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Abstract. Monads are a well-established tool for modelling various computa-
tional effects. They form the semantic basis of Moggi’s computational metalan-
guage, the metalanguage of effects for short, which made its way into modern
functional programming in the shape of Haskell’s do-notation. Standard compu-
tational idioms call for specific classes of monads that support additional control
operations. Here, we introduce Kleene monads, which additionally feature nonde-
terministic choice and Kleene star, i.e. nondeterministic iteration, and we provide
a metalanguage and a sound calculus for Kleene monads, the metalanguage of
control and effects, which is the natural joint extension of Kleene algebra and the
metalanguage of effects. This provides a framework for studying abstract pro-
gram equality focussing on iteration and effects. These aspects are known to have
decidable equational theories when studied in isolation. However, it is well known
that decidability breaks easily; e.g. the Horn theory of continuous Kleene algebras
fails to be recursively enumerable. Here, we prove several negative results for the
metalanguage of control and effects; in particular, already the equational theory
of the unrestricted metalanguage of control and effects over continuous Kleene
monads fails to be recursively enumerable. We proceed to identify a fragment
of this language which still contains both Kleene algebra and the metalanguage
of effects and for which the natural axiomatisation is complete, and indeed the
equational theory is decidable.

1 Introduction

Program verification by equational reasoning is an attractive concept, as equational rea-
soning is conceptually simple and in many cases easy to automate. At the same time,
equational reasoning is necessarily insufficient for dealing with equality of programs
in full Turing-complete programming languages, as the latter will e.g. require induc-
tion over data domains; moreover, it is clear that the (observable) equational theory
of a Turing-complete programming language fails to be recursively enumerable (it is
undecidable by Rice’s theorem, and its complement is easily seen to be r.e.) and hence
cannot be completely recursively axiomatised. A standard approach is therefore to sepa-
rate concerns by introducing abstract programming languages that capture only selected
aspects of the structure of programs. In such approaches, the abstract level can often be
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handled purely equationally, while reasoning in more complex logics, e.g. first or higher
order predicate logics, is encapsulated at lower levels, typically the data level. Two ap-
proaches of this kind are Kleene algebra (used here in the version of [9]) and Moggi’s
monad-based computational metalanguage [12], to which we refer for both brevity and
distinctness as the metalanguage of effects.

Kleene algebra is essentially the equational logic of regular expressions. Seen as a
programming language, Kleene algebra features sequential composition, nondetermin-
istic choice, and iteration in the shape of the Kleene star. When extended with tests,
Kleene algebra allows encoding complex control structures including e.g. loops with
breaks [11]. Thus, the focus of Kleene algebra as an abstract programming language is
the modelling of nondeterministic control.

The metalanguage of effects [12] is based on the observation that the bind and return
operations constituting a monad correspond computationally to sequential composition
and promotion of values to computations, respectively, which together with explicit
computation types and product types form the basic features of the metalanguage of
effects. Besides the fact that the language is higher-order w.r.t. effects in that it allows
passing around computations as first-class objects, the chief distinctive feature here
is the innocuous-looking return operator, which affords a separation between effect-
ful computations and effectfree values. Thus, the focus of the abstraction is indeed on
effects in this case, while most control structures including in particular any form of
loops are absent in the base language. (Of course, Kleene algebra is also about effectful
programs, but has no distinction between effectful and pure functions.)

The metalanguage of effects is sound for a wide range of effects, including e.g. state,
exceptions, I/O, resumptions, backtracking, and continuations. Consequently, monads
are being used in programming language semantics and in functional programming
both to encapsulate side effects and to achieve genericity over side effects. E.g. mon-
ads have appeared in an abstract modelling of the Java semantics [6] and in region
analysis [13, 3], and they form the basis of functional-imperative programming in
Haskell [15]; indeed Haskell’s do-notation is essentially the metalanguage of effects.

Here, we study the natural combination of Kleene algebra and the metalanguage of
effects, which we call the metalanguage of control and effects (MCE). The resulting
language is rather expressive; e.g. it supports the following slightly abusive implemen-
tation of list reverse. Let is empty, push, and pop be the usual stack operations, where
is empty blocks if the state is nonempty, and otherwise does nothing. Then one can
define the reverse operation in the MCE as

do q ← (init p← ret is empty in (do x← pop; ret (do p; pushx))∗); q

The init expression initialises the iteration variable p, and the starred expression is
nondeterministically iterated. The program is equivalent to a non-deterministic choice
(for all n) of

do q ← (do x1 ← pop; . . . ;xn ← pop; ret(do is empty; pushx1; . . . ; pushxn)); q
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Hence, this program reads the entire stack into a suspended sequence of push op-
erations and then executes this computation, thus pushing the elements back onto the
stack in reversed order. Since the suspended sequence starts with a test for emptiness, it
can only be executed if the stack actually is empty — this will discard all sequences of
pops not having the length of the stack.

