8975 11405

Table 5
Numbers of queries to the mediator and of expanded queries.

Number of concepts 1 4

Mediator queries (exp.) 1519 5297
Expanded queries (exp.) 11400 29697
Mediator queries (DT) 148 496
Expanded queries (DT) 1204 3349
usage, each lesson covers a limited set of concepts. After a few
course generations, the majority of queries will be cached. In addi-
tion, since the topics are known beforehand, the teacher or the e-
learning environment can fill the cache before the lesson by letting
PAIGOS generate a course.

Yet, PAIGOS’s real-life performance considerably depends on the
repositories and the learner model. In case the components reside
on different servers, the network latency alone reduces the overall
performance: the LEACTIVEMATH exercise repository is located in
Eindhoven, the Netherlands. When accessed from Saarbrücken,
Germany, it answers a single query in about 80 ms. As a conse-
quence, the generation of a 4 concepts course that requires 3300
queries requires 4:30 minutes instead of 290 ms.

On the Web, four minutes are an eternity. Few learners will wait
patiently for the course to appear: the experiments conducted by
8 12 16 20

9826 13123 16901 21499
49565 62992 83923 100421
1043 1503 2002 2707
7810 9702 11510 14155

Table 6
Required average time of 50 concurrent course generation processes (in ms).

Dynamic tasks 7 713
Expanded 31029



C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332 9331
Bhatti, Bouch, and Kuchinsky (2000) showed that subjects rate a
response time of over 11 s as unacceptable. This suggests adapting
the user interface metaphor of the course generator. Instead of
making the users expect an immediate course assembly, a course
should be ‘‘downloadable”, like a PDF document or PowerPoint
slides. A download often takes several minutes. After the ‘‘down-
load” the user is notified and can access her course from the main
menu.

5.2. Formative and summative evaluation

We also performed several formative and summative evalua-
tions in order to assess the students’ view on PAIGOS. The results
show that the subjects understand the structure of the generated
courses and appreciate the tailoring to their competencies. Those
scenarios that support the students in working with exercises are
valued highest. Scenarios such as connect that are new to students
are rated lower.

Open feedback questions used in the evaluations provided other
valuable insights. Two subjects commented that they were afraid
to miss important content when using generated courses. One of
the subject said ‘‘the personal book was at a good level, but if I
was revising for maths I would be worried that it would miss out
something important, and just read the prerecorded books any-
way”. This underlines the importance of making the concept of
course generation familiar to the students.

Another point emphasized by the subjects in the open feedback
was that they understand and appreciate the notion that a gener-
ated course is indeed personal, that is, it is tailored to and modifi-
able by the individual learner.
6. Related work

Course generation has long been a research topic. In this sec-
tion, we will discuss the related work, focused on well-known ap-
proaches that use (or claim to use) educational knowledge to
inform the sequencing and selection of learning objects.

The idea to encode pedagogical knowledge encoded in planning
operators to determine sequences of instructional acts was intro-
duced by Peachy and McCalla (1986). This general idea was refined
in the Generic Tutoring Environment (GTE) (Van Marcke, 1992) and
the Dynamic Courseware Generator (DCG) (Vassileva & Deters,
1998). To our knowledge, despite the time that has passed since
then, no course generation system except PAIGOS possesses a com-
parable large amount of pedagogical knowledge up to now. How-
ever, despite the amount of pedagogical knowledge modeled in
GTE and DCG, they have no notion of scenarios as developed in PAI-

GOS. In addition, the selection of exercises is limited.
DCG introduced a basic technique for course generation that is

still frequently used today (e.g., Conlan, Lewis, O’Sullivan, & Wade,
2003). Course generation in DCG is separated in two consecutive
steps: the selection of the concepts the course will cover (content
planning) and the way how these concepts are explained (presenta-
tion planning).

The distinction between content and presentation planning
raises the principal problem that for each concept it is decided sep-
arately what educational resources will be selected for it. The
selection only takes the current concept into account. Thus, it is
not possible to construct a page that contains, say, the definition
of a concept and all the definitions of its prerequisite concepts. It
is also not possible that the same concept occurs in the course sev-
eral times, which is necessary, for instance, when a theorem is used
in several proofs and should be presented each time. In PAIGOS, con-
tent and presentation planning are interleaved, and this makes the
selection much more flexible.
The Adaptive Courseware Environment (ACE), developed by
Specht and Oppermann (1998) and its successor WINDS (Specht,
2001), offer similar features as DCG and are conceptually very sim-
ilar to DCG. In particular, they follow the distinction between con-
tent and presentation planning and hence suffer from the same
drawbacks. In addition, the rules informing the presentation plan-
ning are attached to the individual concepts, which is a step back-
wards from the goal of generic instructional knowledge. The same
applies to the requirement that the path through the domain struc-
ture needs to be specified by the author and is not generated auto-
matically taking into account the learning goals.

