
Formal Management of CAD/CAM Processes?

Michael Kohlhase, Johannes Lemburg, Lutz Schröder, and Ewaryst Schulz
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Abstract. Systematic engineering design processes have many aspects in com-
mon with software engineering, with CAD/CAM objects replacing program code
as the implementation stage of the development. They are, however, currently
considerably less formal. We propose to draw on the mentioned similarities and
transfer methods from software engineering to engineering design in order to en-
hance in particular the reliability and reusability of engineering processes. We lay
out a vision of a document-oriented design process that integrates CAD/CAM
documents with requirement specifications; as a first step towards supporting
such a process, we present a tool that interfaces a CAD system with program veri-
fication workflows, thus allowing for completely formalised development strands
within a semi-formal methodology.

1 Introduction

Much of our life is shaped by technical artifacts, ranging in terms of intrinsic complexity
from ball point pens to autonomous robots. These artifacts are the result of engineering
design processes that determine their quality, safety, and suitability for their intended
purposes and are governed by best practices, norms, and regulations. The systematic
development of products is guided by descriptions of problems and their solutions on
different levels of abstraction, such as the requirements list, the function structure, the
principle solution, and eventually the embodiment design. The elements of these rep-
resentations are linked by dependencies within and across the different levels of ab-
straction. The present state of the art in computer-aided design and manufacture of
industrial artifacts (CAD/CAM) does not support this cross-linking of dependencies.
Consequently, e.g. non-embodied principle solutions are still often shared and stored
in the form of hand-made sketches and oral explanations. In other words, large parts
of the engineering process are not completely representable in current CAD/CAM sys-
tems, which are focused primarily on the embodiment level.

In contrast, software engineers have long acknowledged the need for a formal math-
ematical representation of the software development process. In particular, formal spec-
ification and verification of software and hardware systems are essential in safety-
critical or security areas where one cannot take the risk of failure. Formal method
success stories include the verification of the Pentium IV arithmetic, the Traffic Col-
lision Avoidance System TCAS, and various security protocols. In many cases, only
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the use of logic-based techniques has been able to reveal serious bugs in software and
hardware systems; in other cases, spectacular and costly failures such as the loss of
the Mars Climate Orbiter could have been avoided by formal techniques. Norms such
as IEC 61508 make the use of formal methods mandatory for software of the highest
safety integrity level (SIL 3). Thus, formal methods will form an integral part of any
systematic methodology for safe system design.

The main goal of the present work is to outline how formal methods, hitherto used
predominantly in areas such as software development and circuit design that are inher-
ently dominated by logic-oriented thinking anyway, can be transferred to the domain of
CAD/CAM, which is more closely tied to the physical world. In particular, we wish to
tie formal specification documents in with a semi-formal engineering design process.
Potential benefits for the CAD/CAM process include

– formal verification of physical properties of the objects designed
– tracing of (formalized) requirements across the development process
– improved control over the coherence of designs
– semantically founded change management.

We lay out this vision in some more detail, relating it to an extended discussion of cur-
rent best practice in engineering design (Section 2), before we proceed to report a first
step towards enabling the use of formal methods in engineering design: we describe
a tool that extracts formal descriptions of geometric objects from CAD/CAM designs
(Section 3). Specifically, the tool exports designs in the CAD/CAM system SOLID-
WORKS into a syntactic representation in the wide-spectrum language HASCASL [12],
thereby making the connection to a formal semantics of CAD/CAM objects in terms of
standard three-dimensional affine geometry as defined in a corresponding specification
library. We apply the tool in a case study (Section 4) involving a toy but pioneering ex-
ample where we prove that a simple CAD drawing implements an abstractly described
geometric object, using the semi-automatic theorem prover Isabelle/HOL, interaction
with which is via logic translations implemented in the Bremen heterogeneous tool set
HETS [9].

2 A Document-oriented Process for CAD/CAM

Best practices for designing technical artifacts are typically standardised by profes-
sional societies. In our exposition here, we will follow the German VDI 2221 [14],

Fig. 1. The V-model of Software Engineering

which postulates that the design
process proceeds in well-defined
phases, in which an initial idea is
refined step-by-step to a fully speci-
fied product documentation. We ob-
serve that the process is similar
to the software engineering process
and that the stages in the design
process result in specification doc-
uments, as they are e.g. found in the
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V-model (see Fig. 1). In contrast to software engineering approaches like the V-model,
however, VDI 2221 (and actual current practice in engineering design) does not provide
a mechanism to ensure consistency between the design stages, or methods for verifying
that products actually meet requirements specified in preceding phases of the devel-
opment. In fact, the VDI 2221 process corresponds only to the left leg of the process
depicted in Fig. 1, while the quality control process (the right leg in Fig. 1 and the main
contribution of the V-model) is left unspecified.