The MCE is interpreted over a class of monads with sufficient additional structure
to support iteration, which we call Kleene monads; in the same way as in the usual
treatment of Kleene algebra, we moreover distinguish continuous Kleene monads which
interpret the Kleene star as a supremum. We provide a sound calculus for the MCE,
which allows for the verification of abstract programs with loops and generic effects.
We then proceed to explore the prospects of automatic verification, i.e. we investigate
completeness and decidability issues. While Kleene algebra and the metalanguage of
effects are equationally complete over the respective natural classes of models [9, 12]
and have decidable equational theories (Kleene algebra is even in PSPACE [18]), it is
unsurprising in view of our introductory remarks that these properties are sensitive to
small extensions of the language; e.g. the Horn theory of continuous Kleene algebras
fails to be r.e. [10]. Specifically, we establish the following negative results.

– The equational theory of the MCE over Kleene monads is (r.e. but) undecidable.
– The equational theory of the MCE over continuous Kleene monads is non-r.e. (more

precisely at least co-r.e. hard), and hence fails to be finitely axiomatisable.

On the positive side, we show that a natural regular fragment of the MCE is complete
and decidable. This fragment contains both Kleene algebra and the metalanguage of
effects, and hence may be regarded as a suitable abstract framework for combined rea-
soning about control and effects. The situation is partly summarised in the diagram
below.

Metalanguage of
control and effects

non-r.e.∗/
r.e., undecidable

Regular metalanguage of
control and effects

{{
{{

{{
CC

CC
CC

decidable

Kleene algebra
(control)

Metalanguage
of effects

∗: Over continuous Kleene monads

We illustrate the calculus with an extended example, the proof of a property of a further,
more natural implementation of list reverse.
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2 Preliminaries: Monads and Generic Imperative Programs

Intuitively, a monad associates to each type A a type TA of computations with results
in A; a function with side effects that takes inputs of type A and returns values of type
B is, then, just a function of type A → TB. This approach abstracts from particular
notions of computation, and a surprisingly large amount of reasoning can be carried out
without commitment to a particular type of side effect.

Formally, a monad on a category C can be represented as a Kleisli triple T =
(T, η, †), where T : ObC→ ObC is a function, the unit η is a family of morphisms
ηA : A→ TA, and † assigns to each morphism f : A→ TB a morphism f† : TA→
TB such that

η†A = idTA, f†ηA = f, and g†f† = (g†f)†.

The Kleisli category CT of T has the same objects as C, and C-morphisms A → TB
as morphisms A→ B, with Kleisli composition � defined by f � g = f† ◦ g.

When C is Cartesian, i.e. has finite products, then T is strong if it is equipped with
a natural transformation tA,B : A×TB → T (A×B) called strength, subject to certain
coherence conditions (see e.g. [12]).

Example 1. [12] Computationally relevant strong monads on the category of sets (and,
mutatis mutandis, on other categories with sufficient structure) include the following.

1. Stateful computations with nontermination: TA = S → (1 + A × S), where S is
a fixed set of states.

2. Nondeterminism: TA = P(A), where P is the covariant power set functor.
3. Exceptions: TA = A+ E, where E is a fixed set of exceptions.
4. Interactive input: TA is the smallest fixed point of γ 7→ A+ (U → γ), where U is

a set of input values.
5. Interactive output: TA is the smallest fixed point of γ 7→ A+ (U × γ), where U is

a set of output values.
6. Nondeterministic stateful computation: TA = S → P(A× S).

As originally observed by Moggi [12], strong monads support a computational meta-
language, i.e. essentially a generic imperative programming language, which we shall
refer to as the metalanguage of effects. (We consider the first-order version of this lan-
guage here, which forms the core of [12]; the study of iteration in the computational
λ-calculus is the subject of further work. The negative results presented here are in fact
made stronger by using a more economic language.) This language is parametrised over
a countable signature Σ including a set of atomic types W , from which the type system
is generated by the grammar

T ::= W | 1 | A×A | TA.

Moreover, Σ includes basic programs f : A → B with given profiles, where A and B
are types. For purposes of this work, we require that the source type A for f is T -free,
i.e. does not mention T .
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Remark 2. The (trivial) completeness of the MCE over Kleene monads (see below)
holds also for arbitrary signatures, but the proof of completeness and decidability of
the regular fragment over continuous Kleene monads does depend on the restriction
to T -free arguments; this is unsurprising, as basic programs with occurrences of T in
their argument types are essentially user-defined control structures. The negative results
presented below are actually made stronger by restricting the language.

The terms of the language and their types are then determined by the term formation
rules shown in Fig. 1; judgements Γ � t : A read ‘term t has type A in context Γ ’,
where a context is a list Γ = (x1 : A1, . . . , xn : An) of typed variables.