Later approaches (Conlan et al., 2003; Keenoy, Levene, & Peter-
son, 2003; Méndez, Ramírez, & Luna, 2004) put less focus on ped-
agogical knowledge or do not provide sufficient descriptions to
assess it. None of these systems uses the structure of the generated
course to convey information about the learning process. In PAIGOS,
the hierarchical knowledge encoded in the pedagogical methods is
reflected in the different sections and sub-sections, which provide
a means for the student to understand the structure of a course.

Karampiperis and Sampson (2005) suggest to use statistical
methods for determining the best path through the educational re-
sources. A major drawback is that the educational resources are
rated by an instructional designer with respect to a specific learner.
The rating does not take into account that the same learner can
have different learning goals regarding the same concepts.

Sicilia, Sánchez-Alonso, and García-Barriocanal (2006) present
the idea to use HTN-planning to generate IMS LD instances. Their
description is on a very abstract level and sketches some basic
operators and methods. By using two HTN methods as an example,
they hint at how different pedagogical approaches (‘‘content-ori-
ented” vs. ‘‘socio-cultural”) might be implemented. Their work pro-
vides evidence that course generation techniques can be used for
the generation of learning designs, however they do not provide
any detailed formalization as done within the context of this thesis.
7. Conclusion

In this article, we described PAIGOS, a course generator able to
generate courses adapted to different learning goals based on an
explicit representation of pedagogical knowledge.

In PAIGOS, the pedagogical knowledge used for course generation
is specified as basic building blocks. From these, seven different
scenarios were formalized based on learning theories, such as
moderate constructivism and based on guidelines from instruc-
tional design, resulting in about 300 methods. This illustrates the
flexibility and pedagogical neutrality of PAIGOS. The formalized sce-
narios generate courses for a range of learning goals such as dis-
covering new content, rehearsing and preparing for an exam. The
pedagogical knowledge allows to retrieve very specific content
such as adequate examples and exercises. These granular tasks
combined with dynamic subtask expansion yield a combination
of manually assembled courses with an adaptive selection of re-
sources. They also allow other learning-support services to dele-
gate specific functionality to PAIGOS. For instance, PAIGOS can be
used for pedagogically founded exercise selection. In ACTIVEMATH,
several components use this functionality, such as a suggestion
component and an assembly tool.

The generated courses are structured according to pedagogical
principles and contain bridging texts that describe the purpose of
the sections. Together, these two features provide the student with
information that may help him to understand why a course is
structured in a specific way.

The architecture and the pedagogical knowledge were imple-
mented in the HTN-planner JSHOP2. PAIGOS is completely integrated
in ACTIVEMATH and is used by several of its components.



9332 C. Ullrich, E. Melis / Expert Systems with Applications 36 (2009) 9319–9332
The technical evaluation shows that PAIGOS is efficient. Due to
the hierarchical planning, courses consisting of more than 300 edu-
cational resources are generated in less than a second.

In future research we would like to explore how to extend PAIGOS

with Web 2.0 techniques and frameworks. Currently, educational
resources that are used in PAIGOS are stored in content sources that
have to be registered at the mediator. However, today a vast
amount of information is syndicated using standards such as RSS
and Atom and annotated with tags. Integrating such content in a
generated course might offer a way to overcome the bottleneck
of the required large numbers of educational resources.

Acknowledgement

This publication partially is a result of work in the context of the
LeActiveMath funded under the 6th Framework Program of the
European Union (Contract IST-2003-507826). The authors are so-
lely responsible for its content.

References

Bhatti, N., Bouch, A., & Kuchinsky, A. (2000). Integrating user-perceived
quality into web server design. In Proceedings of the 9th international
World Wide Web conference on computer networks: the International Journal
of Computer and Telecommunications Netowrking (pp. 1–16). Amsterdam,
The Netherlands: North-Holland Publishing Co. http://dx.doi.org/10.1016/
S1389-1286(00)00087-6.

Brusilovsky, P., & Millán, E. (2007). User models for adaptive hypermedia and
adaptive educational systems. In P. Brusilovsky, A. Kobsa & W. Nejdl (Eds.),
The adaptive web. Lecture Notes in Computer Science (Vol. 4321, pp. 3–53).
Springer.

