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Abstract

We present two approaches on acoustic event detection for
speech-enabled car applications: a generative GMM-UBM ap-
proach and a discriminative GMM-SVM supervector approach.
The systems detect whether or not a certain acoustic event oc-
curred while the built-in microphone of the car was active to
record a spoken command, either before, while, or after the
driver was speaking. These events can be music playing, phone
ringing, a passenger different from the driver is talking, laugh-
ing, or coughing. The task is formally defined as a detection
task along the lines of well established detection tasks such
as speaker recognition or language recognition. Similarly, the
evaluation procedure has been designed to resemble the respec-
tive official evaluation series performed by NIST (i.e. it was
a blind ’one-shot’ evaluation on a separately provided dataset).
The performance of the system was calculated in terms of de-
tection miss and false alarm probabilities (CMiss = CF A = 1,
and PTarget = 0.5). The performance of the superior GMM-
SVM system was 0.0345 for known test speakers and 0.1955
for novel test speakers. Frequency-filtered band energy coeffi-
cients (FFBE) outperformed MFCCS on that task. The results
are promising and suggest further experiments on more data.

Index Terms: acoustic event detection, GMM-UBM, GMM-
SVM supervector, Frequency-filtered band energy coefficients
(FFBE), NIST-style evaluations.

1. Introduction

In speech recognition applications, the sounds corresponding
to the words uttered are traditionally considered to be signal
whereas everything else, might it be channel noise or the sound
of a door shutting, is considered to be background noise. To not
let the noise harm the accuracy of the recognition, it is usually
either filtered out, or carefully provided in training in order let
the recognizer learn how to deal with it.

However, the detection of acoustic events like a door be-
ing shut might very well be useful information for the down-
stream application. This is particularly the case with perceptu-
ally aware interfaces such as computer-based meeting-room as-
sistants [1], medical tele-surveillance, or mobile robots working
in diverse environments [2]. As a matter of fact, this problem is
addressed by the field of auditory scene analysis (ASA) or (with
a somewhat narrower scope) acoustic event detection (AED).

In this paper, we present a study on the AED for speech-
enabled automotive applications. The following example illus-
trates the application scenario:

driver: “Washington Mutual” [phone is ringing
in the background]

without acoustic event detection
system (recog-
nition failed)

“Your command was not recognized.
Please repeat.”

with acoustic event detection
system (recog-
nition failed)

“Your command was not recognized be-
cause there was a phone ringing in the
background. Please repeat.”

Figure 1: Examples of occurrences of acoustic events to be de-
tected in the given task.

Particularly, our system is supposed to be able to detect the
following acoustic events: music playing (MUSIC), phone ring-
ing (PHONE), a passenger (p2) different from the driver/speaker
is talking (TALKING), p2 is coughing (COUGHING), p2 is laugh-
ing (LAUGHING). In contrast to pure AED, however, the input
does not only contain acoustic events but also the sounds of
the words uttered. The events can occur at any time during
the recording, either before, overlapped with, or after the ut-
terance. Therefore, we refer to the task as speech-overlapped
AED (SOAED). Also, the recording contains a varying amount
of noise stemming from the engine, wheels, and wind resistance
of the car in diversified driving conditions (see Figure 1).

Two issues should be pointed out in order to avoid confu-
sion. First of all, the goal of the superordinate project is also to
reduce word error rate in recognition (the above example might
imply that this is not the case). Here, SOAED can for exam-
ple help identifying appropriate acoustic models that facilitate a
more robust recognition in that particular situation (see [3, 4]).
However, in this paper we focus on the detect-and-explain sce-
nario. Second, for many events that occur inside the car (such
as music playing, phone ringing, and others that are not explic-
itly studied here) other sensors than speech exist that are likely
to be more precise. However, it is clearly the goal of the spon-
sor to exploit those sensors that are actually available in today’s
line of production (such as the built-in microphone) as much as
possible.
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2. Task and evaluation procedure
The acoustic event detection task underlying this study has been
defined along the lines of well established detection tasks such
as speaker recognition [5] or language recognition [6]. Simi-
larly, the evaluation procedure has been designed to resemble
the respective official evaluation series performed by the Na-
tional Institute of Standards and Technology (NIST)1.

