
Authoring Verified Documents by Interactive Proof
Construction and Verification in Text-Editors

Dominik Dietrich, Ewaryst Schulz, and Marc Wagner

FR 6.2 Informatik, Saarland University, Saarbrücken, Germany
{dietrich,schulz,wagner}@ags.uni-sb.de

Abstract. Aiming at a document-centric approach to formalizing and verifying
mathematics and software we integrated the proof assistance system ΩMEGA with
the standard scientific text-editor TEXMACS. The author writes her mathematical
document entirely inside the text-editor in a controlled language with formulas in
LATEX style. The notation specified in such a document is used for both parsing
and rendering formulas in the document. To make this approach effectively usable
as a real-time application we present an efficient hybrid parsing technique that is
able to deal with the scalability problem resulting from modifying or extending
notation dynamically. Furthermore, we present incremental methods to quickly
verify constructed or modified proof steps by ΩMEGA. If the system detects in-
complete or underspecified proof steps, it tries to automatically repair them. For
collaborative authoring we propose to manage partially or fully verified docu-
ments together with its justifications and notational information centrally in a
mathematics repository using an extension of OMDOC.

1 Introduction

Unlike widely used computer-algebra systems, mathematical assistance systems have
not yet achieved considerable recognition and relevance in mathematical practice. One
significant shortcoming of the current systems is that they are not fully integrated into or
accessible from standard tools that are already routinely employed in practice, like, for
instance, standard mathematical text-editors. Integrating formal modeling and reason-
ing with tools that are routinely employed in specific areas is the key step in promoting
the use of formal logic based techniques.

Therefore, in order to foster the use of proof assistance systems, we integrated the
theorem prover ΩMEGA [7] into the scientific text-editor TEXMACS [15]. The goal is
to assist the author inside the editor while preparing a TEXMACS document in a pub-
lishable format. The vision underlying this research is to enable a document-centric
approach to formalizing and verifying mathematics and software. We tackle this vision
by investigating two orthogonal approaches in parallel: On the one hand we start with
mathematical documents written without any restrictions and try to extract the semantic
content with natural language analysis techniques and accordingly generate or modify
parts of the document using natural language generation. On the other hand we start
with the semantic content and lift it to an abstract human-oriented representation with-
out losing the benefits of machine processability. This paper describes our recent results
for the second approach, resulting in a system in which the author can write a document
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in TEXMACS, which gets automatically proof-checked by ΩMEGA. When the document
is changed, the dependent parts are automatically rechecked.

In our scenario the workflow for the author, who is preparing a mathematical docu-
ment to be verified, consists of arbitrary combinations of the following operations: (1)
writing theory with notation or citing theory and eventually redefining notation, (2) de-
veloping proofs by constructing or modifying proof steps that are continuously checked
and possibly repaired by the proof assistance system if incomplete or underspecified,
and (3) saving the current state of the document including the verification information
in order to continue at a later date. This raises the following requirements for effectively
supporting the author in real-time: (1) a fast parsing and rendering mechanism with ef-
ficient adaptation to changes in the notation rules, (2) quick incremental proof checking
and repair techniques, and (3) an output format containing the formalized content of the
document together with its justifications and notational information.

The paper is organized as follows: Section 2 presents in more detail our general
architecture consisting of a mediator, a proof assistance system and a semantic repos-
itory. Section 3 introduces the hybrid parsing technique that efficiently deals with the
controlled authoring language and notational extensions or modifications. The formal
proof representation of the ΩMEGA system is defined in Section 4 including the notion
of proof view. The techniques for management of change needed (1) to incrementally
verify proof steps constructed or modified in the text-editor, and (2) to lift corrections
or complete proofs from the internal format of the proof assistance system to the doc-
ument are described in Section 5. In Section 6 we discuss how OMDOC [10] can be
extended such that it can also store proof steps at different levels of granularity as well
as parsing and rendering knowledge. We discuss the current situation for authoring ver-
ified mathematical documents as related work in Section 7 and summarize the paper in
Section 8.

2 Architecture

Although this paper focuses on the interplay between a mediator and a proof assistance
system, we propose to fill the authoring gap for semantic mathematics repositories with
our complementary architecture. The envisioned architecture is a cooperation between
a mediator, a proof assistance system and a semantic repository. The mediator parses
and renders the informal content authored in a text-editor and propagates changes to the
proof assistance system that provides services for verification and automatic proof con-
struction. The semantic repository takes care of the management of formalized math-
ematics. Figure 1 illustrates the flow of mathematical knowledge. The big circles in
the figure are abstract components of the architecture that can be instantiated by the
concrete components attached to them, e.g. PLATΩ as mediator. The text between the
arrows indicates the kind of knowledge that is exchanged. In detail, the roles and re-
quirements of the components are:

Mediator. Following our document-centric philosophy, the document in the text-
editor is both the human-oriented input and output representation for the proof assis-
tance system, thus the central source of knowledge. The role of the mediator PLATΩ
[16] is to preserve consistency between the text-editor and the proof assistance system
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Fig. 1. Architecture for Authoring Mathematics Repositories

by incrementally propagating changes. Additionally, services and feedback of the proof
assistance system are provided inside the text-editor through context-sensitive menus.
The mediator allows to define, modify and overload the notation used in the document
dynamically within the document.