(var) x : A ∈ Γ
Γ � x : A

(app) f : A→ B ∈ Σ Γ � t : A

Γ � f(t) : B
(1)

Γ � 〈〉 : 1

(pair) Γ � t : A Γ � u : B

Γ � 〈t, u〉 : A×B (fst) Γ � t : A×B
Γ � fst(t) : A

(snd) Γ � t : A×B
Γ � snd(t) : A

(do) Γ � p : TA Γ, x : A� q : TB

Γ � do x← p; q : TB
(ret) Γ � t : A

Γ � ret t : TA

Fig. 1. Term formation in the metalanguage of effects

Given an interpretation of atomic types W as objects [[W ]] in a Cartesian category C
equipped with a strong monad as above, we obtain obvious interpretations [[A]], [[Γ ]]
of types A and contexts Γ as objects in C. Then an interpretation of basic programs
f : A→ B as morphisms [[f ]] : [[A]]→ [[B]] induces an interpretation [[t]] : [[Γ ]]→ [[A]]
of terms Γ � t : A, given by the clauses

[[x1 : A1, . . . , xn : An � xi : Ai]] = πni
[[Γ � f(t) : B]] = [[f ]] ◦ [[Γ � t : A]], f : A→ B ∈ Σ
[[Γ � 〈〉 : 1]] = ![[Γ ]]

[[Γ � 〈t, u〉 : A×B]] = 〈[[Γ � t : A]], [[Γ � u : B]]〉
[[Γ � fst(t) : A]] = π1 ◦ [[Γ � t : A×B]]
[[Γ � snd(t) : A]] = π2 ◦ [[Γ � t : A×B]]
[[Γ � do x← p; q : TB]] = [[Γ, x : A� q : TB]] � t[[Γ ]],[[A]] ◦ 〈id, [[Γ � p : TA]]〉
[[Γ � ret t : TA]] = ηA ◦ [[Γ � t : A]]

where the πi denote projections, !A : A → 1 is the unique morphism into the terminal
object, and 〈 , 〉 denotes pairing of morphisms. We say that an equation Γ � t = s,
where Γ�t : A and Γ�s : A, is satisfied by the interpretation over T, and shortly write
T |= Γ � t = s, if [[Γ � t : A]] = [[Γ � s : A]]. It is shown in [12] that equality in the
metalanguage of effects is completely axiomatised by the standard rules of many-sorted
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equational logic plus the equations

do x← (do y ← p; q); r = do x← p; y ← q; r
do x← ret a; p = p[a/x]
do x← p; retx = p

By results of [1], it is moreover immediate that the metalanguage of effects is decidable.

3 Kleene monads

The metalanguage of effects recalled in the previous section is essentially Haskell’s
do-notation [15]. However, while Haskell’s monad libraries include recursively defined
loop constructs such as while without further ado, such loops are not provided with
reasoning support by the metalanguage of effects: the latter is exclusively a language
for linear sequential programs. It is the main object of this work to provide an extended
generic framework that does support loops. As in classical dynamic logic, we approach
this problem from the point of view of regular expressions, i.e. we introduce a nonde-
terministic iteration construct. We begin with the model for nondeterminism:

Definition 3. An additive monad is a monad T as above, equipped with a factorisation
of the hom-functor Hom( , ) : Cop

T ×CT → Set of its Kleisli category through idem-
potent commutative monoids. If the underlying category C is Cartesian, this structure
is induced by operations ⊕ : TA × TA → TA and 0 : 1 → TA which satisfy the
idempotent commutative monoid laws and distribute over Kleisli composition; we de-
note the induced structure on the hom-sets in the Kleisli category by ⊕ and 0 as well.
A strong additive monad on a Cartesian category is an additive monad with a tensorial
strength t satisfying two extra conditions:

tA,B ◦ 〈id, 0〉 = 0

tA,B ◦ 〈id, f ⊕ g〉 = tA,B ◦ 〈id, f〉 ⊕ tA,B ◦ 〈id, g〉.

The operations ⊕ and 0 are analogous to the operations mplus and mzero of Haskell’s
MonadPlus class. Additive monads typically involve powerset. E.g. among the monads
listed in Example 1, the powerset monad and the nondeterministic state monad are
additive monads. Similarly, nondeterminism may be introduced in other monads; note
however that the nondeterministic exception monad P(X + E) fails to be additive, as
it violates distribution of 0 over Kleisli composition (do x ← p; 0 may terminate if p
raises an exception) – one way of dealing with this phenomenon is to treat exceptions
separately as an outermost layer, in this case on top of the additive monad P [16].
Alternative axiomatic formulations can be found in [4, 8]. The computational model
behind additive monads is angelic nondeterminism, i.e. like in nondeterministic Turing
machines, nonterminating computation paths are ignored.

