
CRStL: A Declarative Language for the Encoding of
Proof Techniques

Dominik Dietrich1 Ewaryst Schulz2

FR 6.2 Informatik
Saarland University

Saarbrücken
Germany

Abstract

We propose the languageCRStL to formulate mathematical reasoning techniques as proof strategies in the context of the
proof assistantΩMEGA. The language is arranged in two levels, a query language to access mathematical knowledge main-
tained in development graphs, and a strategy language to annotate the results of these queries with further control information.
The two-leveled structure of the language allows the specification of proof techniques in a very declarative way. We give
examples to illustrate the use and semantics ofCRStL.

Keywords: tactic language, query language, proof search, proof planning

1 Introduction

Unlike widely used computer-algebra systems, mathematical assistance systems have not
yet achieved considerable recognition and relevance in mathematical practice. One signif-
icant shortcoming of the current systems is that they are notfully integrated into or acces-
sible from standard tools that are already routinely employed in practice, like, for instance,
standard mathematical text-editors. Integrating formal modeling and reasoning with tools
that are routinely employed in specific areas is the key step in promoting the use of formal
logic based techniques.

Therefore, in order to foster the use of proof assistance systems, we integrated the the-
orem proverΩMEGA [11] into the scientific text-editor TEXMACS [13]. The goal is to assist
the author inside the editor while preparing a TEXMACS document in a publishable format.
The vision underlying this research is to enable a document-centric approach to formal-
izing and verifying mathematics and software, that is, we are aiming at human readable,

1 Email: dietrich@ags.uni-sb.de
2 Email: schulz@ags.uni-sb.de

Preprint submitted to Electronic Notes in Theoretical Computer Science September 7, 2010

mailto:dietrich@ags.uni-sb.de
mailto:schulz@ags.uni-sb.de

human writable, and machine checkable documents. In our current implementation theo-
ries can be formalized within the text editor and proofs can interactively be constructed by
the application of basic proof operators, proof strategies, which are similar to tactics, or
the introduction of proof sketches. A significant shortcoming in the current version of our
system is that proof strategies cannot be specified within the document. Rather, they need
to be programmed in the underlying programming language of the proof assistant, which
is in the case ofΩMEGA the programming language Lisp. It is clear that for complex and
efficient proof strategies a complete programming languageis necessary. However, small
parts of proofs can often be automated by special purpose proof strategies, which could
in principle simply be specified by the user. However, requiring the use of the underlying
programming language often prevents the user to take this option because he is unfamiliar
with the language. Even for experienced users it is often tootime consuming to design a
special purpose proof strategy in the underlying programming language.

Consider for example the following simple theorem about binary relations:

(R∪S)◦T = (T−1◦R−1)−1∪ (T−1◦S−1)−1 (1)

Suppose further that we have already proved a theorem “Inverse composition”

∀R,S.(R◦S)−1 = S−1◦R−1
, (2)

a theorem “Distributivity of◦ over∪”:

∀R,S,T.(R∪S)◦T = (R◦T)∪ (S◦T) (3)

and a theorem “Doubleinverse identity”:

∀R.R= (R−1)−1 (4)

A possible approach to proof (1) would be to expand all the definitions involved in (1) and
then to try to prove the resulting formulas using propositional logic rules, which is already
implemented inΩMEGA as a generic strategy. However, there is a more elegant way. It
is easy to see that the previous proved theorems (2), (3) and (4) can directly be used to
prove the problem within a few steps. Writing a proof strategy for this specific case in
the underlying programming language is laborious; a more lightweight interface would be
beneficial.

