CRSItL: A Declarative Language for the Encoding of
Proof Techniques

Dominik Dietricht Ewaryst Schulz

FR 6.2 Informatik
Saarland University
Saarbriicken
Germany

Abstract

We propose the languaggRStL to formulate mathematical reasoning techniques as proatesies in the context of the
proof assistanQ@MEGA. The language is arranged in two levels, a query languagecesa mathematical knowledge main-
tained in development graphs, and a strategy language tbaarthe results of these queries with further controlrimtion.
The two-leveled structure of the language allows the spatifin of proof techniques in a very declarative way. We give
examples to illustrate the use and semanticSRStL .

Keywords: tactic language, query language, proof search, proof pignn

1 Introduction

Unlike widely used computer-algebra systems, mathemaii&sistance systems have not
yet achieved considerable recognition and relevance ihenadtical practice. One signif-
icant shortcoming of the current systems is that they ardutigtintegrated into or acces-
sible from standard tools that are already routinely ermgadiayp practice, like, for instance,
standard mathematical text-editors. Integrating formatieling and reasoning with tools
that are routinely employed in specific areas is the key stggpamoting the use of formal
logic based techniques.

Therefore, in order to foster the use of proof assistancesys we integrated the the-
orem proveiQMEGA [11] into the scientific text-editorgXyacs [13]. The goal is to assist
the author inside the editor while preparingeXijacs document in a publishable format.
The vision underlying this research is to enable a docuroentric approach to formal-
izing and verifying mathematics and software, that is, weeaming at human readable,

1 Email: dietrich@ags.uni-sb.de
2 Email: schulz@ags.uni-sb.de

Preprint submitted to Electronic Notes in Theoretical Catep Science September 7, 2010

mailto:dietrich@ags.uni-sb.de
mailto:schulz@ags.uni-sb.de

human writable, and machine checkable documents. In ovemuimplementation theo-

ries can be formalized within the text editor and proofs cdaaractively be constructed by
the application of basic proof operators, proof strategigsich are similar to tactics, or

the introduction of proof sketches. A significant shortcognin the current version of our

system is that proof strategies cannot be specified witlirddtument. Rather, they need
to be programmed in the underlying programming languag@eptoof assistant, which

is in the case of2MEGA the programming language Lisp. It is clear that for compled a

efficient proof strategies a complete programming langusigecessary. However, small
parts of proofs can often be automated by special purpos# ptategies, which could

in principle simply be specified by the user. However, reaqgithe use of the underlying

programming language often prevents the user to take thigmpecause he is unfamiliar
with the language. Even for experienced users it is oftertitbe consuming to design a
special purpose proof strategy in the underlying programynanguage.

Consider for example the following simple theorem abougabjrrelations:

(RUS)oT = (T LoRHTu(Ttosh? 1)
Suppose further that we have already proved a theorem devasmposition”
VR, S(RoS) 1=S1oR 1)
a theorem “Distributivity ofo overu”:
VR ST.(RUS)oT =(RoT)U(SoT) (3)
and a theorem “Doubleinverse identity”:
VRR=(RH™ (4)

A possible approach to proof)would be to expand all the definitions involved i @énd
then to try to prove the resulting formulas using proposgidogic rules, which is already
implemented iNQMEGA as a generic strategy. However, there is a more elegant way. |
is easy to see that the previous proved theoreéths(®) and @) can directly be used to
prove the problem within a few steps. Writing a proof stratégy this specific case in
the underlying programming language is laborious; a mglaweight interface would be
beneficial.

In this paper we present the declarative langu@B&tL 2 for the specification of proof
strategies iIMEGA. Similar toLi5c [8] the language is intended to bridge the gap between
the predefined proof operators and the programming langoftie proof assistant. Our
language differs from standard languages for tactics veigipect to the following aspects:
(1) We consider the theory environment in which the proofstarction takes place as a
data base and provide an explicit query mechanism to retkeewledge items from this
environment, in particular proof operators. The retriekisdwledge items can be annotated
with additional control information such as matching caiodis. Building proof strategies

3 ControRuleStrategyL anguge, pronounce “crystal”

on top of this query mechanism allows the specification ofpttemf operators to be used
within a proof strategy by their properties. This way pramategies automatically adapt to
new contexts when the theory changes. (2) We provide lamgoangstructs to select sub-
goals for subsequent strategy executions by their praserfihus a proof strategy does not
depend on the order in which the subgoals were introducédn @ddition to procedural
descriptions of proof operators we support also the spatiific of goal descriptions which
will then be used as solution conditions in the correspandinategy.