We can compare elements of TA by means of the natural ordering: p ≤ q ⇔ p⊕q =
q. This turns every Hom(X,TA) into a join semilattice with least element 0. This leads
to the central concept supporting iteration semantically:
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Definition 4. An additive monad T is a Kleene monad if the operators

f 7→ p⊕ f � r and f 7→ p⊕ r � f

(where we agree that � binds more strongly than ⊕) both have least fixed points w.r.t.
〈Hom(X,TA),≤〉, and one of two equivalent conditions holds:

µf.(p⊕ f � r) � q = p � µf.(q ⊕ r � f) (1)

or

µf.(p � q ⊕ f � r) = p � µf.(q ⊕ f � r) (2)
and µf.(p � q ⊕ r � f) = µf.(p⊕ r � f) � q. (3)

Intuitively, (1) means that (p followed by a number of r’s) followed by q is the same as
p followed by (a number of r’s followed by q).

A strong Kleene monad is a Kleene monad which is strong and whose strength
satisfies an extra strength continuity condition:

µf.(tA,B ◦ (id× p)⊕ tA,B ◦ (id× q) � f) = tA,B ◦ (id× µf.(p⊕ q � f)),

for p : A→ TB and q : A→ TB.

Let us show that indeed (1) is equivalent to the conjunction of (2) and (3). Assume (1).
Then µf.(p � q ⊕ f � r) = p � q � µf.(η ⊕ r � f) = p � µf.(q ⊕ f � r), hence (1)⇒
(2). By a symmetric argument, also (1)⇒ (3).

Now assume (2) and (3). It suffices to prove that µf.(η⊕f �r) = µf.(η⊕r�f). As
η⊕ r �µf.(η⊕f � r) = η⊕ r⊕ r �µf.(η⊕f � r)� r = η⊕ (η⊕ r �µf.(η⊕f � r))� r,
η ⊕ r � µf.(η ⊕ f � r) is a fixed point of the map f 7→ η ⊕ f � r, hence

η ⊕ r � µf.(η ⊕ f � r) ≥ µf.(η ⊕ f � r). (4)

On the other hand µf.(η ⊕ f � r) � r = r ⊕ µf.(η ⊕ f � r) � r � r, which means that
µf.(η⊕f�r)�r is a fixed point of f 7→ r⊕f�r, hence µf.(η⊕f�r)�r ≥ µf.(r⊕f�r).
Add η to both sides and obtain

µf.(η ⊕ f � r) ≥ η ⊕ r � µf.(η ⊕ f � r) (5)

From (4) and (5), we have, µf.(η ⊕ f � r) = η ⊕ r � µf.(η ⊕ f � r), which means that
µf.(η⊕ f � r) is a fixed point of f 7→ η⊕ r � f , hence µf.(η⊕ f � r) ≥ µf.(η⊕ r � f).
By symmetric argument µf.(η ⊕ r � f) ≥ µf.(η ⊕ f � r) and we are done. ut

Equation (1) is a minimal requirement that allows for defining the Kleene star operator
correctly. But typically, one deals with Kleene monads satisfying the more restrictive
(but natural) condition that µf.(p ⊕ f � r) � q = p � µf.(q ⊕ r � f) is the least upper
bound of the family of morphisms of the form p � r � . . . � r � q. We call such Kleene
monads ω-continuous.
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Example 5. A sufficient condition for a strong monad to be an ω-continuous Kleene
monad is that its Kleisli category be enriched over cpos with finite joins (i.e., countably
complete lattices). This holds, e.g., for strong monads over the category of cpos with
finite joins, but also for many other examples including all additive monads mentioned
above, in particular the nondeterministic state monad in any topos.

On the logical side, we extend the metalanguage of effects to obtain the metalan-
guage of control and effects (MCE) by adding term formation rules

Γ � p : TA Γ, x : A� q : TA
Γ � initx← p in q∗ : TA

Γ � p : TA Γ � q : TA
Γ � p+ q : TA Γ � ∅ : TA

While ∅, + just provide the expected syntax for nondeterminism (deadlock and choice),
the initx← p in q∗ construct denotes a nondeterministically chosen number of iterated
executions of q, initialised by x ← p, with the result x of the computation fed through
the loop. Formally, the new language constructs are interpreted over a strong Kleene
monad as follows.

– [[Γ � ∅ : TA]] = 0,
– [[Γ � p+ q : TA]] = [[Γ � p : TA]]⊕ [[Γ � q : TA]],
– [[Γ � initx← p in q∗ : TA]] =
Tπ2 ◦µf.(t[[Γ ]],[[A]] ◦ 〈id, [[Γ � p : TA]]〉⊕ t[[Γ ]],[[A]] ◦ 〈π1, [[Γ, x : A� q : TA]]〉 � f).