In this paper we present the declarative languageCRStL 3 for the specification of proof
strategies inΩMEGA. Similar toLtac [8] the language is intended to bridge the gap between
the predefined proof operators and the programming languageof the proof assistant. Our
language differs from standard languages for tactics with respect to the following aspects:
(1) We consider the theory environment in which the proof construction takes place as a
data base and provide an explicit query mechanism to retrieve knowledge items from this
environment, in particular proof operators. The retrievedknowledge items can be annotated
with additional control information such as matching conditions. Building proof strategies

3 ControlRuleStrategyLanguge, pronounce “crystal”

2

on top of this query mechanism allows the specification of theproof operators to be used
within a proof strategy by their properties. This way proof strategies automatically adapt to
new contexts when the theory changes. (2) We provide language constructs to select sub-
goals for subsequent strategy executions by their properties. Thus a proof strategy does not
depend on the order in which the subgoals were introduced. (3) In addition to procedural
descriptions of proof operators we support also the specification of goal descriptions which
will then be used as solution conditions in the corresponding strategy.

The paper is organized as follows: In Sec.2 we set the context of this work by describ-
ing proof construction and knowledge management in theΩMEGA system. Sec.3 gives an
overview of the strategy languageCRStL which allows the specification of proof strategies
in ΩMEGA. We conclude the paper with a discussion in Sec.4.

2 ΩMEGA ’s Reasoning Framework

ΩMEGA provides a generic framework for proof construction which consists of (1) the
development graph to store the mathematical knowledge structured in theories such as def-
initions, and axioms (2) the TASKLAYER to maintain a proof attempt and to perform basic
proof steps (3) a proof planner to perform a search based on the notion of proof strategies
and control rules. In this section we give an overview of these components.

2.1 Knowledge Management in the Development Graph

The knowledge of theΩMEGA system is organized in axiomatic theories that are built on
top of each other by importing knowledge from lower theoriesvia theory morphisms. This
organization is based on the notion ofdevelopment graphs(see [4] for details).

Each theory in MAYA ’s development graph contains standard information like the sig-
nature of its mathematical concepts and corresponding axioms, lemmas and theorems. In
addition to these notions, the development graph allows thespecification of other kinds of
knowledge, which are not necessarily affecting the semantics of a theory but which, for
instance, provide valuable information to proof procedures. An example is ordering infor-
mation for the function symbols in the signature of a theory,which can be exploited by
simplification procedures. Knowledge can either manually be added to a knowledge kind,
or automatically be classified by classification functions.For example, one either specifies
a formula to be a definition, or relies on predefined heuristics for definition detection.

Each knowledge item is attached to a specific theory and is visible in all theories that
link to this theory. The links can use morphisms to transformthe structures from the source
theory, therefore the knowledge items are transformed alsoalong these morphisms . For
instance, a morphism that renames a functionf into a functiong transforms an ordering
information thatf > h (for some functionh of the signature) into the ordering information
g> h. The default behavior for knowledge transformations is simply to transform all terms
which occur inside the knowledge item.

3

2.2 TheTASKLAYER

The central component for proof construction inΩMEGA is the TASKLAYER. It is based on
the CORE-calculus [2] that supports proof development at theassertion level[10], where
proof steps are justified directly by definitions, axioms, theorems or hypotheses (collec-
tively calledassertions) omitting basic logic inference applications for changingthe struc-
ture of the formula to match exactly the expected form of the assertion.

Tasks. At the TASKLAYER, the main entity is a task, a multi-conclusion sequent
F1, . . . ,Fj ⊢ G1, . . . ,Gk, expressing a subgoal to be proved. Initially there is only asin-
gle task consisting of the conjecture to be proved. A proof attempt is represented by an
agenda, consisting of a set of tasks, a global substitution which instantiates meta-variables,
and contextual information. Tasks are reduced to subtasks by applying proof operators,
calledinferences. If a task has been reduced to an empty set of subtasks, it is called closed,
otherwise it is calledopen. Tasks and subformulas can be assigned named foci of attention
that are maintained within the actual proof.