Accordingly, the task was the following 2: Given a speech
segment (s) and an acoustic event to be detected (target event,
ET ), the task is to decide whether ET was present in s (yes
or no), based on an automated analysis of the data contains in
s. The system performance was evaluated by presenting it with
a set of trials. Each test segment was used for multiple trials,
with one trial for each of following events: MUSIC, PHONE,
TALKING, COUGHING, LAUGHING. The absence of all of these
events (NO EVENT) was explicitly included as a target event as
well. Besides the decision as to whether the event of interest
was actually present in the s, the output of the system contained
a score indicating the system’s confidence in its decision. More
positive scores indicated greater confidence that the segment
contains the target event.

The sponsor (the Volkswagen of America Electronics Re-
search Lab, ERL) provided development and evaluation data
as representative as possible for the application. Three months
before the evaluation, the research site (International Computer
Science Institute, ICSI) was provided with the development data
only. At a pre-determined date, the blind evaluation data was
provided to the research site for processing. Five days later,
the system’s output was submitted to the sponsor in the for-
mat NIST used in the latest language recognition evaluation.
The sponsor then downloaded the scoring software from NIST’s
website, made the necessary modifications due to the changes in
the labels (e.g. names of acoustic events instead of languages),
and ran it on the submitted system output. The results were
then disclosed to the research site along with the keys (truth)
for further analysis.

The performance of the system was calculated in terms of
detection miss and false alarm probabilities. Miss probability
was computed separately for each target event and false alarm
probability was computed separately for each target/non-target
event pair. In addition, these probabilities were combined into
a single number representing the cost performance of a system,
according to the following cost model:

C(ET , EN) = CMiss ∗ PTarget ∗ PMiss(ET ) + CF A ∗
(1− PTarget) ∗ PF A(ET , EN)

where ET and EN are the target and non-target events, and
CM iss, CF A, and PTarget are application model parameters.
Here, the application parameters are CMiss = CF A = 1, and
PTarget = 0.53

3. Data
The data consisted of single commands uttered while driving.
For security reasons, the speaker was not driving but sitting on
the passenger seat. Hence, the second passenger (p2) and third
passenger (p3) were both sitting on the backseat. There were

1http://www.nist.gov/speech/tests/sre/,
http://www.nist.gov/speech/tests/lre/

2http://www.nist.gov/speech/tests/lre/2007/
LRE07EvalPlan-v8b.pdf

3Since no application oriented empirical values where available at
evaluation time, we chose this rather general cost model. However, it is
likely that false alarms will be given a higher cost value in practise.

two driving conditions: CITY (between 25 and 40 mph) and
HIGHWAY (between 35 and 70 mph). All data was collected
utilizing a single type of car (Audi Q7). The recordings were
made at 16KHz sing the built-in microphone located in the cen-
ter console.

The total number of speakers in the database was 40. How-
ever, they were involved in the recording of different subsets
of the corpus resulting in a number of 16 speakers per event.
We are aware of the fact that this is a flaw in the procedure
that should be fixed for future studies. In order to judge the
speaker (in)dependency of the system, only data from 10 dif-
ferent speakers per target was selected for development, while
the evaluation set contained all 16 speakers. Thus, it could be
separated into a MATCHED SET with only speakers seen in train-
ing and a MISMATCHED SET with only novel speakers. Table 1
summarizes the amount of data available in the various datasets
for development as well as evaluation (the information about
the latter was not disclosed to the research site prior to the eval-
uation).

Table 1: Amount of data available for development and evalua-
tion. (*) not disclosed to the research site before evaluation.

event # of segments / ˜hours
train devtest eval(*)

music 1160 3 220 0.5 590 1.5
phone 1050 3.5 165 0.5 600 1.5
coughing 784 4 120 0.5 360 1.5
laughing 810 3 140 0.5 390 1.5
talking 790 2.5 150 0.5 420 1.5
no event 1400 4.5 150 0.5 560 2
background 4000 12 – – – –

4. Approaches
Two different AED systems have been developed at the re-
search site: A generative Gaussian Mixture Model – Universal
Background Model (GMM-UBM) system and a discriminative
Gaussian Mixture Model – Support Vector Machine Supervec-
tor (GMM-SVM) system.