The paper is organized as follows: In SBave set the context of this work by describ-
ing proof construction and knowledge management imeEGA system. Se8.gives an
overview of the strategy langua@R StL which allows the specification of proof strategies
in QMEGA. We conclude the paper with a discussion in Skec.

2 QMEGA’s Reasoning Framework

QMEGA provides a generic framework for proof construction whidmgists of (1) the
development graph to store the mathematical knowledgetsted in theories such as def-
initions, and axioms (2) theABKLAYER to maintain a proof attempt and to perform basic
proof steps (3) a proof planner to perform a search basedeondtion of proof strategies
and control rules. In this section we give an overview of ¢hesmponents.

2.1 Knowledge Management in the Development Graph

The knowledge of th€@MEGA system is organized in axiomatic theories that are built on
top of each other by importing knowledge from lower theosxiestheory morphisms. This
organization is based on the notiond#velopment graphsee B for details).

Each theory in MyYA’s development graph contains standard information likestiy-
nature of its mathematical concepts and correspondingressitemmas and theorems. In
addition to these notions, the development graph allowspleeification of other kinds of
knowledge, which are not necessarily affecting the seroamtf a theory but which, for
instance, provide valuable information to proof procedurkn example is ordering infor-
mation for the function symbols in the signature of a theerlich can be exploited by
simplification procedures. Knowledge can either manuathatided to a knowledge kind,
or automatically be classified by classification functiofer example, one either specifies
a formula to be a definition, or relies on predefined heusdftic definition detection.

Each knowledge item is attached to a specific theory and ilsl@ig1 all theories that
link to this theory. The links can use morphisms to transftmnstructures from the source
theory, therefore the knowledge items are transformed altsny these morphisms . For
instance, a morphism that renames a functionto a functiong transforms an ordering
information thatf > h (for some functiorh of the signature) into the ordering information
g > h. The default behavior for knowledge transformations iggynto transform all terms
which occur inside the knowledge item.

2.2 TheTAsSKLAYER

The central component for proof constructiorfimMEGA is the TASKLAYER. Itis based on
the CoRE-calculus P] that supports proof development at thesertion leve[10], where
proof steps are justified directly by definitions, axiomsdiems or hypotheses (collec-
tively calledassertion} omitting basic logic inference applications for changihg struc-
ture of the formula to match exactly the expected form of tseetion.

Tasks. At the TASKLAYER, the main entity is a task, a multi-conclusion sequent
Fi,...,Fj F Gg,...,G, expressing a subgoal to be proved. Initially there is onbira
gle task consisting of the conjecture to be proved. A protgnapt is represented by an
agenda consisting of a set of tasks, a global substitution whidtentiates meta-variables,
and contextual information. Tasks are reduced to subtaglapplying proof operators,
calledinferences|If a task has been reduced to an empty set of subtasks, Ited ckbosed
otherwise it is calleabpen Tasks and subformulas can be assigned named foci of attenti
that are maintained within the actual proof.

Inferences. The basic operators for proof construction are so-caliéetences Intu-
itively, aninferenceis a proof step with multiple premises and conclusions aungeceby
(1) a possibly empty set of hypotheses for each premise, &) efapplication conditions
that must be fulfilled upon inference application, (3) a $etampletion functionthat com-
pute the values of premises and conclusions from valuesef premises and conclusions.
Usually, inferences encode the operational behavior ofallerspecific assertions. How-
ever, they can also encode proof planning methods or cadistésnal special systems such
as a computer-algebra system, an automated deductiomsgsta numerical calculation
package (se€[3] for more details).