Inferences. The basic operators for proof construction are so-calledinferences. Intu-
itively, an inferenceis a proof step with multiple premises and conclusions augmented by
(1) a possibly empty set of hypotheses for each premise, (2) aset ofapplication conditions
that must be fulfilled upon inference application, (3) a set of completion functionsthat com-
pute the values of premises and conclusions from values of other premises and conclusions.
Usually, inferences encode the operational behavior of domain specific assertions. How-
ever, they can also encode proof planning methods or calls toexternal special systems such
as a computer-algebra system, an automated deduction system or a numerical calculation
package (see [9,3] for more details).

Rather than working with a fixed set of predefined inferences,the set of inferences is
continuously extended whenever a new theorem has been proved. The technique to ob-
tain such inferences automatically from assertions follows the introduction and elimination
rules of a natural deduction calculus (see [3] for details). For the purpose of this paper it
is important to note that one formula can result in several inferences. Consider for instance
the domain of set theory and the definition of⊆:

∀U,V.U ⊆V ⇔ (∀x.x∈U ⇒ x∈V) (5)

That assertion gives rise to two inferences:

p :

[x∈U]
...

x∈V

c : U ⊆V
Def-⊆

Appl. Cond.: x new for U and V (6)

p1 : U ⊆V p2 : x∈U

c : x∈V
Def-⊆

Appl. Cond.: −
(7)

Reading bottom up, the first inference can be paraphrased as follows: In order to
showU ⊆V, we can assumex∈U and have to showx∈V for a fresh variablex. U and
V are meta-variables that need to be instantiated during the matching of the inference.
However, we can also read (and apply) the inference top down:If we know thatx ∈ V

4

under the assumptionx∈U for arbitraryx, then we can concludeU ⊆V.

2.3 Proof Automation

ΩMEGA provides a proof planning framework to encode and apply common patterns of
reasoning, calledstrategies. Intuitively a strategy performs a heuristically guided search
using a dynamic set of inferences (as well as other strategies), and control rules which
determine the planner’s behavior at choice points until a specified termination condition
succeeds or the search space has been completely traversed.A strategy application results
in a nonempty list of solutions encoded in form of agendas or fails. Technically a strategy
is a function from an agenda to a list of agendas.

In a nutshell, a strategy execution corresponds to the following loop, which is executed
until a specified termination condition is satisfied or the search space is completely tra-
versed: (1) Selection of an agendaA (2) Selection of an open taskT from A (3) Selection
of the proof operators to be applied toT (4) Instantiation of the proof operators with respect
to T under some additionally specified constraints, resulting in a list of so-calledpartial ar-
gument instantiations(pais) (5) Selection and application of a subset of the pais,resulting
in new agendas. Those new agendas satisfying a solution condition are collected and not
further modified. Backtracking occurs if no pais can be produced in step (4). However,
there is also the possibility to explicitly backtrack, e.g., if a certain depth has been reached.

Up to now, the only possibility to formulate strategies inΩMEGA is to use a language
based on lisp s-expressions, called POST. This language doesn’t provide (1) an access to
the structured knowledge stored in the development graph other than symbols, axioms or
theorems and (2) a pattern matching facility for term matching and filtering.

3 The Language and its Components

This section introduces the main components of the languageCRStL. Our goal is to pro-
vide a language which permits the user to implement new prooftechniques, and thus to
extend the systems automation capability, without requiring the knowledge of the systems
underlying programming language and its automation API. Weare not aiming at a com-
plete programming language, rather at a small, extensible,intuitive, but restricted language
for automating small parts of proofs. We want to cover the full spectrum from declarative
proof strategies, i.e., specifying what to achieve and whatknowledge to be used, to full
procedural proof strategies, i.e., specifying what proof operators to apply in which order.
Our main requirements are:

• Structured access to the mathematical knowledge stored in the development graph to
specify a subset of the proof operators to be used within a proof strategy, similar to SQL
or XPath.

• Dynamic binding of variables to parts of the queried structures, especially terms, for later
use in constraints or ordering statements.

• Abstraction over the conversion of knowledge to different formats, in particular the con-
version of axioms and theorems to inferences.

