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Abstract. Computing arrangements of curves is a fundamental and
challenging problem in computational geometry, with many practical
applications in a wide range of fields, including robot motion planning
and computer vision. This paper describes a method for computing
arrangements of implicitly defined curves. Our method for computing
arrangements is an adaptation of methods successfully used for the
exploration of large, higher dimensional, non-algebraic arrangements
in computer vision. While broadly similar to subdivision methods in
computational geometry, its design and philosophy are different; for
example, it replaces exact computations by subdivision and interval
arithmetic computations and prefers data-independent subdivisions.
It can be used (and is usually used in practice) to compute well-
defined approximations to arrangements, but can also yield exact
answers for specific problem classes.

§1. Introduction

Arrangements are subdivisions of Euclidean space created by multiple
lower-dimensional surfaces, and are widely used in robotics, computer
graphics, molecular modeling, and computer vision. For survey papers
on arrangements, see [13, 1, 14]. The output of an arrangement algorithm
is often the arrangement graph, the planar graph in which nodes corre-
spond to intersections of curves, and edges correspond to curve segments
joining the nodes [4].

The first algorithms for computing planar arrangements of lines were
based on sweeps, an enumeration of the geometric structures encoun-
tered when a line–often parallel to the y-axis–is moved (swept) across the
plane [3, 10]. Recent results tend to generalize such methods to more gen-
eral classes of curves such as conics/cubics [11], and algebraic curves [16].
Subdivision methods have also recently found increasing interest for the
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computation of arrangements [15, 22, 8]. Closely related to subdivision
methods for the computation of arrangements are subdivision methods for
the computation of implicit curves and/or surfaces [20, 19], intersections
of Bézier curves [23], intersections of surfaces [2], and ray tracing [17, 9].

In computer vision, exploration of arrangements by subdivision meth-
ods has been used for computing globally optimal solutions to geometric
matching problems under bounded error [5, 6].

This paper describes an algorithm for the computation of exact or ap-
proximate arrangement graphs of a collection of implicitly defined curves
in the plane using a subdivision method and interval arithmetic; only the
static case is considered.

§2. The CAPS algorithm

In this section, we present the CAPS (Curves Arrangements by Planar
Subdivisions) algorithm which computes the arrangement of curves, i.e. a
subdivision of the plane that consists of vertices (0-cells), edges (1-cells),
and faces (2-cells). We assume that curves are defined implicitly using
equations fi(x, y) = 0 and that their inclusion functions are convergent
[18].

An implicit curve is the set of zeroes of a function f : Ω ⊆ R
2 → R

(where Ω is an open subset of R
2). Evaluations of f will be carried out in

terms of interval arithmetic, so z = f[ ](x, y) (sometimes written as just
f(x, y)) stands for [z, z] = f[ ]([x, x], [y, y]). Here, f[ ](x, y) is a natural
inclusion function [18] corresponding to a real-valued function f(x, y); it
satisfies f[ ](x, y) ⊇ {z : z = f(ξ, η), ξ ∈ x, η ∈ y}, and any sufficiently
well-behaved f converges towards the real value as its argument intervals
shrink. Note that f has a zero within a box [x, x]× [y, y] only if 0 ∈ [z, z] =
f[ ](x, y). Our general approach towards exploring the arrangement will be
to evaluate f on nested families of intervals, excluding boxes from further
consideration if we can prove that they do not contain zero.

The input of the CAPS algorithm consists of a collection of implicit
curves and an initial bounding box (optionally, additional curves may be
added for handling intersections at infinity), and recursively invokes the
classify function. This function then computes the set of curves that
might cross the bounding box.

If provably none of the curves do, the function does not recurse fur-
ther. If there is exactly one candidate that may intersect the box, the
algorithm attempts to prove that this candidate actually intersects the
box (below), and, depending on the result, marks the box as either empty,
containing one curve, or indeterminate. If there are more than one can-
didate curve intersecting the box, and the algorithm has not reached the
maximal recursion depth, the algorithm subdivides the box and recurses;
subdivision is by simple bisection of each dimension of the bounding box
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(more complex or data-dependent schemes are possible but do not seem
to improve performance in preliminary experiments). If the search has
reached the maximum recursion depth, it does not subdivide further and
instead terminates and marks the box as indeterminate.