4.1. GMM-UBM system

Generative classifiers such as GMMs and Hidden Markov Mod-
els (HMMs) have been widely used for acoustic event and clas-
sification tasks [1, 7]. HMMs have the advantage of captur-
ing the temporal information of the sequence of speech frames.
However, HMMs require a a larger amount of data to accurately
train the models.

A GMM consists of a likelihood function based weighted
linear combination of M Gaussian densities, each parameter-
ized by a mean vector and a covariance matrix. For each target
event, a separate GMM is trained. In testing, a likelihood ratio
is computed as:

Λ = log p(X|λhyp)− log p(X|λhyp)

where p(X|λhyp) is the likelihood of the hypothesized event,
and p(X|λhyp) is the likelihood of the possible alternatives
modeled by a universal background model (UBM). The UBM
is trained on a pool of examples of all the possible events.

Due to its simplicity and effectiveness, the GMM-UBM ap-
proach has become one of the mainstay modeling techniques
for text-independent speaker recognition. The reader is referred
to [8] for a detailed description. The number of Mixtures in our
system was 256. This value has been experimentally explored
using the development test set.
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4.2. GMM-SVM supervector system

Recently, a superior detection accuracy was reported using
discriminative methods such as SVMs [1, 2]. However, this
method is sensitive to variable segment lengths since input vec-
tors for kernel evaluation are restricted to be of constant size.
The most common approach to cope with that issue is to com-
pute the mean and standard deviations of the feature trajectories,
and to use these statistics as input features for the SVMs [1]. In
other studies, this problem is solved by extracting features from
a segment of a fixed length [9]. Again others performed a frame-
by-frame SVM classification followed by a combination of the
output scores [10]. Recently, the use of sequential kernels has
shown significant improvements due to their ability of preserve
the temporal information contained in the data [11].

The GMM-SVM approach combines the discriminative
power of SVMs with the ability of GMMs to deal with vari-
able length sequences. It was proposed in [12] as an alternative
to the Fisher kernel, and was later on applied to speaker veri-
fication [13, 14]. The former uses a linear kernel derived from
Kullback-Leiber distance:

Klin(sa, sb) =
PM
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where sk is a GMM supervector obtained by pooling together
all the Gaussian means μk

i of a means-only MAP-adapted
GMM for the sequence k. Σi and wi are the original weight
and covariance of each Gaussian on the UBM model used for
adaptation.

In our system, we trained a one-against-all SVM classifier
for each class. Also the GMM supervectors were shifted by
subtracting the original means of the UBM. This data centering
method was proposed by [15]. It improved the results of the
system on the development test set.

The optimal number of Gaussians was found to be 128
(0.022 avg cost). For the sake of comparison with other SVM-
based systems proposed for AED, we as well created a SVM-
only system, using the feature means computed on the whole
audio segments. The results obtained on the development test
set were exactly the same as the one obtained for the GMM-
SVM using a single Gaussian (0.087 avg. cost). However, with
a number of mixtures larger than one, the GMM-SVM approach
is clearly superior.

5. Feature selection
We considered two different acoustic features as a possible
representations for the audio signals: Mel-frequency cepstral
coefficients (MFCC) and frequency-filtered band energy coef-
ficients (FFBE). Whereas with MFCC, the logarithm of the
filtered-bank energy (log FBE) are transformed using a dis-
crete cosine transform in order to obtain a cepstral sequence,
the decorrelation of the coefficients for the FFBE is achieved
with a simple frequency filtering of the log FBE. It is computa-
tionally less expensive than the cepstral representation. Also, in
[1] FFBE outperformed MFCC in the classification of acoustic
events using both GMMs and SVMs classifiers.

For every audio segment, features were extracted using
frames of 30ms with 10ms overlap using a Hamming window.
For the MFCCs, 20 coefficients were extracted from 26 bands
including the zero-th coefficient (Energy, E). For the FFBEs
we used 20 coefficients obtained by filtering 20 bands with the
usual second second-order filter H(z) = z − z−1, which im-
plies subtraction of the log FBEs of the two adjacent bands.
Since FFBE already include energy information, no extra frame
energy was added to these coefficients. In addition, first and

second time derivatives (D, DD) for both types of features were
computed.

Table 2: Average costs obtained on the development test set for
various sets of features.