5

• Easy access to terms and tasks to express their structural properties, e.g., for specifying
constraints to restrict the search space, as well as solution conditions for strategies.

• Introduction of explicit backtracking conditions.

• Restriction of the instantiation possibilities for proof operators.

• Specification of orderings at choice points.

• Support of new user defined predicates and functions.

The language is arranged in two levels, a query language to access the mathematical knowl-
edge, and a strategy language which makes extensive use of these queries and annotates the
result of a query with further control information to build aproof strategy. Table1 summa-
rizes the languageCRStL in a BNF like notation.

To get a first feeling for the language consider the followingproof strategy “Special
Purpose” for the motivating example, shown in Listing1. “Special Purpose” essentially
consists of four parts: a specification of a backtrack event,a repeat loop, a use expression
and a select expression. The easiest way to understand the strategy is to read the defining
expression from the inside to the outside. Theselect expression specifies two theorems
to be selected from the theorems of the current theory. Theuse expression performs the
conversion of the theorem names to inferences. The result ofthe query is a set of two
inferences, representing the four rewrite rules

(R∪S)◦T → (R◦T)∪ (S◦T) (8)

(R◦T)∪ (S◦T)→ (R∪S)◦T (9)

(R◦S)−1 →S−1◦R−1 (10)

S−1◦R−1 → (R◦S)−1 (11)

Thesolveconstruct specifies that the goal of the proof strategy is to solve the task to which it
is applied to. This already includes backtracking if none ofthe rewrite rules is applicable in
a situation. Finally,backtrack-if enriches the backtracking behavior of the proof strategy
such that a backtrack event is invoked whenever the functioncall (> stratdepth 3)

evaluates to true. In this expressionstratdepth is a predefined variable which is bound
at runtime to the depth of the search tree by the proof strategy. Thedefine-strategybinds
the proof strategy to the name “Special Purpose”. However, it is also possible to directly
invoke a strategy expression.

1 d e f i n e−s t r a t e g y ” S p e c i a l Purpose ”
2 s o l ve
3 use
4 s e l e c t ” D i s t r i b u t i v i t y o f ◦ over ∪ ” ,
5 ” I n v e r s e c om pos i t i on ”
6 from c u r r e n t . theorems
7 backtrack− i f
8 (> s t r a t d e p t h 3)
9 end ;

CRStL Listing 1: Special purpose strategy for the example

6

<select> ::= select<selector> from <source> <wherecond>?
| <select> union <select>

<selector> ::= *
| term
| (name,)∗ name

<source> ::= theoryname
| theoryname.knowledge

< infexpr> ::= use<select> < infcond>?<wherecond>
| < infexpr> union < infexpr>
| < infexpr> intersection< infexpr>
| < infexpr> difference< infexpr>

< infcond> ::= as< infdirection>
<wherecond> ::= where< function call>
< infdirection> ::= forward | backward | close

< listexpr> ::= < infexpr> | <stratexpr>+

<stratexpr> ::= first < listexpr>
| solve<stratexpr>
| repeat<stratexpr> <untilcond>?
| (<stratexpr>)
| try <stratexpr>
| <stratexpr> then <stratexpr>
| name
| <stratexpr> backtrack-if <cond>
| cases<case>+ end;
| <stratexp> thenselect cases<case>+ end;

<case> ::= <cond> -> <stratexpr>

<untilcond> ::= until <cond>

<cond> ::= <matcher>
| < function call>

<defstrat> ::= define-strategyname<parameter>?<stratexpr> end;

<parameter> ::= parameter (name,)* name;
<matcher> ::= <matchhead> <matchcond>?
<matchhead> ::= <sequent> | var
<matchcond> ::= where < function call>
<sequent> ::= (< termpattern>,)∗ < termpattern> |- < termpattern>
<namedterm> ::= < term> | name:< term> | *
< termpattern> ::= <namedterm> | [<namedterm>] < termqualifier>?
< termqualifier> ::= + | -