Rather than working with a fixed set of predefined inferentes set of inferences is
continuously extended whenever a new theorem has beendordtee technique to ob-
tain such inferences automatically from assertions fdltive introduction and elimination
rules of a natural deduction calculus (sef fpr details). For the purpose of this paper it
is important to note that one formula can result in sevefaténces. Consider for instance
the domain of set theory and the definitionf

YU VU CV & (VxxeU =xeV) (5)

That assertion gives rise to two inferences:

[xeU]
. Ucv : U
v L
p-. Def. cixe
ctucyv Appl. Cond.: —
Appl. Cond.: x new forU andV (6))

Reading bottom up, the first inference can be paraphrasedlisvd: In order to
showU C V, we can assume e U and have to show € V for a fresh variablex. U and
V are meta-variables that need to be instantiated during #tehimg of the inference.
However, we can also read (and apply) the inference top ddfwve know thatx € V

under the assumptione U for arbitraryx, then we can concludg C V.

2.3 Proof Automation

QMEGA provides a proof planning framework to encode and apply compatterns of
reasoning, calledtrategies Intuitively a strategy performs a heuristically guidedussh
using a dynamic set of inferences (as well as other strapgind control rules which
determine the planner’s behavior at choice points untileciied termination condition
succeeds or the search space has been completely trav&rsedtegy application results
in a nonempty list of solutions encoded in form of agendasiits.f Technically a strategy
is a function from an agenda to a list of agendas.

In a nutshell, a strategy execution corresponds to theviidig loop, which is executed
until a specified termination condition is satisfied or tharsk space is completely tra-
versed: (1) Selection of an agendd2) Selection of an open tagkfrom A (3) Selection
of the proof operators to be appliedTq4) Instantiation of the proof operators with respect
to T under some additionally specified constraints, resultirglist of so-callegartial ar-
gument instantiation§pais) (5) Selection and application of a subset of the pagylting
in new agendas. Those new agendas satisfying a solutiontioondre collected and not
further modified. Backtracking occurs if no pais can be poeduin step (4). However,
there is also the possibility to explicitly backtrack, eifja certain depth has been reached.

Up to now, the only possibility to formulate strategieS(AMEGA is to use a language
based on lisp s-expressions, called POST. This languaga'tigeovide (1) an access to
the structured knowledge stored in the development grapér dhan symbols, axioms or
theorems and (2) a pattern matching facility for term matgland filtering.

3 The Language and its Components

This section introduces the main components of the lang@&fstL. Our goal is to pro-
vide a language which permits the user to implement new pexfniques, and thus to
extend the systems automation capability, without reqgithe knowledge of the systems
underlying programming language and its automation APIl.afenot aiming at a com-
plete programming language, rather at a small, extensitilgtive, but restricted language
for automating small parts of proofs. We want to cover thedpectrum from declarative
proof strategies, i.e., specifying what to achieve and vknatvledge to be used, to full
procedural proof strategies, i.e., specifying what prquérators to apply in which order.
Our main requirements are:

» Structured access to the mathematical knowledge storeeimdvelopment graph to
specify a subset of the proof operators to be used within af gtoategy, similar to SQL
or XPath.

« Dynamic binding of variables to parts of the queried strretuespecially terms, for later
use in constraints or ordering statements.

« Abstraction over the conversion of knowledge to differemtiats, in particular the con-
version of axioms and theorems to inferences.

© O ~NO UL WNPE

» Easy access to terms and tasks to express their structop@rties, e.g., for specifying
constraints to restrict the search space, as well as solatinditions for strategies.

« Introduction of explicit backtracking conditions.

» Restriction of the instantiation possibilities for progferators.
» Specification of orderings at choice points.

» Support of new user defined predicates and functions.

The language is arranged in two levels, a query languagectsathe mathematical knowl-
edge, and a strategy language which makes extensive usesefderies and annotates the
result of a query with further control information to builgeoof strategy. Tablé summa-
rizes the languag€ERSLL in a BNF like notation.

To get a first feeling for the language consider the followpmgof strategy “Special
Purpose” for the motivating example, shown in Listihg “Special Purpose” essentially
consists of four parts: a specification of a backtrack eveengpeat loop, a use expression
and a select expression. The easiest way to understandabegytis to read the defining
expression from the inside to the outside. Bhkect expression specifies two theorems
to be selected from the theorems of the current theory. uBbexpression performs the
conversion of the theorem names to inferences. The resuheofjuery is a set of two
inferences, representing the four rewrite rules

(RUS)oT — (RoT)U(SoT) (8)
(RoT)U(SeT)— (RUS)oT 9)
(RoSt—slor? (10)
S1oR 15 (Ro9? (11)