Terms of the Kleene metalanguage will be also referred as programs. Programs not in-
volving any monadic constructs (including ∅) will be called atomic. Essentially, atomic
programs are combinations of symbols of Σ by means of composition and Cartesian
primitives. In Fig. 2 we present an equational axiomatisation MCE, extending the ax-
iomatisation given in the previous section. We leave variable contexts implicit. The
order≤ appearing in (ind1) and (ind2) is the one defined above. The equations (assoc),
(comm), and (idem) for nondeterministic choice are called the ACI-laws. We refer to
the sublanguage of the MCE without ∗ and the corresponding parts of the MCE calculus
as the theory of additive monads.

Theorem 6 (Soundness). MCE is sound for strong Kleene monads.

Theorem 7 (Completeness). MCE is strongly complete over strong Kleene monads.

We next require some auxiliary machinery for additive monads, which as a side prod-
uct induces a simple normalisation-based algorithm for deciding equality over additive
monads. Consider the following rewriting system, inspired by [2].

(p : 1n) � 〈〉n

〈fst(p), 〈〉n〉 � p

〈〈〉n, snd(p)〉 � p

〈fst(p), snd(p)〉 � p

do x← (p : T1n); ret〈〉n � p

do x← p; retx � p

fst〈p, q〉 � p

snd〈p, q〉 � q

do x← ret p; q � q[p/x]
do x← (do y ← p; q); r �

do x←p; y ← q; r

(∗)
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Basic monad laws:

(bind) do x← (do y ← p; q); r = do x← p; y ← q; r

(eta1) do x← ret a; p = p[a/x]

(eta2) do x← p; retx = p

Extra axioms for nondeterminism:

(plus∅) p+ ∅ = p (comm) p+ q = q + p

(idem) p+ p = p (assoc) p+ (q + r) = (p+ q) + r

(bind∅1) do x← p; ∅ = ∅ (bind∅2) do x← ∅; p = ∅

(distr1) do x← p; (q + r) = do x← p; q + do x← p; r

(distr2) do x← (p+ q); r = do x← p; r + do x← q; r

Extra axioms and rules for Kleene star:

(unf1) initx← p in q∗ = p+ do x← (initx← p in q∗); q

(unf2) initx← p in q∗ = p+ initx← (do x← p; q) in q∗

(init) initx← (do y ← p; q) in r∗ = do y ← p; initx← q in r∗ (y /∈ FV (r))

(ind1) do x← p; q ≤ p
initx← p in q∗ ≤ p (ind2) do x← q; r ≤ r

do x← (initx← p in q∗); r ≤ do x← p; r

Fig. 2. MCE: A calculus for Kleene monads

The rules (∗) capture the usual monad laws. Here n ranges over naturals (excluding 0),
1n denotes the n-fold product of the terminal type 1 with itself, 〈〉n is a shortcut for the
n-tuple 〈〈〉, . . . , 〈〉〉 for n > 1 and is just 〈〉 for n = 1.
As usual, we have omitted contexts, which are easily reconstructed except possibly in
the second and third rules on the left. Their uncut versions look as follows.

Γ � 〈fst(p), 〈〉n〉 : A× 1n � Γ � p : A× 1n

Γ � 〈〈〉n, snd(p)〉 : 1n ×A � Γ � p : 1n ×A

Consider the extra rewrite rules, capturing nondeterminism.

p+ ∅ � p

∅+ p � p

do x← p; ∅ � ∅
do x← ∅; p � ∅

do x← p; (q + r) � do x← p; q + do x← p; r
do x← (p+ q); r � do x← p; r + do x← q; r

(∗∗)

Let �λ stand for the reduction relation defined by rules in (∗), and �ω for the reduction
relation corresponding to the rules in (∗∗). With a slight abuse of notation use � to refer
to the combined relation �λ ∪�ω.
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Lemma 8. The rewrite relation � is confluent and strongly normalising.

Denote the normal form of a term t under � by nf(t). Note that by definition, the
normal form nf(t) of a program t under � must always look like

∑n
i=1 do xi1 ←

tiki ; . . . ;x
i
ki
← tiki ; r

i, where the topmost construct in the tij and the ri is either ret or
init or an atomic program. As a simple corollary of Lemma 8 we obtain

Theorem 9. Two programs p and q are provably equal in the theory of additive monads
iff nf(p) and nf(q) are equivalent modulo the ACI-laws.

Proof. The required property is local commutativity with ACI. That is, once p and q
are related by an ACI law and p � r, there must exist s such that q �+ s, and s is
ACI-equivalent to r. This is easily verified by a case analysis. Together with confluence
and strong normalisation, this implies by [7] the Church-Rosser property of � modulo
ACI. As the theory of additive monads is precisely ACI plus the unoriented version of
rules, defining �, the last property is equivalent to the claim of the lemma. ut

Introduce one more (nonterminating) reduction rule for unfolding the Kleene star:

k-rule: initx← p in q∗ � p+ initx← (do x← p; q) in q∗

Define an operator z taking every program to a set of programs as follows:

– z(p) = {p} if is atomic,
– z(do x← p; q) = {do x← s; t | s ∈ z(p), t ∈ z(q)},
– z(ret p) = {ret p},
– z(∅) = { },
– z(p+ q) = z(p) ∪ z(q),
– z(initx← p in q∗) = { }.