2.1 The Engineering Design Process

To make the correspondence between VDI 2221 and the V-model explicit we review
the six stages of VDI 22211 and relate them to the V-model before we illustrate them
with a simple example.

S1 Purpose/Problem: a concise formulation of the purpose of the product to be de-
signed.

S2 Requirements List: a list of explicit named properties of the envisioned product.
It is developed in cooperation between designer and client and corresponds to the
user specification document in the V-model.

S3 Functional Structure: A document that identifies the functional components of
the envisioned product and puts them into relation with each other.

S4 Solution in Principle: a specification of the most salient aspects of the design. It
can either be a CAD design like the one in Fig. 2 below or a hand drawing [8].

S5 Embodiment Design/“Gestalt”: a CAD design which specifies the exact shape of
the finished product.

S6 Documentation: accompanies all steps of the design process.

Note that most of these design steps result in informal text documents, with step S5 be-
ing the notable exception. In the envisioned document-oriented engineering design pro-
cess we will concentrate on these documents, enhance them with semantic annotations
and link them to background specifications to enable machine support: e.g. require-
ments tracing, management of change, or verification of physical properties. Before
discussing this vision in more detail, let us set up an example.

2.2 The Design of a Hammer

A rational reconstruction of the design process of a machinist’s hammer according to
the German industrial norm DIN 1041 would proceed as follows.

The Purpose of a Hammer The first and most important step in setting up a require-
ments list is the specification of the purpose of the product. The purpose describes the
intended use of the product solution-neutrally. This is the highest level of abstraction
within the design process. In the case of a hammering tool, the purpose can be in the
form of a very simple definition:

1 In fact, [14] specifies additional stages for determining modular structures and developing their
embodiments, which we will subsume in steps S3 and S5
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A hammer is an apparatus for transmitting an impulse to an object, e.g. for
driving a nail into a wall.

In reference to a hand-tool in contrast to e.g. a hammer mill, the purpose can be nar-
rowed to:

A hammer is an apparatus for the manual generation and transmission of a
defined impulse to an object, e.g. for driving a nail into a wall.

Ideally, the list of requirements of a product should be unambiguous, clear and com-
plete. However, this is rarely the case in a real life design process, e.g. due to implicit
customer wishes, which in fact are often more important to the market-success of a
product than the explicitly named requirements. In the case of the hammer, the require-
ments might include the following.

Explicit Requirements

E1 The hammer has to fulfil the standard DIN 1041 and all related subsequent stan-
dards, namely: DIN 1193, DIN 1195, DIN 5111, DIN 68340 and DIN ISO 2786-1.

E2 The handle has to be painted with a clear lacquer over all and with colour RAL
7011 (iron grey) at 10 cm from the lower end.

E3 A company logo of 20mm length is placed on each of the two sides of the handle.

Implicit Requirements

I1 The hammer must be usable for right-handed and left-handed persons.
I2 The hammer should be ergonomic.
I3 The hammer must fit into a standard tool chest.
I4 The hammer shall look strong and matter-of-fact.

Functional Specification of a Hammer Within the design process, the functional
specification is done by setting up the function structure that breaks down the complex
problem into manageable smaller sub-functions and represents the logical interrelation-
ships of the given tasks. As in the previous design steps, the function structure is still
solution neutral. The aim is to open up a preferably broad solution field, which will be
narrowed by explicit named criteria within further steps of the design process.

The function structure is intended to explain interrelationships within the fu-
ture embodied product; therefore, the connection between function structure and
the given product has to be clear. Every sub-function can be found within the
product, or the product is not a suitable solution. On the other hand, function
structures are not appropriate as a tool for reverse engineering, because the re-
lation between the embodied product and the underlying functions is ambiguous.
On the right,
we depict
one possible
functional
structure for the hammer as an apparatus for the manual generation and transmission
of a defined impulse to an object.
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The Principle Solution for a Hammer From the functional specification,
we develop a principle solution (see Fig. 2). This solution abstracts from

Fig. 2. A principle solution for a Hammer

the physical traits of the
eventual product and
identifies the functional
parts. For a hammer,
one of these is the han-
dle, here a cylindri-
cal part of the hammer
shaft used for gripping.
The fact that it is sym-
metric/cylindrical is a
response to the require-
ment E1. The handle
is connected to an in-
ert mass (depicted by a
solid ball in Fig. 2) which is again connected to an active surface that delivers the im-
pact on the object. The size and form of the active surface will be determined by the
requirement I2. In fact, the principle solution reveals that there is a second possible ac-
tive area of the hammer, opposite to the primary one; Fig. 2 shows three variants of the
principle solution with differing secondary active surfaces.