Thesolveconstruct specifies that the goal of the proof strategy islaghe task to which it

is applied to. This already includes backtracking if nonthefrewrite rules is applicable in

a situation. Finallypacktrack-if enriches the backtracking behavior of the proof strategy
such that a backtrack event is invoked whenever the funa@h(> stratdepth 3)
evaluates to true. In this expressistiratdepth is a predefined variable which is bound
at runtime to the depth of the search tree by the proof siyafBge define-strategybinds

the proof strategy to the name “Special Purpose”. Howetés,dlso possible to directly
invoke a strategy expression.

define—strategy "Special Purpose”
solve
use
select "Distributivity of o over U”,
"Inverse composition”
from current.theorems
backtrack—if
(> stratdepth 3)
end;

CRStL Listing 1: Special purpose strategy for the example

< select>

< selector>

<source>

<infexpr>

< infcond>
<wherecond-
< infdirection>

< listexpr>

< stratexpr>

< case>
< untilcond>

< cond>

< defstrat>

< parameter
< matcher-

< matchhead-
< matchcond>
< sequent-

< namedterm-
< termpattern-

.= select< selector> from < source> <wherecond-?
| < select> union < select>

— %

| term

| (name,j name

::= theoryname

| theoryname.knowledge

::= use< select> <infcond>? <wherecond-
| <infexpr> union <infexpr>

| <infexpr> intersection < infexpr>

| <infexpr> difference < infexpr>

::= as <infdirection>

::= where < function.call >

::=forward | backward | close

;= <infexpr> | < stratexpr>"

= first <listexpr>

| solve< stratexpr>

| repeat < stratexpr> < untilcond>?

| (<stratexpr>)

| try <stratexpr>

| < stratexpr> then < stratexpr>

| name

| <stratexpr> backtrack-if <cond>

| cases<case-" end;

| <stratexp> thenselect cases: case>" end,

;:= <cond> -> < stratexpr>
;= until <cond>

::= <matcher-
| <functioncall>

::= define-strategyname< parameter-? < stratexpr> end,

.:= parameter (name,)* name;

::= <matchhead- < matchcond-?

;1= < sequent- | var

::=where < functioncall>

;1= (< termpattern>,)* <termpattern> |- <termpattern-
;1= <term> | namex term> | *

;1= <namedterm> | [< namedterm-] <termqualifier>?

< termqualifier> ::= + | -

Table 1
Syntax of CRStL

7

The previous example showed how we can realize a simple tieptld search strategy
within our framework. In general the user has to find a traffidbetween the restriction of
the search space and the simplicity of the search strategurther control constructs.
As the search space is very small in our example, we decidéavar of a very simple
proof strategy. Note that in our language function callghsas the depth limiter from
the previous example, build the interface to the underlyiragramming language and can
comprise manipulations of arbitrary lisp objects. Morapfienction calls have access to a
number of predefined variables, such as the execution timeeadenda, the theory, or the
search depth. We now explain the language constructs in deded.

3.1 Theselect Statement

Theselect statement is used to select knowledge items from a spedifesht. It consists
of three parts, aelectorpart, afrom part, and avhere part.

The From Part. Thefrom part specifies the knowledge source and the theory of the
development graph from which the knowledge is retrieved fhieory and the correspond-
ing knowledge source can be accessed by their names. Moreasupport a number of
predefined keywords, e.g., to access the current theorlgedrase theory. An overview of
the available keywords is shown in Talde

From a global perspective one can divide the knowledge imtogdarts: direct knowl-
edge andindirect knowledge Direct knowledge is knowledge which has the form of a
proof operator, i.e., an inference or a proof strategy, artwaconverted to such. For that
purpose knowledge transformation functions need to beifggc For example the func-
tion which transforms a name to an axiom simply returns thet &ikiom which has the
specified name. The transformation function from formutaiferences determines ex-
actly those inferences which were synthesized from theifspeéormula. An example of a
direct knowledge item is an axiom. In this case the convareicthe formula results in all
inferences which were obtained from this formula. Thus isecaf the definition of subset
(5) these are the inferences showniy, @nd ().

Indirect knowledge is knowledge which cannot be converted to a prpefaior, but
which can be used at choice points. An example for indireottedge is a symbol order-
ing. It cannot be converted to a proof operator, howeverritindirectly be used to restrict
the applicability of the proof operators.

