
Certi�able speci�cation and veri�cation of C

programs

Christoph Lüth and Dennis Walter

Deutsches Forschungszentrum für Künstliche Intelligenz
Bremen, Germany

Christoph.Lueth@dfki.de, Dennis.Walter@dfki.de

Abstract. A novel approach to the speci�cation and veri�cation of C
programs through an annotation language that is a mixture between
JML and the language of Isabelle/HOL is proposed. This yields three
bene�ts: speci�cations are concise and close to the underlying mathe-
matical model; existing Isabelle theories can be reused; and the leap of
faith from speci�cation language to encoding in a logic is small. This
is of particular relevance for software certi�cation, and veri�cation in
application areas such as robotics.

1 Introduction

Software veri�cation is used to many ends, and each end has its own means.
In this paper, we present an approach for the speci�cation and veri�cation of
mathematically-oriented C programs in the context of software certi�cation,
where correctness and reliability of the veri�cation process are a major con-
cern. Therefore we emphasise trustworthiness and correctness, by reduction to
a proof in a trusted theorem prover (in our case, Isabelle/HOL), such that the
only leap of faith required is the embedding of the semantics of the programming
language into the prover, and the actual de�nition of correctness.

To ensure consistency between speci�cation and program code, we annotate
the source code with speci�cations of its intended behaviour, but instead of
extending the programming language with speci�cation constructs (as in JML
or ACSL [1, 2]), we use the higher-order logic of the underlying prover, extended
by convenient ways to relate to values of the program state. In our application
domain, safety software in robotics1, programs live in a fairly rich application
domain, involving in particular concepts from geometry such as points, lines, or
convex polygons. Using the prover's native higher-order language, speci�cations
become concise and easy to read, since these concepts lend themselves well to
higher-order formalisation. Moreover, we can use Isabelle's rich libraries.

The actual correctness proofs follow previous work [3�5]: we encode the pro-
gramming language and its semantics into the theorem prover, de�ne a semantic
way of when a speci�cation is satis�ed, and show the veri�cation rules as the-
orems. Veri�cation conditions are generated (and proven) in Isabelle. However,

1 http://www.sams-project.org/

2

BaseLoc0 Type0 Val0,0 Val0,1 V al0,2 · · ·
BaseLoc1 Type1 Val1,0

...
...

...
...

...

BaseLocn Typen Valn,0 Valn,1

Fig. 1. A state maps base locations to types and sequences of scalar values

some work is necessary to scale this up for realistic programs: one has to make
sure the proof state remains manageable, and we have to provide a modular way
to verify each function separately. Hence, our main contribution is an approach
which allows comprehensible, concise speci�cations of C programs in a rich prob-
lem domain, together with a well-de�ned, rational veri�cation process, by tight
integration of programming language and theorem prover.

The paper is structured as follows: Sec. 2 describes the semantic foundations,
such as the supported C language subset, its denotational semantics, the seman-
tic notion of speci�cation, satis�ability, and how it is proven. Sec. 3 introduces
the novel hybrid speci�cation language we annotate program functions with, fol-
lowed by an account on how programs are formally veri�ed, given in Sec. 4. We
look at related work and conclude in Sec. 5.

2 Semantic Foundations

Overall, our model is a text-book semantics as found in e.g. [6]. Its distinctive
features are a deep embedding of a (subset of) the C language, to which we give
a deterministic denotational semantics as a mapping from states to states, and
a shallow embedding of functions.

2.1 The Low-level State Model

The state represents a program's memory. Abstractly, it is a map from locations
Loc to values Val. In contrast to the usual memory model as a stack of local
variables and a heap containing allocated objects, we use a �at model where
all objects are given a base location. An object is de�ned in the C standard as
a �region of storage [...], the contents of which can represent values� [7, 3.14].
We represent it as a sequences of scalar values [7], modelled as partial functions
from N to Val. Scalar values are integer and �oating-point numbers�which we
model as unbounded integers and reals�and references, Val = Int+Real+Ref,
where a reference is a location or unde�ned (the null pointer) Ref = Loc + 1.
Fig. 1 depicts the structure of the state space.

Concretely, a state is then a �nite partial function Σ : BaseLoc ⇀ (Type ×
(N ⇀ Val)) mapping base locations to representations of objects and their (run-
time) type Type. To access scalar values (possibly inside structures or arrays)
we use locations, which are pairs Loc = BaseLoc× N. Thus, locations represent
addresses. They allow a limited form of arithmetic, as de�ned in the standard:

3

Supported Not supported

Addresses of local objects (via &) Casts to and from void ∗
Pointer o�sets and subtraction Function pointers
sizeof operator switch, goto, continue
Function calls in expressions Arbitrary side e�ects

Fig. 2. Summary of supported and unsupported language features

we can add and subtract the o�sets of locations sharing the same base location.
(A simplifying assumption here is that all scalar values have the same size.)
Our model precludes the use of structured values in expressions, so they cannot
occur as arguments to assignment or functions. The basic operations on states
are reading, writing, allocation and deallocation:

read : Loc→ Σ → Val update : Loc→ Val→ Σ → Σ

fresh-loc :Σ → BaseLoc extend, dealloc : BaseLoc→ Σ → Σ

The fresh-loc operator returns a base location that is not yet used. Dealloca-
tion is currently used for local variables on function exit; malloc and free could
easily be supported by our model as well. State updates always succeed, i.e. at
the state level we do not perform type checks, array bounds checks or pointer
validity checks. Sanity checks are instead inserted into the semantics of pointer
dereferencing and array access.