The Embodiment of a Hammer Note that the principle solution is not a finished de-
sign yet, since it abstracts from most of the physical traits of a hammer, e.g. the dimen-
sions of the shaft and the form of the head, which will be specified in the embodiment
design step. Here, the ultimate three-dimensional shape and the materials of the prod-
uct are derived, taking into account material properties, manufacturability constraints,
specialised purposes, and aesthetic factors. These can lead to the widely differing final
designs we see in use today.

2.3 A Document-Oriented Design Process

We propose to reinforce the systematic engineering design process laid out above with
technologies and practices from software engineering and Formal Methods to obtain
a document-oriented process where designs are semantically enhanced and linked to
formal and semi-formal specifications. It is crucial to note that the various design doc-
uments necessarily have differing levels of rigour, ranging from informal and hard-
to-quantify requirements like I2 to mathematical proofs of security-relevant properties,
e.g. in aerospace applications. Additionally, different product parts and aspects underlie
differing economic and security-related constraints, so that design quality control must
be supported at various levels of formality (going beyond strictly ontological annota-
tion as e.g. in the EXPRESS language that forms part of the STEP Standard for product
data exchange, ISO 10303 [6,11]). As a consequence, design documents need to be en-
coded in a document format that supports flexible degrees of formality, such as OMDOC
(Open Mathematical Documents [7]). The OMDOC format concentrates on structural
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aspects of the knowledge embedded in documents and provides a markup infrastructure
to make it explicit by annotation. Crucially, the format supports a fine-granular mixture
of formal and informal elements and thus supports, e.g., the stepwise migration from
informal user requirements to specifications expressed in formal logics supported by
verification environments like the Bremen heterogeneous tool set HETS [9]. The for-
mat itself is semi-formal, i.e. focuses on explicitly structured documents where relevant
concepts are annotated by references to content dictionaries that specify the meaning
of the terms used in design documents. Semi-formal design documents already bring
added value to the engineering process by enabling machine support for many common
quality control tasks like requirements tracing and management of change which are
based on an explicitly given dependency relation (see [1] for details). Fully formal de-
velopment strands embedded in a semi-formal process additionally allow for the rigor-
ous verification of critical properties in a design, thus providing a reliable link between
various stages of the engineering design process. It is this aspect that we concentrate on
in the following.

3 Invading SOLIDWORKS

We now illustrate how the document-oriented formal/semi-formal methodology in en-
gineering design processes laid out in the last section can be supported by means of an
integration of formal methods tools with the widely used CAD system SOLIDWORKS
[13]. The latter serves mainly as a demonstration platform; our overall approach is suf-
ficiently general to apply equally well to any other CAD system that provides suitable
interfaces.

Our approach to interfacing with SOLIDWORKS is invasive, i.e. we implement se-
mantic services through direct access to the data structures of the CAD system. At
present, we provide a SOLIDWORKS plug-in2 that extracts designs as formal specifi-
cations, i.e. as lists of terms denoting sketches and features, and as formulas express-
ing constraints relating these sketches and features. These data are obtained using the
SOLIDWORKS API, and are output as a HASCASL [12] specification encoded in an
OMDOC file [7].

Overview of HASCASL HASCASL is a higher order extension of the standard alge-
braic specification language CASL (Common Algebraic Specification Language) [2,10]
with partial higher order functions and type-class based shallow polymorphism. The
HASCASL syntax appearing in the specifications shown in the following is largely self-
explanatory; we briefly recall the meaning of some keywords, referring to [12] for the
full language definition. Variables for individuals, functions and types are declared us-
ing the keyword var. The keyword type declares, possibly polymorphic, types. Types
are, a priori, loose; a free type, however, is an algebraic data type built from construc-
tor operations following the standard no-junk-no-confusion principle. Types are used

2 Available as a Visual Basic macro for SOLIDWORKS 2008, SP1 or higher, from:
http://www.informatik.uni-bremen.de/˜lschrode/SolidWorks/
SWExtractor.swp
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in the profiles of operations, declared and, optionally, defined using the keyword op.
Operations may be used to state axioms in standard higher order syntax, with some ad-
ditional features necessitated through the presence of partial functions, which however
will not play a major role in the specifications shown here (although they do show up
in the geometric libraries under discussion). Names of axioms are declared in the form
%(axiom name)%.