Informally, z just flattens nondeterministic choice on the top level into a set, not going
under ret’s. Then for every program p let NF(p) =

⋃
{z(nfλω(q)) | p �∗

λωk q}. Now
for every normal atomic a : TA and a variable x : A define the derivative δx←a(t) =
{p | do x← a; p ∈ NF(t)} ∪ {retx | a ∈ NF(t)} and the residue ε(t) = {p | ret p ∈
NF(t)}. In order to make the choice of the variable irrelevant we identify the derivatives
under α-conversion: δx←a(p) = (δy←a(p))[x/y].

Lemma 10. If the equality p = q holds over (ω-continuous) Kleene monads, then for
every a, the sets δx←a(p) and δx←a(q) are elementwise equal over (ω-continuous)
Kleene monads, and so are ε(p) and ε(q).

The proof is by well-founded induction over proofs. For the continuous case this re-
quires the introduction of an extra (infinitary) law:

(ω)
∀i do x← (initx← p in qi); r ≤ t

do x← (initx← p in q∗); r ≤ t

Here, initx← p in q0 = p, and
initx← p in qn+1 = initx← (do x← p; q) in qn.
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Theorem 11 (Undecidability). The theory MCE is undecidable.

Proof. We show the claim by encoding Post’s Correspondence Problem (PCP). Let
Σ = {a, b, c}, and let {〈p1, q1〉, . . . , 〈pn, qn〉} be an instance of PCP in the alphabet
Σ\{c}. We define a program s that generates all possible strings of the form lcr−1 with
l = pi1 . . . pik and r = qi1 . . . qik for some sequence of indices i1, . . . , ik, as follows.
If we treat symbols of Σ as morphisms with the typing 1 → T1, s can be defined by
the term

s = do x←
(
initx←

n∑
i=1

ret(do pi; c; q−1
i ) in

n∑
i=1

ret(do pi;x; q−1
i )∗

)
;x

Then, the fact that the PCP instance does have a solution can be expressed by the in-
equality

ret s ≤ do x← r; ret(s+ x) (6)

where r is a metaprogram presenting the nondeterministic collection of terms
ret(do l; c; l−1), defined by the term

r = initx← ret c in ret(do a;x; a) + ret(do b;x; b)∗.

By Lemma 10, if the inequality (6) is provable in MCE, then s is provably equivalent to
some s′ ∈ ε(do x← r; ret(s+x)) = {s+do l; c; l−1 | l ∈ {a, b}∗}. Hence for some l,
do l; c; l−1 ≤ s must be provable in MCE. By Lemma 10, this is only possible if lcl−1

is an element of the set that defines s. On the other hand, if lcl−1 is a solution of the PCP,
it suffices to apply one of the unfolding axioms finitely many times in order to show
that do l; c; l−1 ≤ s. Likewise, one shows in finitely many steps that do l; c; l−1 ≤ r.
Therefore, we have do x ← r; ret(s + x) = do x ← (r + ret(do l; c; l−1); ret(s +
x) = (do x ← r; ret(s + x)) + (do x ← ret(do l; c; l−1); ret(s + x)) ≥ do x ←
ret(do l; c; l−1); ret(s+ x) = ret(s+ do l; c; l−1) = ret s. This inequality is just (6),
hence we are done. ut

4 Continuity

It might seem useful to take the notion of ω-continuous Kleene monad as the standard
definition. Indeed, in this case Kleene star is the least upper bound of its finite approxi-
mations, which perfectly matches the intuition. However, we now show that continuous
Kleene monads in general are logically intractable. On the other hand, we identify a
natural restriction on programs which brings the continuous case back into the realm of
tractability.

Theorem 12. Equality in the MCE over continuous Kleene monads is non-r.e.

Proof. We prove this theorem in much the same manner as Theorem 11. But instead
we encode the dual of the Post’s Correspondence Problem, which is co-r.e. complete.
This encoding is inspired by [10]. Again, letΣ = {a, b, c}, and {〈p1, q1〉, . . . , 〈pn, qn〉}
be an instance of PCP in the alphabet Σ \ {c}. Besides the term s from Theorem 11,
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which presents all pairs of strings generated by the PCP instance, we need a term t
presenting pairs of distinct strings. The program t can be defined, using the term r from
Theorem 11, as

t = do x← r; y ← ]; z ← ];
u← (do y; a;x; (b; z + ret〈〉) + do y; b;x; (a; z + ret〈〉)+

do (y; a+ ret〈〉);x; b; z + do (y; b+ ret〈〉);x; a; z);u,

where ] denotes the ‘chaos’ program

do x← (initx← ret ret〈〉 in(ret(do x; a) + ret(do x; b))∗);x.