Proving that a box contains zero curves can be done simply by demon-
strating that f[ ](x, y) does not contain zero for any of the curves. In order
to determine that a curve actually intersects a box, it is not sufficient to
show that f[ ](x, y) contains zero for the box; rather, we need to show that
the real-valued function f[ ](x, y) actually changes sign somewhere within
the box. We can do this by identifying a subregion where the function
is provably positive (z > 0) and another subregion where the function is
provably negative (z < 0). Therefore, the algorithm recursively subdi-
vides the box until it either finds that all subregions are strictly positive
or strictly negative (non-intersecting), until it obtains an example of a
strictly positive and a strictly negative region (intersecting), or until the
box size is below a threshold (indeterminate).

As part of its search, the box classification algorithm constructs a
quad-tree decomposition of the original box, with each leaf in the quad-
tree labeled as containing zero curves, one curve, or indeterminate. For
each leaf, the algorithm also records the curves that intersect or poten-
tially intersect the corresponding box. In order to compute the actual
arrangement graph, we view this labeled quad-tree as a subdivision of the
plane and apply a standard region labeling and region adjacency graph
algorithm for quad-trees. The label for each quad-tree node consists of
the set of curves for which the CAPS algorithm could not prove that the
curve fails to fall outside that node. In this process, all adjacent quad-
tree nodes with the same label (i.e., the same set of curves) are grouped
together into regions (for the purposes of this exposition, assume that no
curve passes exactly through the corner of a quad-tree node and define
connectedness analogous to four-connectedness in image processing). The
labeled regions are transformed into a graph using the following general
approach (some special cases omitted):

• each region containing zero curves is omitted (it is part of the dual
graph),

• each region labeled with exactly one curve is transformed into an edge,

• each region labeled with more than one curve is transformed into a
vertex and associated with all its adjacent regions representing curves.

Optionally, we can additionally compute, for each region containing ex-
actly one curve, a polygonal or spline approximation of the curve passing
through that region, as shown in [21].

In general, the graph computed by this method will not be the ar-
rangement graph as commonly defined in computational geometry. Let us
consider some of the differences.
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Most importantly, if the input curves permit self-intersections, these
self-intersections may or may not not be present in the computed graph.
In practice, self-intersections are often a priori impossible because of the
nature of the input curves. Furthermore, in many applications, compu-
tation of self-intersections are not required, and we can view the graph
computed by the CAPS algorithm as a well-defined transformation of the
arrangement graph. When self-intersections are both possible and desired,
the CAPS algorithm can be modified to compute them by introducing an
additional subdivision scheme (not described here).

For regions containing exactly two curves, there are many different
ways in which these curves could meet inside the region. Contacts and
even numbers of intersections are distinguished from odd numbers of inter-
sections based on the topology of the neighboring regions. The considera-
tions for distinguishing contacts and single intersections on the one hand,
and multiple intersections on the other, are analogous to self-intersections:
they can usually be excluded based on the class of curves under consid-
eration, they may not be of interest, and/or they could be calculated
explicitly using additional subdivision techniques.

Subject to these considerations, we can claim a number of different,
exact results like the following: If the CAPS algorithm is applied to curves

that do not self-intersect and have no multiple intersections, and if it yields

a graph in which all nodes correspond to regions containing no more than

two curves and in which no contacts occur, then the graph is an arrange-

ment graph for the curves. Note that we can control whether the CAPS
algorithm yields such graphs through when we terminate the search, and
we can find analogous statements about CAPS-like algorithms modified
to cope with self- and multiple intersection.

For many practical applications, however, approximations of the fol-
lowing form are of greater interest: If the CAPS algorithm expands nodes

to a terminal size of δ
2 , it yields an arrangement graph for an arrangement

of curves obtained by continuously distorting the original arrangement by

no more than δ at each point. (This claim, of course, would require a
proof; not shown). We can view this as a δ-weak solution [12] for the
arrangement problem, meaning that it represents a solution that is ob-
tainable from the true solution through a small geometric perturbation
(note that this is not necessarily the same as a small perturbation of the
curves themselves). In practical applications (like geometric matching)
weak solutions for well-defined accuracies have turned out to be sufficient,
and this is how these methods have been used in practice [7].