Beyond these basic specification constructs, HASCASL inherits mechanisms for
structured specification from CASL. In particular, named specifications are introduced
by the keyword spec; specification extensions that use previously defined syntactic ma-
terial in new declarations are indicated by the keyword then; and unions of syntacti-
cally independent specifications are constructed using the keyword and. Annotation of
extensions in the form then %implies indicates that the extension consists purely of
theorems that follow from the axioms declared previously. Named specifications may
be parameterized over arbitrary specifications. They may be imported using the given
name. Named morphisms between two specifications can be defined using the keyword
view to express that modulo a specified symbol translation, the source specification
is a logical consequence of the target specification. HASCASL is connected to the Is-
abelle/HOL theorem prover via HETS [9].

The SOLIDWORKS Object Model In order to obtain a formal representation of CAD de-
signs, we define the SOLIDWORKS object types as algebraic data types in a HASCASL
specification3 following the SOLIDWORKS object hierarchy, using a predefined poly-
morphic data type List a of lists over a. (All specifications shown below are abridged.)

spec SOLIDWORKS = AFFINEREALSPACE3DWITHSETS
then free types

SWPlane ::= SWPlane (SpacePoint : Point; NormalVector : VectorStar;
InnerCS : Vector);

SWArc ::= SWArc (Center : Point; Start : Point; End : Point);
SWLine ::= SWLine (From : Point; To : Point);
SWSpline ::= SWSpline (Points : List Point);
SWSketchObject ::= type SWArc | type SWLine | type SWSpline;
SWSketch ::= SWSketch (Objects : List SWSketchObject;

Plane : SWPlane);
SWExtrusion ::= SWExtrusion (Sketch : SWSketch; Depth : Real);
. . .
SWFeature ::= type SWExtrusion | . . .

This provides a formal syntax of CAD designs, which we then underpin with a formal
geometric semantics. The constructs are classified as follows.

– Base objects are real numbers , vectors , points , and planes , the latter given by a
point on the plane, the normal vector and a vector in the plane to indicate an inner
coordinate system.

3 All mentioned HASCASL specifications can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
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– Sketch objects: From base objects, we can construct sketch objects which are lines
defined by a start and an end point, arcs also given by start and end, and additionally
a center point, and splines given by a list of anchor points.

– Sketch: A plane together with a list of sketch objects contained in it constitutes a
sketch .

– Features represent three dimensional solid objects. They can be constructed from
one or more sketches by several feature constructors , which may take additional
parameters.

We will focus in the following on the extrusion feature constructor which represents
the figure that results as the space covered by a sketch when moved orthogonally to the
plane of the sketch for a given distance.

In order to reason formally about SOLIDWORKS designs, we equip them with a
semantics in terms of point sets in three-dimensional affine space (i.e. in R3 equipped
with the standard affine structure). For example, the term SWLine(A,B) is interpreted
as a line segment from point A to point B in R3. Formally, the semantics is based on
point set constructors that correspond to the syntax constructors, specified as follows.

spec SOLIDWORKSSEMANTICCONSTRUCTORS =
AFFINEREALSPACE3DWITHSETS

then ops
VWithLength(v : Vector; s : Real) : Vector =

v when v = 0 else (s / (|| v || as NonZero)) ∗ v;
VPlane(normal : Vector) : VectorSet = λ y : Vector • orth (y, normal);
VBall(r : Real) : VectorSet = λ y : Vector • || y || ≤ r;
ActAttach(p : Point; vs : VectorSet) : PointSet = p + vs;
ActExtrude(ax : Vector; ps : PointSet) : PointSet =
λ x : Point • ∃ l : Real; y : Point

• l isIn closedinterval (0, 1) ∧ y isIn ps ∧ x = y + l ∗ ax;