We do not follow the split heap approach [8] literally, but recover the needed
inequalities through appropriate lemmas on �eld and array access. This keeps
the state model reasonably close to the C standard.

2.2 Modelled Language Subset

We support a subset of the language given by the MISRA programming guide-
lines [9] (Fig. 2). Prominent features include those which are heavily used in our
application domain: arbitrary nesting of structures and arrays, limited form of
address arithmetic, function calls in expressions, and an &-operator that can be
used on both global and local objects. Fig. 3 shows excerpts of the datatypes
modelling the language. An external front-end parses the actual C source code
into the Isabelle datatypes, and also performs static checks for type correctness,
and conformance to our language subset, including the MISRA guidelines.

A rather drastic simpli�cation from a theoretical point of view is the exclusion
of recursive functions by the guidelines [9, Rule 16.2]. This allows us to give
semantics to functions without the need for an explicit �xed-point operator.

Since expressions can have side-e�ects, evaluation order would be important.
However, [9, Rule 12.2] requires that an expression must yield the same value
under every evaluation order. We check this on the syntactic level in the front
end, by ruling out problematic expressions such as (x= 2)/x−−, but allowing
calls to side-e�ect free functions. As we only consider MISRA-conformant pro-
grams, it is adequate to �x the evaluation order, proceeding from left to right
for both function argument lists and expression trees.

4

basic-type ::= int | double | void
type ::= basic-type

| ∗ type
| struct id (id× type) list
| type [Nat]

stmt ::= while expr { ∗ stmt}
| lval = expr
| id (expr list)

stmt

| stmt ; stmt | . . .

id ::= String

arith-op ::= + | − | ∗ | . . .
comp-op ::= == | != | < | . . .

lval ::= idtype
| ref-expr[int-expr] type

| lval . id type

| ∗ ref-expr type

ref-expr ::= NULL

| lval
| & lval
| id (expr list)

ref

int-expr = Int

| lval
| int-expr comp-op int-expr
| int-expr arith-op int-expr
| id (expr list)

int
| . . .

expr = int-expr | double-expr | ref-expr

Fig. 3. The datatypes of the deep C embedding (abridged). Names of datatypes are
denoted in italics, and constructors written in concrete syntax. Note how we annotate
lvalues with their type, such that we can compute necessary state o�sets easily.

2.3 Denotational Semantics

Our semantics is deterministic and identi�es all kinds of faults like invalid mem-
ory access, non-termination, or division by zero as complete failure. We use
the overloaded semantic brackets [[−]] for all semantic functions, which assign a
meaning to each of the datatypes modelling programs, amongst them

[[stmt]]:Γ → Σ ⇀ 1×Σ [[expr]]:Γ → Σ ⇀ Val×Σ [[lval]]:Γ → Σ ⇀ Ref×Σ

where Γ is an environment which maps identi�ers to locations. Note that in the
presence of pointers, the evaluation of an lvalue (e.g. ∗x) depends on the state.
State transformers are composed with the Kleisli composition [10] (where α and
β are type variables) �= : (Σ ⇀ α × Σ) → (α → Σ ⇀ β × Σ) → Σ ⇀ β × Σ
which passes the result tuple of the �rst argument into the second function. The
semantic function for an assignment evaluates the lvalue l to a location m, then
the rvalue e side to a value v, and uses update to change the state:

[[l = e]]Γ def= [[l]]Γ �= λm. [[e]]Γ �= λv. update m v

The conditional statement and iteration are interpreted by corresponding opera-
tions on state transformers. A bounded iteration operator models the unfolding
of the loop at most n times, and the semantics of iteration is the least number of
unfoldings to make the loop condition false, if it exists, and unde�ned otherwise.

We consider the idealisation of machine integers to mathematical integers a
sensible separation of concerns, as the absence of under-/over�ow can in many
practical cases be proven by means of abstract interpretation [11], and using

5

modular arithmetic makes interactive veri�cation unbearably cumbersome. Mod-
elling �oating-point numbers as real numbers ignores the issue of numerical pre-
cision. For the time being, we simply do not treat it formally.

2.4 Modelling Functions

Functions are modelled as HOL functions. The semantic function of a C function
with n parameters takes n values, and returns a state transformer:

[[type id(x1, . . . , xn) block]] : Γ → Valn → Σ ⇀ Val×Σ

Both parameters and local declarations are translated into state extensions, and
the new locations added to the environment, but parameters are initialised with
the argument values, and are visible in the pre- and postconditions of the func-
tion. Ignoring speci�cations � which are also included in the full environment �
the environment Γ maps variables to their allocated base location, and function
identi�ers to their semantics:

Γ ∼= (Id⇀ BaseLoc)× (Id⇀ (Valn → Σ ⇀ Val×Σ))

When calling a function f, we evaluate the n argument values, look up its value
in the environment, written as Γ ! f , and call the resulting state transformer:

[[f (args)]]Γ def= [[args]]Γ �= (Γ ! f)