Brusilovsky, P., & Vassileva, J. (2003). Course sequencing techniques for large-scale
webbased education. International Journal of Continuing Engineering Education
and Lifelong Learning, 13(1/2), 75–94.

Conlan, O., Lewis, D. Higel, S., O’Sullivan, D., & Wade, V. (2003). Applying adaptive
hypermedia techniques to semantic web service composition. In P. de Bra (Ed.),
Proceedings of AH2003: Workshop on adaptive hypermedia and adaptive web-
based systems, Budapest, Hungary, May 20–24 (pp. 53–62).

De Bra, P. (2000). Pros and cons of adaptive hypermedia in web-based education.
Journal on CyberPsychology and Behavior, 3(1), 71–77.

Dimitrova, V. (2002). STyLE-OLM: Interactive open learner modelling. International
Journal of Artificial Intelligence in Education, 13, 35–78.

Etzioni, O., Hanks, S., Weld, D., Draper, D., Lesh, N., & Williamson, M. (1992). An
approach to planning with incomplete information. In B. Nebel, C. Rich, & W. R.
Swartout (Eds.), Proceedings of the third international conference on principles of
knowledge representation and reasoning, Cambridge, MA, USA (pp. 115–125). San
Mateo, CA, USA: Morgan Kaufmann publishers Inc. ISBN: 1-55860-262-3.
<citeseer.ist.psu.edu/etzioni92approach.html>.

Ilghami, O., & Nau, D. S. (2003). A general approach to synthesize problem-specific
planners. Technical Report CS-TR-4597, Department of Computer Science,
University of Maryland.

IMS global learning consortium. IMS content packaging information model, June
2003.

Karampiperis, P., & Sampson, D. (2005). Automatic learning object selection and
sequencing in web-based intelligent learning systems. In Ma Zongmin (Ed.).
Web-based intelligent e-learning systems: technologies and applications
(pp. 56–71). Information Science Publishing (chapter III).

Kärger, P., Ullrich, C., & Melis, E. (2006). Integrating learning object repositories
using a mediator architecture. In W. Nejdl & K. Tochtermann (Eds.), Innovative
approaches for learning and knowledge sharing. Proceedings of the first European
conference on technology enhanced learning, Heraklion, Greece (Vol. 4227, pp.
185–197). Springer-Verlag. ISBN: 9783540457770. <http://www.carstenullrich.
net/pubs/kaergeretal-mediator-ectel06.pdf>.

Keenoy, K., Levene, M., & Peterson, D. (2003). Personalisation and trails in self e-
learning networks. WP4 Deliverable 4.2, IST Self E-Learning Networks.

Kohlhase, Michael (2006). OMDoc – An open markup format for mathematical
documents. Springer-Verlag. ISBN: 3540378979.

Mayes, J. T. (1992). Cognitive tools: A suitable case for learning. In P. A. M. Kommers,
D. H. Jonassen, & J. T. Mayes (Eds.), Cognitive Tools for Learning, volume 81 of
NATO ASI Series, Series F: Computer and Systems Science (pp. 7–18). Berlin, Heriot-
Watt University, UK: Springer-Verlag.

Melis, E., Goguadze, G., Homik, M., Libbrecht, P., Ullrich, C., & Winterstein, S. (2006).
Semantic-aware components and services of ActiveMath. British Journal of
Educational Technology, 37(3), 405–423.

Méndez, N. D. D., Ramírez, C. J., & Luna, J. A. G. (2004). IA planning for automatic
generation of customized virtual courses. In Frontiers In Artificial Intelligence And
Applications. Proceedings of ECAI 2004 (Vol. 117, pp. 138–147). Valencia, Spain:
IOS Press.

Merrill, M. D. (2002). First principles of instruction. Educational Technology Research
& Development, 50(3), 43–59.

Nau, D., Au, T.-C., Ilghami, O., Kuter, U., Munoz-Avila, H., Murdock, J. W., et al.
(2005). Applications of shop and shop2. IEEE Intelligent Systems, 20(2), 34–41.
ISSN: 1541-1672. http://dx.doi.org/10.1109/MIS.2005.20.

Nau, D. S., Muñoz-Avila, H., Cao, Y., Lotem, A., & Mitchell, S. (2001). Total-order
planning with partially ordered subtasks. In B. Nebel (Ed.), Proceedings of the
17th international joint conference on artificial intelligence, IJCAI 2001
(pp. 425–430). Seattle, Washington, USA: Morgan Kaufmann.