Using these semantic constructors, the point set interpretation of, e.g., planes and fea-
tures is given by the specification below. Note that the semantics of sketch objects addi-
tionally depends on a plane, which is specified only at the level of the enclosing sketch.
We give a simplified version of the semantics where we ignore the fact that one has to
distinguish between open and closed sketches — open sketches are implicitly equipped
with a default wall thickness, while closed sketches are understood as filled objects.
In particular, we elide the full definition of the semantics of arcs; we are, for purposes
of the case study of Section 4, only interested in the case of closed arcs, which define
discs.

spec SOLIDWORKSWITHSEMANTICS = SOLIDWORKS
and SOLIDWORKSSEMANTICCONSTRUCTORS
then ops

i : SWExtrusion→ PointSet;
i : SWPlane→ PointSet
i : SWSketch→ PointSet;
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is : SWSketchObject × SWPlane→ PointSet;
is : (List SWSketchObject) × SWPlane→ PointSet;
vars o, x, y, z : Point; n : VectorStar; ics : Vector; l : Real;

sk : SWSketch; plane : SWPlane;
sko : SWSketchObject; skos : List SWSketchObject

• i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
• is ([ ], plane) = emptySet;
• is (sko :: skos, plane) = is (sko, plane) union is (skos, plane);
• is (SWArc (x, y, z), plane) = . . .
• i (SWSketch (skos, plane)) = is (skos, plane);
• i (SWPlane (o, n, ics)) = ActAttach (o, VPlane n);
• i (SWExtrusion (sk, l))

= ActExtrude(VWithLength (NormalVector (Plane sk), l), i sk);

In the case study of the next section, we will show a concrete example which illustrates
the use of the plug-in in the context of our envisioned development process. Here, the
tool chain connects SOLIDWORKS to HASCASL via the plug-in, and the heterogeneous
tool set HETS then allows for the automatic generation of proof obligations to be dis-
charged in a semiautomatic theorem prover such as Isabelle/HOL. The case study is
mainly concerned with the verification of designs against abstract requirements. Fur-
ther potential uses of the invasive approach include semantic preloading, i.e. automated
rapid prototyping of designs from abstract specifications, as well as requirements trac-
ing and a closer general integration of specifications and designs, e.g. by user-accessible
links between specifications and parts in the SOLIDWORKS design.

4 Case Study: Simple Geometric Objects

We will now illustrate what form a formal strand of the integrated formal/semi-formal
development process advocated above might take on a very basic case study: we con-
struct a simple object in the CAD/CAM system, specifically a cylinder, export its formal
description using our tool, and then formally verify that it implements a prescribed ab-
stract geometric shape, i.e., that it really is a cylinder; here, we use the standard concept
of specification refinement made available in HETS via the syntactic construct of views
as exemplified below.

In practice it turns out that, rather than verify the correctness of a particular design
directly, it is more convenient to develop a library of common design patterns. Given a
formal export of a CAD/CAM object and an abstract specification for this object, we
then only have to match the object term against the patterns in our pattern library, for
which correctness has already been verified once and for all. In Section 4.1 we will
show a sample proof of a design pattern.

Naively, one would imagine that there is really nothing to verify about a geometric
object: a cylinder is a cylinder is a cylinder. But as soon as one starts using a real CAD
system, it becomes clear that the situation is actually more complex. The mathematical
concept of a three-dimensional geometric object is a set of points in three-dimensional
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euclidean space, typically described by a general formation principle and a number of
parameters. E.g. in the case of a (solid) cylinder, the parameters are

– the coordinates of some anchor point, say the centre of the cylinder,
– the spatial direction of the axis,
– the height h and the radius r,

and the formation principle for cylinders prescribes that these parameters describe the
set of points p such that

– p has distance at most r from the axis (regarded as an infinite straight line);
– the orthogonal projection of p onto the axis has distance at most h from the centre

point, and
– p lies in the positive half space determined by the base plane.

On the other hand, the design that we extract from our CAD construction4 takes a totally
different form: instead of defining a point set using the above-mentioned parameters, we
construct the cylinder as a feature by applying a suitable feature constructor to more
basic two-dimensional objects called sketches as laid out in Section 3. Additionally,
we may impose constraints on the dimensions involved, e.g. equality of two sides in
a triangle, a point which we have not explicitly treated in Section 3. Specifically, the
construction of a cylinder in SOLIDWORKS would typically proceed as follows.

– Create a plane.
– Insert a circle into the plane, described as a circular arc with coincident start and

end points.
– Extrude the circle to a certain depth.