§3. Complexity

In this section, we consider some informal analyses of the average-case and
worst-case combinatorial complexity of the CAPS algorithm in terms of
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the output complexity of different classes. As a measure of complexity, we
use the tree size. The threshold where we stop splitting is called ǫ, and
we denote by L the size of the initial box’s side, and d, the depth of the
quadtree, given by d = log2(Lǫ−1).

3.1. The linear case

Let us say that lines l1 and l2 are ǫ-close if one of the two l1 and l2 are
parallel and distance(l1, l2)≤ǫ or if l1 and l2 intersect and angle(l1, l2)≤ǫ.

Close lines trigger the worst-case behavior of the CAPS algorithm,
since it requires exploration of large number of boxes. If two lines are
ǫ-close, we need O(ǫ−1) boxes to cover the gap, and O(nǫ−1) for n lines,
and this dominates the tree.

Of course, in the linear case, we can easily use exact methods for de-
termining whether the lines actually intersect. Alternatively, we can use
recursive interval arithmetic methods, but searching, say, for an intersec-
tion of the two lines directly rather than by covering the gap. Nevertheless,
the analysis of the linear case provides a good introduction for the analysis
of the more general case.

In order to get some idea of the average case, let us classify the rela-
tionships in which two lines l1 and l2 can appear: there are no intersection
inside the bounding box explored by the search (C1), there is one inter-
section with angle(l1, l2) > ǫ (C2), and there exist ǫ-close lines (C3). We
assume that the expected value of the lines’ configuration C gives us the
average-case complexity. If we denote by ci the previously listed con-
figurations’ complexity and by pi their associated probabilities, we have
E(C) =

∑
i pici. If we are in case C1 (meaning no intersection) the tree

will be very small and the algorithm will terminate very quickly, in con-
stant time; so, c1 is O(1). For C2, the complexity is the size of the tree,
given by d = log2(Lǫ−1), i.e. O(log(ǫ−1)). Finally, c3 is in O(ǫ−1) as
previously shown in the worst-case scenario.

Now that we were able to express the complexity of each situation, we
would like to know how likely it is to happen and therefore compute its
probability. We first examine the one-dimensional case: if parameters are
within the interval [−K, K], equally likely, we get, for the two random
variables k1 and k2 : p(k1) = p(k2) = 1

2K
= O(1) and we can then prove

that p(|k1 − k2| < ǫ) = ǫ
2K

. Considering the case of lines in 2D, we
need to define a distribution. Within the bounding box, we represent a
line by two parameters: a point M = (x, y) and an angle α between 0
and 2π. The same way as in the one-dimensional case, if we have random
variables k1 and k2 in the box [−K, K]×[−K, K] (equally likely) we obtain
p(k1) = p(k2) = 1

4K2 = O(1). This leads us to p1 = p2 = O(1).
We are now interested in the probability that the ǫ-close case occurs.

For two lines (M, α1) and (N, α2) we have p(| α1−α2 |≤ ǫ
2L

) ǫ
2L

= ǫ
4πL

ǫ
2L

=
O(ǫ2). We finally get that probabilities p1 and p2 are O(1) and p3 is O(ǫ2)
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and thus E(C) =
∑

i pici = O(1)O(log(1
ǫ
)) + O(ǫ2)O(1

ǫ
) = O(log(1

ǫ
)).

This analysis has been done for only two lines. For n lines we have an

upper bound of n(n−1)
2 = O(n2) intersections and thus conclude that the

average-case combinatorial complexity for n lines is O(n2 log(1
ǫ
)). Notice

that despite the term n2 in the average-case complexity, the worst-case
complexity is much worse than the average one because of the term 1

ǫ
.

3.2. Algebraic curves and other families

A planar algebraic curve can be represented as P (x, y) :=
∑

i,j pijx
ixj

= 0, where pij ∈ R. The degree d of an algebraic curve is d = maxi,j(i+j).
For instance, the algebraic curve defined by the equation 2x3y + 5xy2 −
y − 1 = 0 is of degree 4. Bézout’s theorem tells us that for two algebraic
curves of degrees p and q respectively, the number of intersection points
of those two curves is bounded by the product of the degrees, i.e. N = pq.

If there are no ǫ-close curves and suppose the problem locally lin-
earized, the combinatorial complexity of two algebraic curves of degrees
respectively p and q would be in O(pq log(1

ǫ
)). Thus, for n algebraic curves

the complexity is O(Kn log(1
ǫ
)) where Kn is the result of summing up two

by two all possible Bézout bounds of the input algebraic curves, which
is both quadratic in n and the degrees of the curves: Kn =

∑
i6=j didj

where di is the degree of the ith input algebraic curve and (i, j) are all the
possible pairs within 1, ..., n.