2.5 Speci�cations

Semantically, we consider speci�cations to be state predicates. In the classic total
Hoare calculus, a speci�cation for a program p consists of a precondition P and
a postcondition Q, written [P]p[Q]. In our typed setting, the precondition is a
state predicate P :Σ → bool, the program is a state transformer p :Σ ⇀ α×Σ,
and the postcondition a predicate over the state and the result of the program,
Q : α×Σ → bool. The speci�cation is satis�ed by p if each state satisfying P is
mapped to one satisfying Q:

|= : (Σ → bool)→ (Σ ⇀ α×Σ)→ (α×Σ → bool)→ bool

|= [P] p [Q] def= ∀S. P S −→ def (p S) ∧Q(p S)

To show that a program satis�es a speci�cation, we introduce a syntactic notion
of satis�ability for each datatype in Fig. 3, which is de�ned in terms of the
semantic notion (shown here for expressions and statements)

`e :Γ → (Σ → bool)→ expr→ (Val×Σ → bool)→ bool

`s :Γ → (Σ → bool)→ stmt→ (1×Σ → bool)→ bool

Γ `e [P] e [Q] def= |= [P] [[e]]Γ [Q] Γ `s [P] s [Q] def= |= [P] [[s]]Γ [Q]

6

2.6 Modular Veri�cation

In order to handle realistic programs, veri�cation needs to be modular, i.e. we
want to verify each function in the program separately and use only its speci�ca-
tion during the veri�cation of its callers. Further, we want to keep the speci�ca-
tion of each function local to its direct e�ects. For simple imperative languages,
this is achieved by frame rules [12]. The presence of pointers complicates the sit-
uation as possible aliasing forces these rules to become inelegant and complex.
Our solution is to make changes to the state possibly caused by a function (se-
mantically, a state transformer) part of the speci�cation. Recall that the state
is essentially a �nite map. We restrict a state S to a set of locations L by a
restriction operation S �L, and de�ne the modi�es predicate for two states S, T
and a set of locations Λ which holds if S and T agree everywhere except for Λ:

S 'Λ T
def= S �¬Λ= T �¬Λ .

We extend the notion of satisfaction by a modi�cation set, which contains the
only locations this state transformer may change, thus e�ectively integrating the
frame rule into the notion of satisfaction.

|= : Loc set→ (Σ → bool)→ (Σ ⇀ α×Σ)→ (α×Σ → bool)→ bool

Λ |= [P] p [Q] def= ∀S. P S −→ def (p S) ∧Q(p S) ∧ S 'Λ (p S)
`s :Loc set→ Γ → (Σ → bool)→ stmt→ (1×Σ → bool)→ bool

Λ, Γ `s [P] s [Q] def= Λ |= [P] [[s]]Γ [Q]

The syntactic proof rules integrate checks that only locations in the modi�cation
set are modi�ed. Sec. 4.2 gives further details, and an example (Fig. 7).

3 Program Speci�cations with Isabelle

Programs are speci�ed through annotations embedded in the source code in spe-
cially marked comments (beginning with /∗@, as in JML or ACSL). This way,
annotated programs can be processed by any compiler without modi�cations.
Annotations can occur before function declarations, where they take the form of
function speci�cations, and inside functions in front of loops, where they serve
as loop speci�cations, which play a technical rôle in that they allow automatic
generation of veri�cation conditions. A function speci�cation consists of a pre-
condition (@requires), a postcondition (@ensures) which relates the state before
entry into the function (the pre-state) to the state after the function has returned
(post-state), and a modi�cation set (@modi�es). Loop speci�cations consist of an
invariant (@invariant), a variant (@variant; a measure function on program states,
mapping program states to N given an appropriate C expression) ensuring ter-
mination of the loop, and an optional modi�cation set; Fig. 4 gives an example.
We �rst explore the design rationale before delving into the technicalities.

7

/∗@ @mod i f i e s a [0 : l e n] , ∗ r e s @∗/
vo id avg (i n t ∗a , i n t l en , doub le ∗ r e s) {

i n t i ;
/∗@ @mod i f i e s i , ∗ r e s , a [0 : l e n]

@va r i a n t l e n − i @∗/
f o r (i =0; i<l e n ; ++i) { ∗ r e s += a [i] ; a [i] = 0 ; }
∗ r e s /= l e n ;
}

Fig. 4. Annotated function demonstrating features as found in e.g. JML.

3.1 Design Rationale

Our aim is to specify and verify program modules for the domain of safety-
relevant robotics and automation. Functions in these programs often represent
mathematical operations. They range from simple vector operations (scalar prod-
uct, transformations) over computing the convex hull of a point set to the ap-
proximation of the behaviour of a moving object. The data structures these
operations work upon is rather restricted. For simplicity and memory safety,
they tend to be static; dynamic objects are sparse. In many cases, these data
types are structurally just tuples and sequences of real numbers and integers.

In contrast to their representations, the objects of interest in the mathemat-
ical domain are not necessarily discrete and �nite. They include time-dependent
functions, areas, polygons etc. Therefore, to obtain the desired degree of abstrac-
tion and detail in function speci�cations, an expressive, mathematically oriented
language is required. Fundamental concepts like real numbers, sets, geometric
transformations, but also concepts from analysis like derivations, integrals or lim-
its should be easily de�nable or preferably prede�ned. Moreover, for the actual
veri�cation, a plethora of lemmas about these operations and their interaction
will be needed. Also, for readability, the language should be syntactically �exible
(e.g. support in�x notation), and have a larger glyph set than 7-bit ASCII.