Thus, the cylinder is constructed as a feature stemming from the extrusion

Fig. 3. Call to the SOLIDWORKS plug-in to export a cylinder

feature constructor
which is anchored
in a sketch consist-
ing of one sketch
object, a circle.
We shall generally
refer to a combina-
tion of features as
described above as
a concrete design,
while a definition
via mathematical
point sets will be
called an abstract
design. While in
the above case it

4 The CAD design of the cylinder is available under http://www.informatik.
uni-bremen.de/˜lschrode/SolidWorks/CylinderTestCase.SLDPRT
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is easy to see intuitively that the concrete design matches the abstract design, i.e. that
extruding a circle really yields a cylinder, the formalisation of this intuition is by no
means an entirely trivial enterprise, and more complex objects quickly lead to quite
challenging verification tasks – imagine e.g. having to check that two given circular
extrusions of two circles yield two interlocking chain links. Additional complexity
arises from the above-mentioned constraints – e.g. one may initially leave the height
of the cylinder open, cut part of the cylinder off using a skewed plane placed at a
defined angle to the base plane and touching the perimeter of the bottom circle, and
then impose that the height of the short side of the arising cut cylinder is half that of
the long side, thus completely determining the height.

It is therefore desirable to have machine support for checking that an abstract design
is actually implemented by a given concrete design. Besides the mere fact that one can
verify geometric shapes, added benefits include

– Easy proofs of physical and geometric properties of the objects involved – e.g. once
one has matched the abstract cylinder to the concrete cylinder, one can now prove
on the abstract side (much more easily than on the concrete side) that the cylinder
adheres to a prescribed surface area, volume, or mass (if the density is known).

– Better control over the cohesion and consistency of the design – e.g. if it turns out
that the design fails to match the abstract object, this may mean that the designer
has accidentally left extraneous degrees of freedom. Such errors may later lead to
blocked designs that cannot be completed due to unsatisfiability of their constraints,
a notorious problem in computer-aided construction; verification against abstract
designs may help in detecting such errors at an early stage of the development
process.

– The abstract design may in fact properly abstract from the concrete shape of the
final object, e.g. by leaving less relevant dimensions open (within certain ranges)
or omitting features that do not play a central role in the present stage of the design
process, thus providing for a property-centered approach to evolutionary design.

Further possible semantic services enabled by the connection between abstract and con-
crete designs within HETS include semantic annotation and requirements tracing as
discussed in Section 2. A more visionary potential application of abstract designs is
the automated derivation of concrete designs, i.e. rapid prototyping by compilation of
abstract designs into preliminary formally verified CAD documents.

A collection of geometry libraries The basis of the proposed formal geometric ver-
ification framework is a collection of HASCASL specification libraries, structured as
follows. The abstract specification of three dimensional basic geometry is contained in
a library which provides the fundamental types and objects such as the data types Point
and Vector for points and vectors in R3, types for point sets and vector sets, and op-
erations on these types. These specifications import parametrised specifications from a
library of abstract linear algebra and affine geometry, which provides the basic notions
of a Euclidean vector space such as linear dependency, norm and distance, the inner
product and orthogonality, and the operations which relate points and vectors in affine
geometry. For instance, the basic definition of an affine space, i.e. intuitively a vector
space without origin, is given as follows.
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spec AFFINESPACE[VECTORSPACE[FIELD]] =
type Point
op + : Point × Space→ Point %(point space map)%
vars p, q : Point; v, w : Space
• p + v = p + w⇒ v = w %(plus injective)%
• ∃ y : Space • p + y = q %(plus surjective)%
• p + (v + w) = p + v + w; %(point vector plus associative)%

then %implies
∀ p : Point; v, w : Space
• p + v + w = p + w + v; %(point vector plus commutative)%

end

spec EXTAFFINESPACE [AFFINESPACE[VECTORSPACE[FIELD]]] = %def
op vec : Point × Point→ Space
∀ p, q : Point • p + vec (p, q) = q; %(vec def)%

then %implies
vars p, q, r : Point; v, w : Space
• vec (p, q) + vec (q, r) = vec (p, r) %(transitivity of vec plus)%
• vec (p, q) = − vec (q, p) %(antisymmetry of vec)%
• p + v = q⇒ v = vec (p, q); %(plus vec identity)%

end

(Here, we employ a pattern where specifications are separated into a base part con-
taining only the bare definitions and an extended part containing derived operations,
marked as such by the semantic annotation %def.)