We can now ask what the probability of the ǫ-close configuration is on
average. Therefore, consider a mapping from the product of the parameter
spaces of all input curves to a given bounding box, sub-space of R

2. We
wish to get some idea of how frequent close position and general position
cases are, since the non-intersecting close position cases are particularly
hard for our approach. There are three cases we need to distinguish: an
intersection with an angle larger than a fixed epsilon, contacts, or close,
non-intersecting curves.

Contacts exist only for a set of parameter values with measure zero.
Intersections at large angles, and ǫ-close approaches, on the other hand,
exist for parameter regions with finite measure (i.e., greater than zero).
However, if the mappings from parameter space to curves is sufficiently
smooth, these parameter regions will still have a small measure for small
ǫ, so that for sufficiently smooth distributions of input problems, the prob-
ability of computationally costly cases of arrangements of curves is low.

The above arguments are merely a sketch of a possible average case
analysis of the complexity of CAPS-style algorithms for classes of curves
or surfaces; a detailed analysis remains to be carried out.
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Fig. 1. From top left to bottom right: Arrangement of lines, algebraic curves,
degenerate lines, degenerate polynomials, inverse sine, and arbitrary curves.

§4. Experimental Results

Running times for the algorithm are shown in Table 1, corresponding to
curves of Figure 1. We can see that the algorithm performs well for straight
lines and polynomials, and can handle difficult curves such as inverse sine.

Class of curves Quadtree size Runtime (s)
Lines (5) 12097 0.8

Algebraic curves (5) 32875 1.3
Degenerate (7 lines) 19546 1.9

Degenerate (5 polynomials) 251440 2.8
Trigonometric functions (3) 12271 0.2

Inverse Sine (2) 20800 12.6
Arbitrary curves (10) 78736 7.5

Tab. 1. Computation time for the quad-tree structure (C++, Xeon 3.6Ghz)

and different families of curves. Parameters used were ǫ = 10−6 and an initial
bounding box of [−10, 10] × [−10, 10].

§5. Discussion

The original motivation for developing CAPS-like methods was the solu-
tion of problems in computer vision for which sweep methods were not
practical: subdivisions of R

4 or R
6 based on implicitly defined curves in-

volving polynomials and trigonometric functions, and involving often thou-
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sands of surfaces. This paper has described an application of those ideas
to the problem of computing arrangements of implicitly defined curves,
permitting us to compare CAPS-style approaches with commonly-used
approaches from computational geometry (including subdivision and ap-
proximate methods developed in the context of computational geometry).

First, while CAPS can be used for exact computations for some prob-
lem types and instances, CAPS can also be used to obtain well-defined
approximate (δ-weak) solutions through early termination. Such solutions
are often sufficient for practical applications and yield well-characterized
approximations for curves for which no exact methods are known or fea-
sible.

CAPS is designed to use floating point arithmetic instead of exact
computations, even when exact computations are possible (say, for alge-
braic curves), but can still return well-defined solutions through the use of
interval arithmetic. Either approach can be used for computing exact or
approximate arrangement graphs; which approach is preferable in practice
depends on the domain and remains to be determined.

For practical applications, the combination of the CAPS-approach of
a strict hierarchical exploration with faster intersection tests for pairs of
curves may be desirable. Initial experiments (not shown) suggest that the
use of such exact tests results in speedups for simple cases (e.g., linear),
but may be more costly (and is often simply impossible) for more difficult
cases (e.g., algebraic or trigonometric).

Our experience with CAPS-like algorithms and design choices suggests
that they are more efficient and practical than traditional algorithms for
computations involving arrangements in important cases. We’d like to
remind the reader that the original motivation for CAPS-style algorithms
was that algorithms from computational geometry for computations in-
volving arrangements were either too slow, or simply not applicable to
the kinds of arrangements encountered in computer vision. We hope that
this paper will be only the first step in a more careful exploration of the
similarity and differences between CAPS-like algorithms and algorithms
developed in the traditional framework of computational geometry, and
that it may lead to reconsideration of some design choices and assump-
tions often made in geometric algorithms research.
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