Finally, we do not expect to be able to prove the domain-related parts of
program speci�cations automatically, by calling provers like Z3 [13] or CVC3 [14],
despite the impressive advances these tools have made. For the interactive proof
work it is then a real bene�t if only one formal language needs to be understood.

These considerations led to the decision to directly use Isabelle as the spec-
i�cation language for state predicates as used in pre-/postconditions and in-
variants, in contrast to JML and ACSL, where extensions of the programming
language are used in speci�cations. However, we need a way to refer to the pro-
gram state, and in particular the value of variables in the speci�cations, and
further there are technical speci�cations like ranges of array indices or validity
of pointers, that are best written down in the C syntax. This resulted in a hybrid
approach, where Isabelle and an extension of the C syntax can be combined by
a quote/antiquote-mechanism, combining the best of both worlds.

8

3.2 The Speci�cation language

State predicates are boolean expressions over atomic formulas, formed by the op-
erators&&, || , !,−−> (implication) and<−> (equivalence), and the quanti�ers
\ forall T i ; P and \exists T i ; P. An atomic formula is one of the following:
(i) a side-e�ect free C expression of integer type (with a valuation of 0 denoting
false and anything else true), which may additionally contain bound variables
introduced by the quanti�ers above, the operator \old(e) referring to the value
of expression e in the pre-state, and the special symbol \result which refers to
the function's return value; (ii) a pointer predicate; or (iii) a quotation.

Pointer predicates use keywords to state common properties of pointers.
These are \valid(p) (expressing validity of a pointer), \array(a, n) (array a has
at least n elements), and \separated(a, m, b, n) (the memory areas denoted by
a [0:m] and b[0:n] are fully disjoint arrays).

Quotations are the means to embed Isabelle terms of type bool into speci�ca-
tions, e.g. to formulate the domain-related parts of a speci�cation. A quotation
consists of an arbitrary Isabelle term enclosed in $ {...} . Reference to the pro-
gram state within quoted Isabelle terms is made possible via anti-quotations,
which allow expressions in C syntax to be spliced into a quotation. Anti-quota-
tions are syntactically enclosed in `{...} . Intuitively, an anti-quoted C expression
is interpreted by its semantic value (Sec. 2.3). As an example, using the prede-
�ned Isabelle functions cmod and Complex , ${cmod (Complex `{x+1} `{y}) < c}
expresses that the complex number (x+ 1) + iy has a modulus below c, where x
and y are program variables of �oating-point type. As a shorthand, for identi�ers
one may write `x for `{x}, and $x for ${x}.

3.3 Translation to Isabelle

In contrast to programs, speci�cations are embedded shallowly as Isabelle func-
tions, where the translation from the speci�cation language to Isabelle is per-
formed by the front-end. Preconditions P , postconditions Q and invariants I are
translated to Isabelle functions of types

P : Γ → Σ → Valn → bool I : Γ → Σ → bool
Q : Γ → (Σ ×Val ×Σ)→ Valn → bool

Note that the denotation of a modi�cation set can also depend on the pre-
state, e.g. to specify that ∗x is changed when passing a pointer x to a function.
Modi�cation sets are given the semantics [[mlist]] : Γ → Σ → Loc set , and the
front-end simply outputs the modi�cation set as a value of the datatype mlist.

The translation is performed by a collection of operations {#,#l,#r,#i,#d}
on the abstract syntax of speci�cation terms, for predicates, locations and the
expression types. We only sketch the translation of preconditions, as the others
are analogous. The generated Isabelle term for a precondition Pre will have form

λ Γ Σ (v1, . . . , vn) •#(Pre) (1)

9

Predicates: #(A && B)
def
= (#(A) ∧ #(B))

#(\valid (p))
def
= (valid_ptr Σ ([[p]]Γ Σ))

#(\array(p, n))
def
= (valid_arr Σ ([[p]]Γ Σ) ([[n]]Γ Σ))

#(E1 < E2)
def
= #x(E1) < #x(E2) (x ∈ {l, d})

#(${s1 `{a1} s2 `{a2} · · · sk })
def
= (s1 #x1(a1) s2 #x2(a2) · · · sk)

(xi ∈ {l, r, i, d})

Expressions: #x(E1 + E2)
def
= #x(E1) + #x(E2) (x ∈ {l, d})

#i(lval)
def
= int (read #l(lval) Σ)

#l(lval [e])
def
= array-acc #l(lval) #i(e)

#i($a)
def
= a

Fig. 5. Rules for the translation from abstract to Isabelle syntax

The translation operation # generates the body of the lambda term (1). This
means we translate state predicates in the implicit context of an environment Γ ,
the pre-state Σ and function argument values vi. We cannot de�ne this trans-
lation within Isabelle in terms of the semantic functions [[·]], since Isabelle code
may appear in quotations, and antiquotations may refer back to bound vari-
ables introduced in quotations, but the translation via # resembles the de�ned
expression semantics on the quotation-free part of a speci�cation term.