Note that new knowledge kinds can easily be added to the @awvint graph and are
directly available in the query language.

The Selector Part. The selector part works on the knowledge kind specified in the
from part and can be used to further narrow down the set of knowléggns returned
by the query. In the simplest case tbelector part consists of a single. In this case
all knowledge items are returned. Thelector part may also consist of a set of names,
in which case only those knowledge items are returned fochvtiiere is a name in the
specified list of names. Finally there is the possibility peafy a term pattern. In this case
only those knowledge items which correspond to a formula tingches the pattern are
returned. The term pattern shares the variables with thef pomtext in which the query is
evaluated. Free variables are interpreted as meta-vasiablbe instantiated by the query.
These instantiated variables are passed toathere part and can be used there for the

N

all all theories reachable from the current context
current only the local knowledge of the current theory

base only the underlying logic

top(n) only the theories reachable from the current theory steps
“name” only the local knowledge of the theory given by name
axioms the axioms

theorems already proved theorems

formulas axioms and proved theorems

definitions axioms which were classified as definitions
inferences inferences, user defined and derived from axioms
strategies user defined strategies

knowledge stands for any knowledge

) Table
Available source keywords

specification of additional constraints. We found out th& convenient for the matching
to remove all leading quantifier of formulas correspondimggriowledge items.

The Where Part. Thewhere part can be used to specify additional constraints the
knowledge items of the query have to satisfy. A variable imigdvhich stems from a
pattern matching in theelector part is available for evaluation of the expression in the
where part. Listing2 shows an example of select expression consisting of selector
part, afrom part, and awhere part. The query returns those axioms from the current
theory which are equations (after removing the leading tifiens) lhs = rhs and binds the
lefthand side of the equation to the varialis, and the righthand side of the equation to
the variablerhs. In thewhere part, it is checked whethéhs is greater ashs using the
LPO with the symbol ordering stored in the development gepmeasure for the terms.

select Ilhs=rhs from current.axioms
where (greaterlpo lhs rhs
(select x from current.ordering))

CRStL Listing 2: Example of aselect expression which binds variablélss andrhs for the specification of additional
constraints

3.2 Theuse Statement

The use statement can be invoked directly after a seleetnstait and performs two tasks:
(1) Knowledge items are transformed to proof operatorsgutie installed transforma-

© O ~NO UL WNPE

A WNPE

tion functions. If no conversion is possible, the user iginfed that the query cannot be
correctly interpreted. (2) The obtained proof operatossargmented by further control
information. For inferences there is the possibility totries their application direction
using theas keyword. Backward restricts the applicability of inferences to those where
all conclusions are instantiateBHorward specifies that no conclusion must be instantiated,
andclosethat all premises and all conclusions must be instantiated.

Moreover, the automation API can be accessed via the umdgnbrogramming lan-
guage using avhere condition. As an example consider the definition of a stashdamn-
plification proof strategy shown in Listing

define—strategy "Simplification”
repeat
first
use selectlhs=rhs from current
where (greaterlpo lhs rhs ordering s forward
union
use selectlhs=rhs from current
where (greaterlpo rhs lhs ordering)s backward
end;

CRStL Listing 3: Standard simplification encoded as proof strateg

3.3 Strategy Constructors

The final step in the specification of a proof strategy coasi$taugmenting the specified
list of proof operators by control information needed fagitrexecution. Essentially this
consists of a specification of a condition for success anditation. Moreover, there is
the possibility to specify a condition for failure, i.e., directly invoke backtracking. An
overview of the strategy constructors is shown in Tabl&he operators can be classified
into the three categorieselector, iterator andcombinator.

Selectors. A list of given proof operators augmented by control infotima can be
instantiated, resulting in a list of pais satisfying a sfiedi set of constraints Selector
expressions determine how the pais are produced, and whidb phoose among the set
of produced pais. For example, tfiest selector starts to instantiate the proof operators and
applies the first which is applicable and satisfies the specdonstraints. Another selector
is thecasesselector. It consists of a list of condition action pairs,endthe condition is
encoded in form of a matcher or a function call. It executeditist action whose condition
is satisfied. Similar to the matching #rlect-expressions bound variables are passed to
subsequent expressions.

cases
* |- "x — use select”Contradiction” from base.inferences
default — use select”same” from base.inferences
end;