Table 1
Syntax ofCRStL

7

The previous example showed how we can realize a simple depthlimited search strategy
within our framework. In general the user has to find a trade-off between the restriction of
the search space and the simplicity of the search strategy byfurther control constructs.
As the search space is very small in our example, we decided infavor of a very simple
proof strategy. Note that in our language function calls, such as the depth limiter from
the previous example, build the interface to the underlyingprogramming language and can
comprise manipulations of arbitrary lisp objects. Moreover, function calls have access to a
number of predefined variables, such as the execution time, the agenda, the theory, or the
search depth. We now explain the language constructs in moredetail.

3.1 Theselect Statement

Theselect statement is used to select knowledge items from a specified theory. It consists
of three parts, aselectorpart, afrom part, and awherepart.

The From Part. The from part specifies the knowledge source and the theory of the
development graph from which the knowledge is retrieved. The theory and the correspond-
ing knowledge source can be accessed by their names. Moreover, we support a number of
predefined keywords, e.g., to access the current theory, or the base theory. An overview of
the available keywords is shown in Table2.

From a global perspective one can divide the knowledge into two parts:direct knowl-
edge, and indirect knowledge. Direct knowledge is knowledge which has the form of a
proof operator, i.e., an inference or a proof strategy, or can be converted to such. For that
purpose knowledge transformation functions need to be specified. For example the func-
tion which transforms a name to an axiom simply returns the first axiom which has the
specified name. The transformation function from formulas to inferences determines ex-
actly those inferences which were synthesized from the specified formula. An example of a
direct knowledge item is an axiom. In this case the conversion of the formula results in all
inferences which were obtained from this formula. Thus in case of the definition of subset
(5) these are the inferences shown in (6), and (7).

Indirect knowledge is knowledge which cannot be converted to a proof operator, but
which can be used at choice points. An example for indirect knowledge is a symbol order-
ing. It cannot be converted to a proof operator, however it can indirectly be used to restrict
the applicability of the proof operators.

Note that new knowledge kinds can easily be added to the development graph and are
directly available in the query language.

The Selector Part. The selector part works on the knowledge kind specified in the
from part and can be used to further narrow down the set of knowledge items returned
by the query. In the simplest case theselector part consists of a single*. In this case
all knowledge items are returned. Theselectorpart may also consist of a set of names,
in which case only those knowledge items are returned for which there is a name in the
specified list of names. Finally there is the possibility to specify a term pattern. In this case
only those knowledge items which correspond to a formula that matches the pattern are
returned. The term pattern shares the variables with the proof context in which the query is
evaluated. Free variables are interpreted as meta-variables to be instantiated by the query.
These instantiated variables are passed to thewhere part and can be used there for the

8

all all theories reachable from the current context

current only the local knowledge of the current theory

base only the underlying logic

top(n) only the theories reachable from the current theory in n steps

“name” only the local knowledge of the theory given by name

axioms the axioms

theorems already proved theorems

formulas axioms and proved theorems

definitions axioms which were classified as definitions

inferences inferences, user defined and derived from axioms

strategies user defined strategies

knowledge stands for any knowledge

Table 2
Available source keywords

specification of additional constraints. We found out that it is convenient for the matching
to remove all leading quantifier of formulas corresponding to knowledge items.

The Where Part. The where part can be used to specify additional constraints the
knowledge items of the query have to satisfy. A variable binding which stems from a
pattern matching in theselector part is available for evaluation of the expression in the
where part. Listing2 shows an example of aselect expression consisting of aselector
part, afrom part, and awhere part. The query returns those axioms from the current
theory which are equations (after removing the leading quantifiers) lhs= rhsand binds the
lefthand side of the equation to the variablelhs, and the righthand side of the equation to
the variablerhs. In the where part, it is checked whetherlhs is greater asrhs using the
LPO with the symbol ordering stored in the development graphas measure for the terms.