We are done once we show that the inequality s ≤ t holds over all ω-continuous
Kleene monads if and only if the PCP instance has no solution. Suppose s ≤
t over all ω-continuous monads. In particular, it must be true over the power-
set monad P . The interpretation of the terms s and t over P is precisely as in-
tended, hence the PCP instance cannot have a solution. Now suppose that the
PCP instance has no solutions. This means that any string generated by s can
also be generated by t. As a consequence of ω-continuity, the interpretations of
s and t are precisely the sets of strings they generate. For instance, [[s]] =
supk[[do x ← (initx ←

∑n
i=1 ret(do pi; c; q−1

i ) in
∑n
i=1 ret(do pi;x; q−1

i )k);x]] =
supk

∑
i1,...,ik

[[do pi1 ; . . . ; pik ; c; q
−1
ik

; . . . ; q−1
i1

]]. As the inequality is stable under
suprema, s must be greater then t. ut

As an immediate consequence of Theorem 12, the calculus MCE is incomplete over
ω-continuous Kleene monads. Furthermore, it cannot be completed in any finitary way.
Although our encoding of PCP involves only a small part of the expressive power of
the language, one may still hope to impose syntactic restrictions on programs in order
to regain completeness. One such restriction is to control the use of ret operator, as
follows.

Definition 13. The set of regular programs is inductively defined by the following
rules.

– Any ret-free program is regular,
– All term formation rules, except the rule for Kleene star, generate regular programs

from regular premises.

Theorem 14. MCE is complete for equality of regular programs over ω-continuous
Kleene monads, and equality of regular programs is decidable.

Proof. Let the equality p = q be valid over all ω-continuous Kleene monads, with p and
q regular. We prove the claim by induction over the nesting depth of the ret operator. If
it is greater then zero we can decrease it by application of the following routine:

1. In both p and q replace (once) every subterm initx ← s in t∗, innermost first, by
the equivalent term (s+ do x← s; initx← t in t∗), and normalise (by �).
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2. In the topmost nondeterministic sum of p and q, replace every atomic t by the
equivalent (do x← t; retx).

3. At this point, p and q must take the form
∑
i do x ← pi1; p

i
2 +

∑
j ret pi3 and∑

k do x ← qk1 ; qk2 +
∑
l ret q

l
3, respectively, with pi1 and qk1 atomic. Replace the

original equation by the formula(∧
a

∑
pi1=a

pi2 =
∑
qk1=a

qk2

)
∧
(∧
j

∨
l

pj3 = ql3

)
∧
(∧
l

∨
j

pj3 = ql3

)
(7)

(where a conjunction means that all conjuncts are valid, and a disjunction that one
of the disjuncts is valid (!)).

By construction, the depth of the deepest occurrence of ret in the target equations has
been decreased by one in comparison to the original equation, if originally it was greater
than one. If it was equal to one, because of (2) the whole routine might have to be
repeated once in order to decrease it to zero.

Soundness of steps (1) and (2) is clear, because they only appeal to the rules of
MCE. Let us now show that step (3) is also legitimate. Indeed, by Lemma 10, for any a,
δx←a(p) = δx←a(q). The easily verifiable identity t = sup δx←a(do x ← a; t) shows
that the first conjunct in (7) holds, because it represents equalities of suprema of equal
sets. Then note that ε(p) and ε(q) are finite. By Lemma 10, they must be elementwise
equal, which is expressed by the second and the third conjunct of (7).

Now suppose that p and q are both ret-free. W.l.o.g. assume that all the variables in
p and q are bound (free ones can be seen as constants). Assign to every normal atomic
program a a new functional symbol â. Let Σ̂ be the set of all such symbols. The latter
can be seen as an extension of Σ, because any functional symbol from Σ is a special
case of an atomic program. Define a map ι, taking every ret-free program to a term of
Kleene algebra over Σ̂, as follows:

– ι(a) = â, for atomic a,
– ι(∅) = ∅,
– ι(p+ q) = ι(p) + ι(q),
– ι(do x← p; q) = ι(q) · ι(p),
– ι(initx← p in q∗) = ι(q)∗ · ι(p).

By differentiating the equation p = q appropriately many times, one can show that
for any atomic a1, . . . , an, if do a1; . . . ; an ≤ p, then do a1; . . . ; an ≤ q and vice
versa. This means precisely that ι(p) = ι(q) holds over the algebra of regular events.
Hence, by the completeness result of [9], the last equation must be provable in the
corresponding calculus for Kleene monads. We are done if we show how to turn this
proof into a proof in MCE. To this end, define an operator κX taking any Kleene algebra
term to a term of the MCE of type X → TX over the signature Σ̂ by

– κX(â) = â(z), â ∈ Σ̂
– κX(∅) = ∅,
– κX(p+ q) = κX(p) + κX(q),
– κX(p · q) = do z ← κX(q);κX(p),
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– κX(p∗) = ret z + init z ← κX(p) inκX(p)∗.