Niss, M. (2002). Mathematical competencies and the learning of mathematics: the
danish KOM project. Technical report, IMFUFA, Roskilde University.

Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. New York: Cambridge
University Press.

OECD (Ed.) (2004). Learning for tomorrows world — First results from PISA 2003.
Organisation for Economic Co-operation and Development (OECD) Publishing.

Peachy, D. R., & McCalla, G. I. (1986). Using planning techniques in intelligent
tutoring systems. International Journal of Man–Machine Studies, 24(1), 77–98.

Pintrich, Paul R. (1999). The role of motivation in promoting and sustaining self-
regulated learning. International Journal of Educational Research, 31, 459–470.

Prenzel, M., Carstensen, C. H., & Ramm, G. (2004). PISA 2003 – Eine Einführung. In
PISA-Konsortium Deutschland (Ed.), PISA 2003 – Der Bildungsstand der
Jugendlichen in Deutschland – Ergebnisse des zweiten internationalen Vergleichs
(pp. 13–46). Münster, Germany: Waxmann Verlag.

Russell, S. J. & Norvig, P. (2003). Artificial intelligence: A modern approach. Pearson
Education. ISBN: 137903952.

Sacerdoti, E. (1975). The nonlinear nature of plans. In The proceedings of the fourth
international joint conference on artificial intelligence, Tiblisi, USSR (pp. 206–214).
Morgan Kaufmann.

Sicilia, M.-A., Sánchez-Alonso, S., & García-Barriocanal, E. (2006). On supporting the
process of learning design through planners. In Virtual campus 2006 post-
proceedings. Selected and extended papers (pp. 81–89).

Specht, M., Kravcik, M., Pesin, L., & Klemke, R. (2001). Authoring adaptive
educational hypermedia in WINDS. In N. Henze (Ed.), Proceedings of the ABIS
2001 workshop.

Specht, M., & Oppermann, R. (1998). ACE – adaptive courseware environment. The
New Review of Hypermedia and Multimedia, 4, 141–162.

Tate, A. (1977). Generating project networks. In Proceedings of the fifth international
joint conference on artificial intelligence (pp. 888–893). Morgan Kaufmann.

Ullrich, Carsten (2005). The learning-resource-type is dead, long live the learning-
resource-type! Learning Objects and Learning Designs, 1(1), 7–15<http://
www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-2005.pdf> .

Van Marcke, K. (1992). Instructional expertise. In C. Frasson, G. Gauthier, & G. I.
McCalla (Eds.), Proceedings of the second international conference on intelligent
tutoring systems, Montréal, Canada. Lecture Notes in Computer Science (Vol. 608,
pp. 234–243). Heidelberg: Springer. ISBN: 3-540-55606-0.

Vassileva, Julita, & Deters, Ralph (1998). Dynamic courseware generation on the
www. British Journal of Educational Technology, 29(1), 5–14.

Wiley, D. A. 2000. Connecting learning objects to instructional design theory: A
definition, a metaphor, and a taxonomy. In D. A. Wiley (Ed.), The instructional use
of learning objects: Online version. published online.

Zech, F. (2002). Grundkurs mathematikdidaktik. Weinheim: Beltz Verlag.

http://dx.doi.org/10.1016/S1389-1286(00)00087-6
http://dx.doi.org/10.1016/S1389-1286(00)00087-6
http://citeseer.ist.psu.edu/etzioni92approach.html
http://www.carstenullrich.net/pubs/kaergeretal-mediator-ectel06.pdf
http://www.carstenullrich.net/pubs/kaergeretal-mediator-ectel06.pdf
http://dx.doi.org/10.1109/MIS.2005.20
http://www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-2005.pdf
http://www.carstenullrich.net/pubs/Ullrich-LearningResource-LOLD-2005.pdf

	Pedagogically founded courseware generation based on HTN-planning
	Introduction
	Preliminaries
	Terminology
	Course generation
	Hierarchical task network planning

	The course generation planning domain
	Course generation planning problems
	Basic course generation operators and methods
	Accessing information from external knowledge sources
	Structure and dynamic adaptivity: dynamic tasks
	Converting a Plan into a Course

	Moderate constructivist competency-based scenarios in Paigos
	Selecting exercises and examples
	Scenario discover
	Other scenarios

	Performance of PAIGOS
	Discussion
	Formative and summative evaluation

	Related work
	Conclusion
	Acknowledgement
	References