CRStL Listing 4: Thecasesconstruct

10

first selector applies the first proof operators that suczeed

solve iterator applies the strategy until it fails or a salatwas found.

repeat iterator applies the strategy until it fails or utité condition eval-
uates to true.

try combinator applies the strategy and doesn't fail iftsigs fails.

then combinator applies the first strategy and then the sestoategy. Fails

if the first strategy fails. If second strategy fails thentfirs
strategy backtracks internally and the second strategy is i
voked again.

backtrack-if combinator adds abacktrack event specifiediition to the strategy.

cases selector applies the first strategy whose conditialuages to true
or pattern matches. On multiple matches for a single pat-
tern a backtrack point will be defined for each match.

thenselect combinator executes a strategy and applieffisgestrategies to the
resulting tasks

Table 3
Strategy Constructors with corresponding classification

Listing 4 shows an example of theasesselector. The matcher |- ~x encodes the
condition that the goal of the current task is a negated ftamin this case, proof by
contradiction shall be performed. As default case the énfee “same” is applied.

Iterators. An iterator encodes a loop together with a default backtracking behavio
So far, we support two iteratorsplveandrepeat solvetries to close the task to which
it was applied to by repeatedly applying the specified prgarators. If none of them is
applicable, it backtracks. It fails if the complete searphce is traversedepeat applies
the specified proof operators until none of them is appleabiymore. Additionally, a
termination condition can be specified using timil keyword.

Combinators. Combinators combine strategy expressions which they take as argu-
ments. So far, we support four strategy combinattgy, then, backtrack-if, andthense-
lect. Whereas the first two have their standard meaning, the tagted further explanation.
Backtrack-if adds a failure condition to a specified condition and thudieip invokes
backtracking. Thenselectanalyses tasks resulting from a strategy application angsma
them to new strategy applications. Note that by using camitthe mapping of subse-
quent proof strategies to tasks does not depend on the drtler tasks.

An example using ththenselectcombinator is shown in Listin§. The proof strategy
“Induction” tries to perform an induction on the current gdauccessfully applied induc-
tion results in a list of subtasks containing step- and lwases. It then applies a standard
simplification to all base cases, and rippling to all stepesas

11

© O ~NO UL WNPE

10

O ~NO O WN P

define—strategy "Induction”
first
use selectaxiom from current.axioms
where (isinductionaxiom axiom)
as backward
thenselect cases
task where (isbasecase task)> "Simplification”
default — "Rippling”
end;
end;

CRStL Listing 5: Induction proof strategy illustrating thieenselectconstruct

As we have already seen in the examples the matching faisligpite powerful. In
addition to match top-level formulas, we also allow the rhitg of arbitrary subformulas.
This is in particular useful becau§evEGA allows the application of inferences deeply in-
side formulas. We use the intuitive notatibterm] thatterm can be a subterm. Moreover,
we support the restriction of subformulas to specific pt&si(c.f. [L4]), where we use
to indicate a subformula with positive polarity (intuitlyea goal to be shown) and to
indicate a subformula with negative polarity (intuitivedyfact). The proof strategy shown
in Listing 6 takes a formula as parameter and tries to derive a task inhvthe formula
occurs with negative polarity and no dependencies.

define—strategy "Fact”
parameter formula;
repeat
use selectx from current.inferencesas forward
until *,[formulal- |- x
where (not (proofobligations (pos formula)))
backtrack—if (greater stratdepth 3)
end;

CRSLL Listing 6: Proof strategy deriving a specified formula

4 Discussion and Future Work

In this paper we have presented the languag&StL for the encoding of proof techniques
in form of proof strategies in the proof assist&MEGA. With CRStL we aim to bridge
the gap between the predefined proof operators and the yimgeprogramming language
of QMEGA. CRStL supports declarative and procedural descriptions of Bwafegies, as
well as a mixture of them. The main idea was to see the spdaficprocess of a proof
strategy as a two-staged process, consisting of (1) thetseleof proof operators and (2)
augmentation of these proof operators with control knogéed

The selection process is inspired by the query languages ©QL and XPath, which
are standard for querying structured knowledge such asiamdd/object-oriented data
bases or XML. Indeed, we see the development graph as ant-objeated hierarchical

12

data base, object-oriented in the sense that the differemt/lledge kinds correspond to
different classes and the theories serve as a hierarchigatiging mechanism.