Fig. 5 shows representative translation rules. The logical connectives are di-
rectly translated to their Isabelle equivalents. For each pointer predicate there is
an Isabelle counterpart with the additional arguments Γ and Σ; e.g. valid_ptr
interprets \valid. Since the arguments to pointer predicates are unextended C
expressions, we can use the semantic function to interpret the abstract syn-
tax in Isabelle. Quotations are output verbatim, except for anti-quotations, the
translation of which is spliced into the quotation on the point of occurrence.
The translation of expressions behaves like the respective semantic function, but
outputs references to bound Isabelle variables ($a) by their name (a).

3.4 Representation Functions

A representation function maps objects represented implicitly in the state to
their explicit denotation. For example, in the speci�cation stating that the sum of
the elements of a vector p.v is less than δ: ${ sum (Vec Σ `{p.v} `{p.vlen}) < δ}
the function Vec :: Σ → Loc → int → int list is a representation function,
yielding a list as the denotation for a vector represented implicitly by an array
p.v and its length p.vlen. Representation functions always refer to the state Σ, a
location, and a tuple of C scalar values (of type Valn). As they occur frequently,
our language provides representation anti-quotations to express them easily: a
representation function R : Σ → Loc → ValN → α can be refered to inside a
quotation as ^R{x_0, x_1, .., x_N}, where the x_i are C lvalues. Fig. 6 shows
a matrix inversion operation speci�ed using representation anti-quotations.

10

/∗@
@r e qu i r e s \ v a l i d (m) && \ v a l i d (i n v) &&

${ i n v e r t i b l e ^Matr i x {m} }
@mod i f i e s ∗ i n v
@ensure s \ r e s u l t != −1 −−>

${ ^Matr i x {m} ∗ ^Matr i x { i n v } = (1 : : mat3) }
@∗/

i n t i n v e r t_ t r a n s f o rm (const mat r i x3 ∗m, mat r i x3 ∗ i n v) ;

Fig. 6. Example speci�cation: matrix inversion. m and inv are not required to be
distinct. The speci�cation assumes that a type of 3× 3 matrices mat3 and a constant
Matrix : Σ → Loc → mat3 are de�ned in Isabelle. 1 is an overloaded constant, used
here for the type mat3 .

An alternative to using representation functions in our setting would be to
develop a component-based state model that can be used in speci�cations di-
rectly (as in [5]). In our opinion, no state model can be conceived that is generic,
yet makes it comfortable to directly work with representations of C values as
provided by that model. In particular, this would require that all domain theo-
rems are formulated in terms of the state model, which is unrealistic. Further,
not all objects can be referenced as lvalues (in particular, there is no expression
evaluating to a whole array).

4 Generating Veri�cation Conditions

In this section we describe how speci�cations are translated to theorems in Is-
abelle, how these theorem are proven, and what automatic support we provide.

4.1 Translation to correctness propositions

All translated annotation elements given for a function speci�cation are com-
posed to form a proposition whose validity entails that the function at hand
(call it f) satis�es its speci�cation. This proposition basically is a Hoare triple
as of Sec. 2.6. To be exact, it states that under the assumption that all func-
tions called by f do satisfy their speci�cation, execution of f in an arbitrary
pre-state satisfying the precondition will, for all possible arguments of the right
type and arity, (1) terminate, (2) not alter objects except those mentioned in the
modi�cation set, (3) not access arrays outside their bounds,(4) not dereference
invalid (or NULL) pointers,(5) not perform a division by zero, and (6) end in a
state that together with the pre-state satis�es the postcondition. Note that this
proposition is formulated over the semantic interpretation of a C function, in
which we abstract the numeric types. It is therefore possible to write code that
will verify, but display unwanted behaviour in practice, by combining �oating-

11

point arithmetic and pointer manipulation.2 We argue, however, that this kind
of interplay is not common in applications, and can be avoided by other means.

Formally, the correctness proposition is as follows. Consider the speci�cation

/∗@ @r e qu i r e s Pre @mod i f i e s m l i s t @ensu re s Post @∗/
i n t f (double x)

Let Γ be an appropriate environment which contains the relevant global variables
and speci�cations of f's callees; further let arg_types p a express that the list
of actual parameters a matches the formal parameter list p w.r.t. their types.
Then the speci�cation gets translated to the following Isabelle proposition:

∀ Λ args S1 • Λ = [[mlist]]Γ S1 ∧ arg_types [x] args −→
Λ, Γ `f [λS. S = S1 ∧#(Pre) Γ S [x]]f(double x)

[λ(r, S). #(Post) Γ (S1, r , S) [x]]
(2)

4.2 Program Proof Rules

To derive veri�cation conditions for a concrete program and speci�cation, we
perform a backwards proof. Starting with proposition (2), we match the corre-
sponding rule on the current state. By reducing the program term, we build up
the postcondition. For this, there has to be at least one rule for each constructor
of the datatypes representing the language, and the rules have to be formulated
in such a way that the postcondition of the conclusion is a single variable, so it
can match on any postcondition. The proof is performed by an Isabelle tactic
that transforms the initial proof obligation (2) into a single intermediate veri-
�cation condition (iVC) by applying proof rules that subsequently reduce the
program term to purely logical expressions. In total, we have ∼ 80 rules for
function de�nitions, local declarations, blocks, statements, expressions and all
constituent parts of these. Fig. 7 shows three of the rules.