The libraries for SOLIDWORKS consist of the data types and semantics introduced
in Section 3 and common concrete design patterns such as, e.g., the construction of a
cylinder described earlier in this section. They also contain views stating the correct-
ness of these patterns, as exemplified next. Constructions exported from SOLIDWORKS
using our tool can then be matched with design patterns in the library via (trivial) views,
thus inheriting the correctness w.r.t. the abstract design from the design pattern.

4.1 A proof of a refinement view

We illustrate the verification of concrete design patterns against abstract designs on our
running example, the cylinder. The abstract design is specified as follows.

spec CYLINDER = AFFINEREALSPACE3DWITHSETS
then op Cylinder(offset : Point; r : RealPos; ax : VectorStar) : PointSet =

λ x : Point • let v = vec (offset, x) in
|| proj (v, ax) || ≤ || ax ||
∧ || orthcomp (v, ax) || ≤ r
∧ (v ∗ ax) ≥ 0;

We wish to match this with the concrete design pattern modelling the CAD construc-
tion process outlined above (importing the previously established fact that planes in
SOLIDWORKS are really affine planes):
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spec SOLIDWORKSCYLBYARCEXTRUSION =
SOLIDWORKSPLANE IS AFFINEPLANE

then op
SWCylinder(center, boundarypt : Point; axis : VectorStar): SWFeature =
let plane = SWPlane (center, axis, V (0, 0, 0));

arc = SWArc (center, boundarypt, boundarypt);
height = || axis ||

in SWExtrusion (SWSketch ([ arc ], plane), height);

view SWCYLBYAE ISCYLINDER : CYLINDER to
{SOLIDWORKSCYLBYARCEXTRUSION
then op

Cylinder(offset : Point; r : RealPos; axis : VectorStar): PointSet =
let boundary = λ p : Point • let v = vec (offset, p)

in orth (v, axis) ∧ || v || = r;
boundarypt = choose boundary

in i (SWCylinder (offset, boundarypt, axis));
}

The above view expresses that every affine cylinder can be realized by our concrete
design pattern. It induces a proof obligation stating that the operation Cylinder defined
in the view by means of i ◦ SWCylinder is equal to the operation Cylinder defined
in the specification Cylinder, the source of the view. Translated into an Isabelle/HOL
assertion via HETS, the proof obligation takes the following shape.

theorem def of Cylinder :
”ALL axis offset r .
Cylinder (( offset , r ), axis ) =
(% x. let v = vec( offset , x)

in ( || proj (v, gn inj ( axis )) || <=’ || gn inj ( axis ) || &
|| orthcomp(v, gn inj ( axis )) || <=’ gn inj( r )) &

v ∗ 4 gn inj ( axis ) >=’ 0’’)”

We will sketch the corresponding proof in Isabelle/HOL, using a slightly more readable
notation than those in the original Isabelle source code5. After the unfolding of function
definitions such as SWCylinder , SWExtrusion , i , ActExtrude and some bookkeeping
steps involving let-environments, conditionals, and function equality, we arrive at an
equivalence of the form

(1) Exists l:Real , y:Point .
(1.1) l in [0..1] /\ (1.2) y in ( ball intersection plane) /\ (1.3) x = y + l ∗ axis

<=> (2)
(2.1) ||vp|| <= ||axis || /\ (2.2) ||vo|| <= r /\ (2.3) v ∗ axis >= 0

with free variables x, offset, r and axis and a local environment containing the
following variable bindings (function symbols are explained in Table 1).

5 The Isabelle source code for this proof can be obtained under https://svn-agbkb.
informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/
SolidWorks/CylinderView.thy

13

https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy
https://svn-agbkb.informatik.uni-bremen.de/Hets-lib/trunk/HasCASL/Real3D/SolidWorks/CylinderView.thy


(0.1) boundary = \p. let v=vec( offset , p) in orth (v, axis ) /\ ||v|| = r
(0.2) bp = choose(boundary)
(0.3) r1 = vec( offset , bp)
(0.4) pln = SWPlane offset axis 0
(0.5) arc = SWArc offset bp bp
(0.6) ht = || axis ||
(0.7) ball = ActAttach( offset , VBall(|| r1 ||))
(0.8) plane = i (pln)
(0.9) v = vec( offset , x)
(0.10) vp = proj (v, axis )
(0.11) vo = orthcomp(v, axis )