1 s e l e c t l h s = r hs from c u r r e n t . axioms
2 where (g r e a t e r l p o l h s r hs
3 (s e l e c t ∗ from c u r r e n t . o r d e r i n g))

CRStL Listing 2: Example of aselect expression which binds variableslhs and rhs for the specification of additional
constraints

3.2 Theuse Statement

The use statement can be invoked directly after a select statement and performs two tasks:
(1) Knowledge items are transformed to proof operators using the installed transforma-

9

tion functions. If no conversion is possible, the user is informed that the query cannot be
correctly interpreted. (2) The obtained proof operators are augmented by further control
information. For inferences there is the possibility to restrict their application direction
using theas keyword. Backward restricts the applicability of inferences to those where
all conclusions are instantiated.Forward specifies that no conclusion must be instantiated,
andclosethat all premises and all conclusions must be instantiated.

Moreover, the automation API can be accessed via the underlying programming lan-
guage using awhere condition. As an example consider the definition of a standard sim-
plification proof strategy shown in Listing3.

1 d e f i n e−s t r a t e g y ” S i m p l i f i c a t i o n ”
2 repeat
3 f i r s t
4 use s e l e c t l h s = r hs from c u r r e n t
5 where (g r e a t e r l p o l h s r hs o r d e r i n g)as forward
6 union
7 use s e l e c t l h s = r hs from c u r r e n t
8 where (g r e a t e r l p o r hs l h s o r d e r i n g)as backward
9 end ;

CRStL Listing 3: Standard simplification encoded as proof strategy

3.3 Strategy Constructors

The final step in the specification of a proof strategy consists of augmenting the specified
list of proof operators by control information needed for their execution. Essentially this
consists of a specification of a condition for success and termination. Moreover, there is
the possibility to specify a condition for failure, i.e., todirectly invoke backtracking. An
overview of the strategy constructors is shown in Table3. The operators can be classified
into the three categoriesselector, iterator andcombinator.

Selectors. A list of given proof operators augmented by control information can be
instantiated, resulting in a list of pais satisfying a specified set of constraints.Selector
expressions determine how the pais are produced, and which pai to choose among the set
of produced pais. For example, thefirst selector starts to instantiate the proof operators and
applies the first which is applicable and satisfies the specified constraints. Another selector
is thecasesselector. It consists of a list of condition action pairs, where the condition is
encoded in form of a matcher or a function call. It executes the first action whose condition
is satisfied. Similar to the matching inselect-expressions bound variables are passed to
subsequent expressions.

1 c as e s
2 ∗ |− ˜ x −> use s e l e c t ” C o n t r a d i c t i o n ” from base . i n f e r e n c e s
3 d e f a u l t −> use s e l e c t ” same ” from base . i n f e r e n c e s
4 end ;

CRStL Listing 4: Thecasesconstruct

10

first selector applies the first proof operators that succeeds.

solve iterator applies the strategy until it fails or a solution was found.

repeat iterator applies the strategy until it fails or untilthe condition eval-
uates to true.

try combinator applies the strategy and doesn’t fail if strategy fails.

then combinator applies the first strategy and then the second strategy. Fails
if the first strategy fails. If second strategy fails then first
strategy backtracks internally and the second strategy is in-
voked again.

backtrack-if combinator adds a backtrack event specified incondition to the strategy.

cases selector applies the first strategy whose condition evaluates to true
or pattern matches. On multiple matches for a single pat-
tern a backtrack point will be defined for each match.

thenselect combinator executes a strategy and applies specified strategies to the
resulting tasks

Table 3
Strategy Constructors with corresponding classification

Listing 4 shows an example of thecasesselector. The matcher* |- ∼x encodes the
condition that the goal of the current task is a negated formula. In this case, proof by
contradiction shall be performed. As default case the inference “same” is applied.