As usual, the rules are best read from bottom to top. Rule (IntLVal) reduces
an lvalue integer expression (whose value is an integer) to the lvalue itself (whose
value is the location of the integer). This is done by re�ecting the action of read-
ing a location within the predicate: the postcondition Q expecting the integer
value becomes (λlv S • let iv = read_int lv S in Q iv S), which expects a
location, reads it as an integer, binds that value to an intermediate variable iv
and then passes iv to Q. The let-binding avoids a blowup in predicate size and
keeps the number of read operations in predicates small.

Since our pre- and postconditions are boolean-valued functions, we cannot
use substitution to re�ect assignments in predicates. Instead, we explicitly mod-
ify the program state. Rule (Assign) shows this: to prove an assignment with

2 The following code snippet will cause a segmentation fault on an IA-32 system, but is
veri�able since i <= 10000 && d > 0 is an invariant in the semantic interpretation.
int i = 0; int ∗ p = &i; double d = 1.0;
while (i++ < 10000) d /= 2.0;
if (d <= 0) p = NULL;
∗p = 0;

12

Λ, Γ `lv [P] lval [λlv S • let iv = (read_int lv S) in Q iv S]

Λ, Γ `i [P] lval [Q]
(IntLVal)

∀l • (Λ, Γ `e [R l] t [λa S • let T = update l a S in Q T])
Λ, Γ `lv [P] lv [λl S •R l S ∧ l ∈ Λ]

Λ, Γ `s [P] lv = t [Q]
(Assign)

∀Λ′ S N • Λ′ = [[mlist]]Γ S −→
(Λ′, Γ `s [J Λ′ S N] c [λT • invar Γ T ∧ [[var]]Γ T < N] ∧
Λ′, Γ `b [K Λ′ S N] b [λb T • (b −→ J Λ′ S N T) ∧ (¬b −→ F T)])

Λ, Γ `s [λS • let M = [[mlist]]Γ S in
(invar Γ S ∧M ⊆ Λ ∧
(∀T • S 'M T −→ invar Γ T −→ KM S ([[var]]Γ T)T))]

while b c (loopanno invar mlist var)
[F] (WhileTotal)

Fig. 7. Proof rules for integer lvalues, assignments and while statements

postcondition Q, we evaluate the lvalue we assign to (in the second premiss),
showing it is a modi�able location (l ∈ Λ). We then evaluate the expression t
(in the �rst premiss); the updated state is bound to an auxiliary variable T ,
which is passed to Q. This is equivalent to substitution: we create the predicate
stating that updating the state at lv with t yields a state satisfying Q. The state
predicate R is both the precondition of the �rst premiss and the postcondition
of the second, thus logically connecting Q and P in the conclusion.

We shall only illustrate the rule for loops (WhileTotal) here. It demonstrates
that proof rules for real program veri�cation are a little more complex than what
idealised textbook variants might suggest, and shows why it is useful to be able
to prove the rules formally correct, making a manual correctness inspection of
rules like these unnecessary. The precondition of the conclusion requires that the
annotated invariant invar holds; that the annotated set of modi�able locations,
M , is a subset of the modi�able location set Λ in the context; and that in each
state T with S'M T we may infer K from the invariant. We want to show that F
holds after execution of the while statement. This holds given two premises. The
�rst premiss states that an arbitrary run of the body in a state satisfying J re-
establishes the invariant invar . The second premiss states that after evaluation
of the condition b under the preconditionK we either obtain F directly � for the
case where b evaluates to false � or we end in a state satisfying some intermediate
predicate J , if b evaluates to true. Both premises are formulated in the context
of the annotated modi�cation set mlist , instead of the context Λ of the loop
itself, ensuring the loop body only modi�es locations as annotated in the loop
speci�cation. Termination of the loop is also ensured, employing the annotated
variant var; without going into details, the rule encodes the requirement that
the variant, interpreted as a natural number, strictly decreases in each iteration.

13

Weakened weakening through modi�cation sets. Modi�cation sets introduce the
essential property of framing (see Sec. 2.6), which shows up in what we call weak-
ened weakening. In the conclusion of rule (WhileTotal) we weaken the invariant,
roughly: ∀T • S 'M T −→ invar T −→ K T . This is essentially the statement
that the invariant implies the weakest precondition of the loop body w.r.t. the
invariant itself, K. We do not need to be able to do this for any state, but only
for those states T with S 'M T . Thus, facts about S can be used in proving
the weakening, since these are also valid for the quanti�ed states T if they are
independent of the locations M . E. g., if the loop is the �rst statement of the
function to be veri�ed, then we know the function's precondition holds in S. The
invariant therefore only needs to specify those properties that concern locations
in M , which is exactly the desired framing property.

4.3 Reduction to domain-related and program safety VCs

The iVC is a single logical expression whose validity ensures program correct-
ness. This expression is simpli�ed through a set of tactics which ultimately yield
veri�cation conditions of three kinds, which then need to be proven interactively.
The �rst ones are domain-related VCs, e.g. that a function speci�ed to compute
the inverse of an a�ne transform actually does so. The second ones are program
safety VCs that could not automatically be proven. These are comprised of non-
trivial array bounds checks, where the array is indexed in other ways than by an
iteration variable, pointer dereferencing checks and checks for division by zero.
Since pointer arithmetic is hardly used in mathematical operations, the safety of
pointer dereferencing can be proven automatically by the tactics in most cases.
The third kind of VC is concerned with modi�cation sets; these VCs demand
that only the speci�ed locations have been modi�ed. The only VCs of this kind
that cannot be proved fully automatically are, again, those involving non-trivial
array indexing. These are seldom and mostly easy to prove manually, since an
assumption about the validity of the relevant array access will be available due
to an earlier proof of that fact.