Searching and retrieving knowledge from mathematical dates has been studied in
the context of Helm I] and Mizar [L2]. Helm focuses on the interaction with different
mathematical repositories over the web and Mizar uses thé. I@dMery systeng] also for
presentational purposes in MMLCH][such as for instance XPath is used in XSLT. Most
similar to the strategy constructors, in particular theahig constructs, is the language
Liac [8]. The augmentation of proof operators with control knowgedan also be found in
the ELAN systemT].

Future work comprises the refinement of our constructs. kamgle we plan to add
sorting possibilities to the language to express prefa®gamong a set of inferences more
naturally. Moreover, so far the language supports only fstrategies working on a single
agenda. A2MEGA already supports the management of multiple proof atteiparal-
lel, it is a natural step to extend the language to cope withiphel agendas. It would also
be interesting to integrate lemma speculatioCRStL.

References

[1] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Céamruccio Guidi, and Irene Schena. Mathematical knowledge
management in helmAnnals of Mathematics and Atrtificial Intelligencg8(1-3):27-46, 2003.

[2] S. Autexier. The @RE calculus. In R. Nieuwenhuis, editdProceedings of CADE-2Q.NAI 3632, Tallinn, Estonia,
july 2005. Springer.

[3] S. Autexier and D. Dietrich. Synthesizing proof plangimethods and oants agents from mathematical knowledge. In
J. Borwein and B. Farmer, editorBroceedings of MKM'06volume 4108 ofLNAI, pages 94-109. Springer, august
2006.

[4] S. Autexier, D. Hutter, Till Mossakowski, and Axel Scheri The development graph manager MAYA. In Héléne
Kirchner and C. e Ringeissen, editoRtoceedings 9th International Conference on Algebraic hdéblogy And
Software Technology (AMAST'Q2plume 2422 ot NCS Springer, September 2002.

[5] Grzegorz Bancerek. Information retrieval and rendgrivith mml query. InProceedings of MKM'0gpages 266—-279.
Springer-Verlag, 2006.

[6] Grzegorz Bancerek and Piotr Rudnicki. Information iestal in mml. InProceedings of MKM'03pages 119-132,
London, UK, 2003. Springer-Verlag.

[7] Peter Borovansky, Claude Kirchner, Hne Kirchner, andi€bphe Ringeissen. Rewriting with strategies in ELAN: A
functional semanticsinternational Journal of Foundations of Computer Scigr?(1):69-95, 2001.

[8] David Delahaye. A Proof Dedicated Meta-Language.Phceedings of Logical Frameworks and Meta-Languages
(LFM), Copenhagen (Denmarkjolume 70 (2) oENTCS Elsevier, July 2002.

[9] D. Dietrich. The task-layer of th@MEGA system. Diploma thesis, FR 6.2 Informatik, Universitas @aarlandes,
Saarbriicken, Germany, 2006.

[10] Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive Aagino Number 112 in DISKI. Infix,
Sankt Augustin, Germany, 1996.

[11] Jorg Siekmann, C. Benzmiiller, A. Fiedler, Andreasiévleand Martin Pollet. Proof development with OMEGA:

V/2 is irrational. In Matthias Baaz and Andrei Voronkov, editd_ogic for Programming, Artificial Intelligence, and
Reasoning, 9th International Conference, LPAR 200&nber 2514 in LNAI, pages 367-387. Springer, 2002.

[12] A. Trybulec and H. Blair. Computer assisted reasonirity Wi1zAR. In A. Joshi, editorProceedings of the 9th Int.
Joint Conference on Artifical Intelligenc#!. Kaufmann, 1985.

[13] Joris van der Hoeven. GnygAyacs: A free, structured, wysiwyg and technical text editor. Nnen39-40 in Cahiers
GUTenberg, May 2001.

[14] Lincoln Wallen. Automated proof search in non-classical logics: efficierstnir proof methods for modal and
intuitionistic logics MIT Press series in artificial intelligence, 1990.

13

	Introduction
	mega's Reasoning Framework
	Knowledge Management in the Development Graph
	The TaskLayer
	Proof Automation

	The Language and its Components
	The select Statement
	The use Statement
	Strategy Constructors

	Discussion and Future Work
	References