Iterators. An iterator encodes a loop together with a default backtracking behavior.
So far, we support two iterators,solveand repeat. solve tries to close the task to which
it was applied to by repeatedly applying the specified proof operators. If none of them is
applicable, it backtracks. It fails if the complete search space is traversed.repeat applies
the specified proof operators until none of them is applicable anymore. Additionally, a
termination condition can be specified using theuntil keyword.

Combinators. Combinators combine strategy expressions which they take as argu-
ments. So far, we support four strategy combinatory,try , then, backtrack-if , andthense-
lect. Whereas the first two have their standard meaning, the latter need further explanation.
Backtrack-if adds a failure condition to a specified condition and thus explicitly invokes
backtracking. Thenselectanalyses tasks resulting from a strategy application and maps
them to new strategy applications. Note that by using conditions the mapping of subse-
quent proof strategies to tasks does not depend on the order of the tasks.

An example using thethenselectcombinator is shown in Listing5. The proof strategy
“Induction” tries to perform an induction on the current goal. Successfully applied induc-
tion results in a list of subtasks containing step- and base-cases. It then applies a standard
simplification to all base cases, and rippling to all step cases.

11

1 d e f i n e−s t r a t e g y ” I n d u c t i o n ”
2 f i r s t
3 use s e l e c t axiom from c u r r e n t . axioms
4 where (i s i n d u c t i o n a x i o m axiom)
5 as backward
6 t h e n s e l e c t c as e s
7 t a s k where (i s b a s e c a s e t a s k)−> ” S i m p l i f i c a t i o n ”
8 d e f a u l t −> ” R i pp l i ng ”
9 end ;

10 end ;

CRStL Listing 5: Induction proof strategy illustrating thethenselectconstruct

As we have already seen in the examples the matching facilityis quite powerful. In
addition to match top-level formulas, we also allow the matching of arbitrary subformulas.
This is in particular useful becauseΩMEGA allows the application of inferences deeply in-
side formulas. We use the intuitive notation[term] thatterm can be a subterm. Moreover,
we support the restriction of subformulas to specific polarities (c.f. [14]), where we use+
to indicate a subformula with positive polarity (intuitively a goal to be shown) and- to
indicate a subformula with negative polarity (intuitivelya fact). The proof strategy shown
in Listing 6 takes a formula as parameter and tries to derive a task in which the formula
occurs with negative polarity and no dependencies.

1 d e f i n e−s t r a t e g y ” Fac t ”
2 parameter f o rmu la ;
3 repeat
4 use s e l e c t ∗ from c u r r e n t . i n f e r e n c e sas forward
5 u n t i l ∗ , [f o rmu la]− |− ∗
6 where (no t (p r o o f o b l i g a t i o n s (pos fo rmu la)))
7 backtrack− i f (g r e a t e r s t r a t d e p t h 3)
8 end ;

CRStL Listing 6: Proof strategy deriving a specified formula

4 Discussion and Future Work

In this paper we have presented the languageCRStL for the encoding of proof techniques
in form of proof strategies in the proof assistantΩMEGA. With CRStL we aim to bridge
the gap between the predefined proof operators and the underlying programming language
of ΩMEGA. CRStL supports declarative and procedural descriptions of proofstrategies, as
well as a mixture of them. The main idea was to see the specification process of a proof
strategy as a two-staged process, consisting of (1) the selection of proof operators and (2)
augmentation of these proof operators with control knowledge.

The selection process is inspired by the query languages SQL, OQL and XPath, which
are standard for querying structured knowledge such as relational/object-oriented data
bases or XML. Indeed, we see the development graph as an object-oriented hierarchical

12

data base, object-oriented in the sense that the different knowledge kinds correspond to
different classes and the theories serve as a hierarchical structuring mechanism.

Searching and retrieving knowledge from mathematical databases has been studied in
the context of Helm [1] and Mizar [12]. Helm focuses on the interaction with different
mathematical repositories over the web and Mizar uses the MML Query system[6] also for
presentational purposes in MMLQT[5], such as for instance XPath is used in XSLT. Most
similar to the strategy constructors, in particular the matching constructs, is the language
Ltac [8]. The augmentation of proof operators with control knowledge can also be found in
the ELAN system [7].