There are three main technical features of these tactics worth mentioning. (1)
Thanks to the structure of the iVC, where every intermediate value and state
is let-bound, we can avoid a combinatorial explosion in the size and number
of VCs, similar to [15], because complex expressions do not occur repeatedly.
(2) Concerning aliasing, we have proven ∼ 100 lemmas about our state model
that allow to exploit a restricted property of the split heap model [8], namely
that structure �elds with di�erent names cannot be aliased for properly aligned
structures. (a−>f and b−>g always denote di�erent locations for valid pointers
a and b). This eliminates many unnecessary VCs that would normally arise in a
basic state model like ours. (3) Finally, properties of representation functions are
known to the simpli�cation tactics, such that, e. g., an update on a struct Point
in the code is re�ected by an associated update on the model point in the VC.
Likewise, equalities such as R (update l v Σ)m = RΣm, expressing that the R-
representation at location m is independent of updates at l (with appropriate
conditions on m and l, of course) are built into the tactics.

14

/∗@ @r e qu i r e s \ s epa ra ted (ps , l en , r s , r s_ l en)
&& \ s epa ra ted (qs , l en , r s , r s_ l en)
&& l e n <= rs_len && −$p i /2 <= a lpha && a lpha <= $p i /2
@mod i f i e s r s [0 : l e n] . x , r s [0 : l e n] . y
@ensure s (\ r e s u l t == OK) −−>
${ ALL (s : : r e a l) . (ALL i . 0 <= i & i < ` l e n −−>

arc_end s ` a l pha ^Po in t { ps [$ i] } = ^Po in t { qs [$ i] }) −−>
(ALL i . 0 <= i & i < ` l e n −−>

arc s ` a l pha ^Po in t { ps [$ i] } <= convex_hu l l
{^Po in t { ps [$ i]} ,^ Po in t { r s [$ i]} ,^ Po in t { qs [$ i] } })

} @∗/
s t a t u s a r c h u l l (doub le a lpha , vec2d ∗ps , vec2d ∗qs , i n t 3 2 len ,

vec2d ∗ r s , i n t 3 2 r s_ len) ;

Fig. 8. Example speci�cation: the archull function

4.4 Example: Veri�cation at Work

α

r

r P

Q

R

Fig. 9. The arc hull

Fig. 8 shows the speci�cation of a function archull which
calculates convex hulls of arcs. Each arc is given by its
endpoints Pi and Qi and the opening angle α of the cor-
responding circle segment which uniquely determines the
radius r. The convex hull is constructed with the inter-
section point Ri of the tangents through Pi and Qi, see
Fig. 9. This is a typical function of medium complexity,
which mixes domain-related and technical requirements.
The function takes an array of start- and endpoints, and
a single angle α, and stores the Ri in a result array.

The function is about 40 lines of C code, with calls to �ve other functions. The
translated Isabelle theory is about 500 lines. Our tactic reduces this function to
4 domain-related proof obligations, 8 technical and program safety obligations,
and 10 pointer-validity obligations (which are proven automatically). 3

5 Related Work And Conclusion

This paper has presented an approach to the veri�cation of C programs in the
context of software certi�cation in the area of mobile robotics. Its distinctive
features are a deep embedding of a subset of C into Isabelle, and speci�cation
by annotation in a language directly based on Isabelle's higher-order language.

Closely related approaches such as Frama-C [17], Caduceus [3] or JML have a
comparatively weak, essentially �rst-order speci�cation language, which in turn
can be used with many prover backends. In contrast, we have an expressive,

3 The relevant Isabelle theories are provided at http://www.informatik.uni-bremen.
de/~cxl/sources/fm09.tgz; a public release of the tool will be made avaibable at
http://www.sams-project.org/.

15

higher-order language, geared towards a speci�c prover. We believe the added
expressivity of higher-order logic compensates for the loss of versatility. By that
we appeal to both conciseness of speci�cations (hence readability) and logical
expressivity. We cannot imagine how one would give a functional speci�cation
of, e.g., geometric algorithms in pure �rst-order logic. Another di�erence is the
direct embedding of the programming language, as opposed to using an inter-
mediate language such as Simpl [5] or Why [3]. Thus, we have to rely less on
the transformations performed by a syntactical front-end, increasing con�dence
in the correctness of the veri�cation process.

There is other work using theorem provers (including Isabelle) to verify C
programs in di�erent application domains, such as the L4 Veri�ed project [18]
verifying an operating system kernel, Verisoft [19] concerned with comprehensive
veri�cation (from the hardware to applications, including a veri�ed compiler),
etc. The di�erent application domains emphasize that there must be di�erent
tools for di�erent application scenarios [20] as each have their own requirements.
Moreover, it makes a big di�erence whether veri�cation is used for external
certi�cation, debugging or quality assurance. For example, model-checkers are
far more useful for debugging (e.g. [21]) than for certi�cation.