If we apply κX to the proof at hand, we obtain a valid proof in MCE of the equality
κX(ι(p)) = κX(ι(q)) – this follows from the obvious similarity between MCE and
the calculus for Kleene algebras. The idea is to pick out an interpretation of a symbol
from Σ̂ in such a way that the last equation turns into p = q. W.l.o.g. assume that every
variable of p and q is bound only once. Let ∆ = (x1 : TA1, . . . , xn : TAn) be the
context of all variables occurring in p and q. Put X = TA1 × . . .× TAn × TA, where
TA is the common type of p and q. Recall that every â ∈ Σ̂ occurring in ι(p), ι(q)
corresponds to an atomic program (xk1 : TAk1 , . . . , xkm : TAkm) � a : TB occurring
in p, q, whose return value is either bound to some variable xk or propagated to the top
of the term. In the latter case, we just assume k = n+ 1. Now put

â(z) = do x← a〈πk1z, . . . , πknz〉; ret〈π1z, . . . , πk−1z, x, πk+1, . . . , πn+1z〉.

Having defined the interpretation of all the symbols â in this manner, we obtain an
equation over the original signature Σ. It can be shown by induction that the original
equation p = q can by obtained from it by application of the operator λt. do z ←
t; retπn+1z. Decidability follows from the algorithmic character of the reduction steps
(1) – (3) and the fact that Kleene algebra is decidable. ut

The definition of regularity might seem overly restrictive. It is easy to find examples
of programs that do not satisfy regularity directly, but are still equivalent to a regular
program. A typical example of this kind is initx ← p in(do x ← q; ret a)∗, which
is equivalent to p + do x ← (initx ← q in q[a/x]∗); ret a. But in fact, it is not even
semi-decidable to check whether a program admits a regular implementation.

Theorem 15. The problem of checking whether a program in the MCE is semantically
equivalent to a regular program over ω-continuous Kleene monads is non-r.e.

5 Worked Example: Stack Reverse in the MCE

In spite of the negative result proved in Theorem 12 we believe the calculus MCE to
be a reasonable framework for proving program equivalence. In fact, we have encoded
the calculus in the Isabelle/HOL prover. We now present an example that we have ax-
iomatised as an Isabelle theory and successfully verified3: the double-reverse theorem
stating that reversing a list twice yields the original list. More specifically, we have
proved this theorem for two implementations of reverse, the single-stack example from
the introduction and a further implementation using two stacks. For the latter, we de-
clare operations

popi : TA, pushi : A→ T1, is emptyi : T1.

3 The theory files are available under http://www.informatik.uni-bremen.de/

˜sergey/StackReverse.tar
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(i ∈ {1, 2}). Some of the axioms imposed on these are

do is emptyi; popi = ∅ do x← popi; pushi x ≤ ret〈〉
do pushi x; is emptyi = ∅ do pushi x; popi = retx

do is emptyi; is emptyi = is emptyi is emptyi ≤ ret〈〉

Define appendij = do init ret〈〉 in(do x ← popi; pushj x)∗; is emptyi, which pops
elements from the i-th stack and pushes them into j-th stack in reverse order until the
i-th stack is empty. Now the double reverse theorem for two stacks can be encoded as

do is empty2; append12; append21 ≤ is empty2

(where the inequality arises because there is no axiom that guarantees that the stack
bottom is reachable, and expresses primarily that the left hand program does not change
the state). The proofs are reasonably straightforward but require some degree of manual
intervention; the possibility of better proof automation is under investigation.

6 Conclusion and Future Work

We have combined Moggi’s computational metalanguage for monads and Kozen’s ax-
iomatisation of Kleene algebra to obtain a metalanguage of control and effects (MCE)
that can be interpreted over a suitable notion of Kleene monad. While the combined
equational language cannot be recursively axiomatised, a quite expressive sublanguage
of so-called regular programs does have a complete axiomatisation. This axiomatisa-
tion has been formalised in the theorem prover Isabelle/HOL, and some sample verifi-
cations have been performed on programs involving monadic do-notation, Kleene star,
and nondeterminism, as well as the use of programs as values in a higher-order style.
The MCE forms part of an evolving system of formalisms (see e.g. [17, 16, 14]) aimed
at the development of a verification framework for functional-imperative programs in
the style of Haskell. The further development of this framework will include the inte-
gration of Kleene monads with monad-based dynamic logic [17, 14]; an extension of
the MCE with side effect free tests in analogy to Kleene algebra with tests [10], which
will in particular accommodate the Fischer-Ladner encoding of if and while; and
parametrisation of the MCE over an underlying equational theory of data. A further
open point is how our approach to the combination of iteration and effects can be trans-
ferred to the related framework of algebraic effects, in particular w.r.t. the combination
of effects [5].

Acknowledgement We thank Erwin R. Catesbeiana for finite discussions about in-
finite iterations.
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