Future work comprises the refinement of our constructs. For example we plan to add
sorting possibilities to the language to express preferences among a set of inferences more
naturally. Moreover, so far the language supports only proof strategies working on a single
agenda. AsΩMEGA already supports the management of multiple proof attemptsin paral-
lel, it is a natural step to extend the language to cope with multiple agendas. It would also
be interesting to integrate lemma speculation inCRStL.

References

[1] Andrea Asperti, Luca Padovani, Claudio Sacerdoti Coen,Ferruccio Guidi, and Irene Schena. Mathematical knowledge
management in helm.Annals of Mathematics and Artificial Intelligence, 38(1-3):27–46, 2003.

[2] S. Autexier. The CORE calculus. In R. Nieuwenhuis, editor,Proceedings of CADE-20, LNAI 3632, Tallinn, Estonia,
july 2005. Springer.

[3] S. Autexier and D. Dietrich. Synthesizing proof planning methods and oants agents from mathematical knowledge. In
J. Borwein and B. Farmer, editors,Proceedings of MKM’06, volume 4108 ofLNAI, pages 94–109. Springer, august
2006.

[4] S. Autexier, D. Hutter, Till Mossakowski, and Axel Schairer. The development graph manager MAYA. In Hélène
Kirchner and C. e Ringeissen, editors,Proceedings 9th International Conference on Algebraic Methodology And
Software Technology (AMAST’02), volume 2422 ofLNCS. Springer, September 2002.

[5] Grzegorz Bancerek. Information retrieval and rendering with mml query. InProceedings of MKM’06, pages 266–279.
Springer-Verlag, 2006.

[6] Grzegorz Bancerek and Piotr Rudnicki. Information retrieval in mml. InProceedings of MKM’03, pages 119–132,
London, UK, 2003. Springer-Verlag.

[7] Peter Borovansky, Claude Kirchner, Hne Kirchner, and Christophe Ringeissen. Rewriting with strategies in ELAN: A
functional semantics.International Journal of Foundations of Computer Science, 12(1):69–95, 2001.

[8] David Delahaye. A Proof Dedicated Meta-Language. InProceedings of Logical Frameworks and Meta-Languages
(LFM), Copenhagen (Denmark), volume 70 (2) ofENTCS. Elsevier, July 2002.

[9] D. Dietrich. The task-layer of theΩMEGA system. Diploma thesis, FR 6.2 Informatik, Universität des Saarlandes,
Saarbrücken, Germany, 2006.

[10] Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive Approach. Number 112 in DISKI. Infix,
Sankt Augustin, Germany, 1996.

[11] Jörg Siekmann, C. Benzmüller, A. Fiedler, Andreas Meier, and Martin Pollet. Proof development with OMEGA:√
2 is irrational. In Matthias Baaz and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence, and

Reasoning, 9th International Conference, LPAR 2002, number 2514 in LNAI, pages 367–387. Springer, 2002.

[12] A. Trybulec and H. Blair. Computer assisted reasoning with M IZAR. In A. Joshi, editor,Proceedings of the 9th Int.
Joint Conference on Artifical Intelligence. M. Kaufmann, 1985.

[13] Joris van der Hoeven. Gnu TEXMACS: A free, structured, wysiwyg and technical text editor. Number 39-40 in Cahiers
GUTenberg, May 2001.

[14] Lincoln Wallen. Automated proof search in non-classical logics: efficient matrix proof methods for modal and
intuitionistic logics. MIT Press series in artificial intelligence, 1990.

13

	Introduction
	mega's Reasoning Framework
	Knowledge Management in the Development Graph
	The TaskLayer
	Proof Automation

	The Language and its Components
	The select Statement
	The use Statement
	Strategy Constructors

	Discussion and Future Work
	References