Re�nement calculi like VDM and Z are close to our approach concerning
the rich mathematical language used. However, we do not follow a re�nement
approach, although this is feasible in Isabelle. Instead, the concrete source code
that will run on the real system comes under formal scrutiny, which is particu-
larly relevant for safety-critical systems.

A denotational semantics (as opposed to an operational one, which captures
the C standard more closely [22]) has not only the advantage of easier veri�cation
of the proof rules, but we can also use the denotations in the speci�cation.

Our framework can presently handle C functions of medium length. The
limiting factor is the size of the proof state produced during the generation of the
veri�cation conditions, which is�as usual for veri�cation condition generators�
exponential in the number of sequential conditional branches and linear for other
program constructs. Care has been taken to keep the number of generated VCs
small. A join construct helps to keep the exponentional growth incurred from
conditionals in check. To be able to verify longer functions, one breaks them
down into smaller components. Presently, the framework consists of the frontend,
which is 14 kloc of Haskell (including a checker for MISRA conformance), and
the Isabelle backend. This contains 30 theories with a total of 1150 theorems.
The tactical support is 1700 lines of SML code. Using the prover language for
speci�cation has the further advantage that it allows a comprehensive formal
approach, from domain modelling down to the code in one formalism [16].

The approach has been presented to the certi�cation authority (TÜV Süd),
and preliminarily approved. The �nal presentation of the project results is sched-
uled for October 2009. The current experience is positive. The design of the
speci�cation language has been validated in the weekly code and speci�cation
reviews within the project, where researchers with no previous exposure to for-
mal methods and Isabelle were able to grasp speci�cations such as Fig. 8 quickly.

16

References

1. Chalin, P., Kiniry, J.R., Leavens, G.T., Poll, E.: Beyond assertions: Advanced
speci�cation and veri�cation with JML and ESC/Java2. In: Formal Methods for
Components and Objects. LNCS 4111, Springer (2006) 342�363

2. Baudin, P., Filliâtre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI C speci�cation language. http://frama-c.cea.fr/download/acsl_1.4.pdf
(October 2008) Preliminary design, version 1.4.

3. Filliâtre, J.C., Marché, C.: The Why/Krakatoa/Caduceus platform for deductive
program veri�cation. In: Proc. of the 19th Int. Conference on Computer Aided
Veri�cation (CAV '07). LNCS 4590, Springer (2007)

4. Nipkow, T.: Hoare logics in Isabelle/HOL. In Schwichtenberg, H., Steinbrüggen,
R., eds.: Proof and System-Reliability, Kluwer (2002) 341�367

5. Schirmer, N.: Veri�cation of Sequential Imperative Programs in Isabelle/HOL.
PhD thesis, Technische Universität München (2006)

6. Winskel, G.: The Formal Semantics of Programming Languages. Foundations of
Computing Series. MIT Press (1993)

7. Programming languages � C. ISO/IEC Standard 9899:1999(E) (1999) 2nd Ed.
8. Bornat, R.: Proving pointer programs in Hoare logic. In: Mathematics of Program

Construction. (2000) 102�126
9. MISRA-C: 2004. Guidelines for the use of the C language in critical systems. (2004)
10. Moggi, E.: Notions of computation and monads. Information and Computation

93(1) (1991) 55� 92
11. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A., Monniaux,

D., Rival, X.: A static analyzer for large safety-critical software. In: Proc. PLDI
'03, San Diego, California, USA, ACM Press (2003) 196�207

12. Borgida, A., Mylopoulos, J., Reiter, R.: On the frame problem in procedure spec-
i�cations. Software Engineering, IEEE Transactions on 21(10) (1995) 785�798

13. de Moura, L., Bjørner, N.: Z3: An e�cient SMT solver. In: Tools and Algorithms
for the Construction and Analysis of Systems. LNCS 4963, Springer (2008) 337�340

14. Barrett, C., Tinelli, C.: CVC3. In: Proc. of the 19th Int. Conference on Com-
puter Aided Veri�cation (CAV '07). LNCS 4590, Springer (2007) 298�302 Berlin,
Germany.

15. Flanagan, C., Saxe, J.B.: Avoiding exponential explosion: generating compact
veri�cation conditions. In: Proc. POPL '01, New York, NY, USA, ACM Press
(2001) 193�205

16. Frese, U., Hausmann, D., Lüth, C., Täubig, H., Walter, D.: The importance of
being formal. In Hungar, H., ed.: Int. Workshop on the Certi�cation of Safety-
Critical Software Controlled Systems (SafeCert '08). To appear in Electronic Notes
in Theoretical Computer Science (2008)

17. Frama-C. Website at http://frama-c.cea.fr/ (2008)
18. Heiser, G., Elphinstone, K., Kuz, I., Klein, G., Petters, S.M.: Towards trustwor-

thy computing systems: Taking microkernels to the next level. ACM Operating
Systems Review 41(4) (2007) 3�11

19. The VeriSoft project. Web site at http://www.verisoft.de/
20. Lamsweerde, A.v.: Formal speci�cation: a roadmap. In: ICSE '00: Proc. of the

Conference on The Future of Software Engineering, New York, NY, USA, ACM
(2000) 147�159

21. Ball, T., Millstein, T., Rajamani, S.K.: Polymorphic predicate abstraction. ACM
TOPLAS 27(2) (March 2005) 314� 343

22. Norrish, M.: C Formalised in HOL. PhD thesis, University of Cambridge (1998)