FUNCTION DESCRIPTION

[0..1] closed unit interval
intersectionbinary set intersection
* overloaded binary operator (inner product, scalar multiplication, ...)
|| || norm of a vector
vec the vector connecting two points
orth the orthogonality predicate for two vectors
choose usual choice operator for a predicate
SWPlane SOLIDWORKS constructor for a plane (see Section 3)
SWArc SOLIDWORKS constructor for an arc (see Section 3)
VBall vector set constructor for a ball (see Section 3)
ActAttach point set constructor adding a vector set to a point (see Section 3)
i interpretation function (see Section 3)
proj orthogonal projection of a vector onto another
orthcomp the orthogonal component of an orthogonal decomposition

Table 1. Function symbols and their meaning

The key to the proof is the relation between v, y and l and the orthogonal decomposi-
tion of v along the axis: v = vp + vo. From (0.8) together with (0.4) and the
semantics definition for a plane, we obtain plane = offset + VPlane(axis)
= offset + {z | orth(z,axis)}, and with (1.2), which gives us y in
plane, we have y = offset + y’ with y’ satisfying orth(y’,axis). Simi-
larly we obtain from (0.7) that y = offset + y’’ with y’’ <= ||r1|| and
of course y’ = y’’ by injectivity of the addition of vectors to points in affine space.
Substituting y into (1.3) gives us x = offset + y’ + l * axis.

On the other hand, from (0.9) we have x = offset + v = offset +
vo + vp with vp a multiple of axis and vo orthogonal to it. Hence we ob-
tain offset + y’ + l * axis = offset + vo + vp and thus y’ + l

* axis = vo + vp. As l * axis and vp are linearly dependent and each side
of the equation is the unique orthogonal decomposition of v, we obtain finally our rela-
tion as y’ = vo and l * axis = vp. To show (1) => (2) using this relation
it remains to establish the following.

(1’ ) l in [0..1] /\ (1.2 ’ ) y in ball
=> (2)
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(2.1 ’ ) || l ∗ axis || <= ||axis || /\ (2.2 ’ ) ||y’ || <= r
/\ (2.3 ’ ) (vo + l ∗ axis ) ∗ axis >= 0

The rest is now real arithmetic together with the distributive law of the inner product
and some basic facts concerning the inner product and the norm, thus concluding the
correctness proof of the concrete design pattern for cylinders.

5 Conclusion and Further Work

We have argued that systematic engineering design processes (as laid down e.g. in VDI
2221) have many commonalities with software engineering. To transfer methods from
software engineering to engineering design we have to deal with the fact that engi-
neering design processes are considerably less formal and are geared towards produc-
ing CAD/CAM objects instead of program code. We have formulated a semi-formal,
document-oriented design process that integrates CAD/CAM documents with specifi-
cation documents of various degrees of formalisation, up to and including fully formal
specification and verification. To support the CAD/CAM parts of this design process,
we have extended a widely used CAD system with an interface for exporting CAD ob-
jects to the Bremen heterogeneous tool set HETS, specifically to translate them into
specifications in the wide-spectrum language HASCASL. Thereby, we turn CAD de-
signs into fully formal documents, as the export mechanism defines a rigorous geo-
metric semantics for them. Moreover, we have illustrated the formal proof obligations
that may arise in this process, and as a proof of concept, we have presented a sample
proof that verifies the implementation of a simple abstract geometric object by a CAD
design. One of the lessons to be learned from even such a basic case study is that the
matching of concrete CAD designs with geometric concepts should be via a library of
pre-established design and construction patterns. Together with the modularisation fa-
cilities afforded by the use of HASCASL within HETS, such a library will also play an
important role in eventually making formal approaches to engineering design scale to
realistic systems.

The present work forms part of a long-term endeavor where we want to rethink
the systematic engineering design process as a whole. Further steps in this program
include improved automated proof support for geometric proofs possibly using an in-
tegration of computer algebra systems into the HETS framework, rapid prototyping of
CAD/CAM objects from abstract specifications, and verification of CAD/CAM designs
against formalised industrial standards. The immediate next stage in this process is to
go one step further up the ladder, proceeding from the specification and verification of
simple shapes to simple artifacts such as the hammer. Besides being technically more
complex, this leads to a conceptually higher level of abstraction as one will wish to spec-
ify abstract properties rather than the shape of the artifact. The reasoning support for
formalised geometry may eventually profit from existing results on automated theorem
proving in geometry including [3,15,4,5], either by reuse of concepts or by importing
existing theorems using the heterogeneous mechanisms provided by HETS.
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