# set type of features (size) GMM-UBM GMM-SVM
1 E+MFCC (20) 0.0652 0.0312
2 E+MFCC+D+DD (60) 0.0517
3 FFBE (20) 0.0548 0.0222
4 FFBE+D+DD (60) 0.0457 –

Table 2 shows the average costs for different feature sets
obtained on the development dataset. For both systems, FFBE
features outperformed MFCCs. Using the derivatives improved
the results with the GMM-UBM system. However, we decided
that this improvement was not large enough to justify the intro-
duction of the extra complexity. All results presented hereafter
were obtained using feature set three.

6. Evaluation results

Table 3: Average costs obtained on the evaluation set(s).

entire matched mismatched
eval set subset subset

GMM-UBM 0.1458 0.0809 0.2341
GMM-SVM 0.1022 0.0345 0.1955

Table 3 shows the average costs obtained on the evalua-
tion set. With 0.1458 for the GMM-UBM and 0.1022 for the
GMM-SVM, the performances are significantly worse than the
ones obtained on the development test set. However, as can be
seen from the separation between the matched and mismatched
cases (see section 3), this degradation is largely due to the pres-
ence of unknown speakers. We will get back to this point in the
conclusion. Note, that a small degradation of results between
development test and evaluation is to be expected, as numer-
ous system parameters have been fine-tuned on the former set
(including the decision threshold). This explains the difference
of 0.0261 (GMM-UBM) and 0.0123 (GMM-SVM) between the
results in Table 2 and Table 3 (matched subset).

Figure 2 (top) shows the decision-error-tradeoff curves of
the GMM-SVM system for each target event obtained on the
matched evaluation set. Evidently, COUGHING and LAUGHING
stick out as the target classes for which the system exhibits the
worst performance. As shown in Table 4, this is largely due
to a high inter-confusion between those events. Generally, the
events produced by the voices of other passengers (COUGHING,
LAUGHING, TALKING) are rather likely to be confused with
each other. This pattern is also to be seen in the DET curves
obtained on the unmatched evaluation set (Figure 2, bottom)
with the exception of the target event TALKING. We believe
that the relatively good performance here is due to the presence
of known speakers in the role of p2 or p3 (the second or third
passenger talking with each other). However, we can not ver-
ify this hypothesis since this information is not available in the
data.

7. Conclusions
To our knowledge, the task of speech overlapped acoustic event
detection (SOAED) for car applications is novel. When plan-
ning this study, there has been a clear agreement between the
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Table 4: Confusion cost matrix between target classes
(columns) and non-target classes (rows)

cough. laugh. talk. music no event phone
cough. – 0.1180 0.0456 0.0131 0.0227 0.0078
laugh. 0.1035 – 0.0535 0.0210 0.0091 0.0139
talk. 0.0408 0.0663 – 0.0107 0.0304 0.0078
music 0.0328 0.0509 0.0499 – 0.0309 0.0112
no event 0.0198 0.0443 0.0442 0.0117 – 0.0092
phone 0.0212 0.0466 0.0431 0.0204 0.0340 –
Avg Cost 0.0436 0.0652 0.0472 0.0154 0.0254 0.0100

sponsor (Volkswagen of America Electronics Research Lab,
ERL) and the research site (International Computer Science In-
stitute, ICSI) that, in order to be able to establish a first baseline,
the variability in the data has to be restricted. Therefore, all
data has been collected using only one type of car, for example.
Since only 16 speakers have recorded in each of the conditions
(from which only ten were used for training to leave speakers
unseen for evaluation), it was especially questionable, whether
the resulting models would be speaker independent. Neverthe-
less, with average costs of 0.2341 for the GMM-UBM respec-
tively 0.1955 for the GMM-SVM, we obtained promising re-
sults even on the unmatched evaluation set that contained only
novel speakers.

The results suggest that we need more speakers in order
to make the systems speaker independent. We believe that
with a comprehensive data collection from all forty speakers
already in the pool, we could achieve cost values of below 0.1
in the unmatched condition. Besides that, the results of our
experiments indicate, that GMM-SVM supervector approach is
superior to traditional generative GMM-UBM approach for the
task at hand. Also, Frequency-filtered band energy coefficients
(FFBE) features outperformed MFCCs.
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