Proof Assistance System. The role of the proof assistance system is to maintain the
formal proof object in a way that it is verifiable and such that at the same time a human
readable presentation can be extracted. It must be able to verify and integrate updates
sent from the mediator, and provide means to automate parts of the proof. Finally, the
system should be able to import from and export to standards such as OMDOC.

In our architecture we use the proof assistance system ΩMEGA, which is a repre-
sentative of systems in the paradigm of proof planning and combines interactive and
automated proof construction for domains with rich and well-structured mathematical
knowledge. Proof planning is interesting for our architecture because it naturally sup-
ports to express proof plans and their expansion, i.e. verification.

Semantic Repository. The role of the semantic repository (e.g. in form of a database
or a wiki) is to store and maintain the mathematical knowledge using structural semantic
markup or scripting languages, including possibilities to search and retrieve knowledge
and access control. The MBASE system [8] is for example a web-based, distributed
mathematical knowledge base that allows for semantic-based retrieval. Semantic Wiki
technologies like SWIM [11] are a current subject of research for collaboratively build-
ing, editing and browsing mathematical knowledge. Both types of semantic repositories
are well-suited for our architecture because they store mathematical theories and state-
ments in the OMDOC format and support dependency-aware semantic content retrieval.

Altogether, the proposed architecture allows for the incremental interactive devel-
opment of verified mathematical documents at a high level of abstraction. By using
the scientific WYSIWYG text-editor TEXMACS, the author additionally benefits from
professional type-setting and powerful macro definition facilities like in LATEX.
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3 Hybrid Parsing

Let us first introduce an example of the kind of documents we want to support. Figure 2
shows a theory about Simple Sets written in the text-editor TEXMACS. This theory defines
two base types and several set operators together with their axioms and notations. In
general, theories are built on top of other theories and may contain definitions, notations,
axioms, lemmas, theorems and proofs. Note that in the example set equality is written
as an axiom because equality is already defined in the base theory.

Fig. 2. Document in the text-editor TEXMACS

In our previous approach [16], the author had full freedom in writing her document
but had to manually provide semantic annotations. We now use a controlled author-
ing language to skip the burden of providing annotations, thus increasing the over-
all usability by dealing with pure TEXMACS documents. The grammar of the concrete
syntax is given in Table 1. NAME and LABEL are unique string identifiers. URI is a re-
source location. SYM, VAR, TYPE, PAT and TERM represent symbol, variable, type, pat-
tern and term respectively. Please note that TEXMACS renders for example the macro
”<definition|text>” into ”Definition 1. text”.

Dynamic Notation. This initial grammar can be extended on the fly by introduc-
ing new types and symbols as well as defining, extending or overloading their notations
within a document. In [3] we presented a basic mechanism that allows the user to define
notations by declaring local variables (e.g. A,B) and specifying notation patterns (e.g.
A ⊂ B, B ⊃ A). The mechanism synthesizes automatically parsing rules from all patterns
and the default rendering rule from the first pattern. The author can group operators,
specify their associativity and define precedences as a partial ordering. Furthermore, if
the notation is modified all affected formulas in the document are adapted efficiently,
the right order of notation and formulas is checked, ambiguities are prevented using
a family of theory-specific parsers and resolved by exploiting type information. The
hierarchical structure of theories allows the reuse of concepts together with their nota-
tion even from other documents. Note that one can import theories together with their
proofs and notations from other files by a reference in the document. Dynamic Notation
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Table 1. Grammar for the Concrete Syntax of the Authoring Language

DOC ::= THY∗

THY ::= ‘<section|’ NAME ‘>’ CTX? THYC
CTX ::= ‘We’ ‘use’ CREFS ‘.’
CREFS ::= CREF (‘,’ CREF)∗ (‘and’ CREF)?

CREF ::= NAME|URI
THYC ::= (DEF|AXM|LEM|TEO|PRF)∗

DEF ::= ‘<definition|’ ‘(’ NAME ‘)’ DEFC ‘>’
DEFC ::= (DEFT|DEFS) NOTC? ALTC? SPEC∗

DEFT ::= ‘We’ ‘define’ ‘the’ ‘type’ NAME ‘.’
DEFS ::= ‘We’ ‘define’ ‘the’ ‘symbol’ NAME

‘of’ ‘type’ TYPE ‘.’
NOTC ::= ‘Let’ TVARS ‘then’ ‘we’ ‘write’ PATS ‘.’
TVARS ::= VAR ‘:’ TYPE (‘,’ VAR ‘:’ TYPE)∗

(‘and’ VAR ‘:’ TYPE)?

PATS ::= PAT (‘,’ PAT)∗ (‘or’ PAT)?

PAT ::= (VAR|STRING)+

SPEC ::= GROUP|PREC|ASSOC
GROUP ::= ‘We’ ‘group’ SYM (‘,’ SYM)∗ (‘and’ SYM)?

‘by’ NAME ‘.’
PREC ::= ‘The’ ‘precedence’ ‘is’ (SYM|NAME)

(‘≺’ (SYM|NAME))+ ‘.’
ASSOC ::= ‘The’ ‘operator’ SYM ‘is’

‘right-associative’ ‘.’
FORMS ::= FORM (‘,’ FORM)∗ (‘and’ FORM)?

FORM ::= (‘(’ LABEL ‘)’)? TERM

AXM ::= ‘<axiom|’ ‘(’ NAME ‘)’ ALTC ‘>’
LEM ::= ‘<lemma|’ ‘(’ NAME ‘)’ ALTC ‘>’
TEO ::= ‘<theorem|’ ‘(’ NAME ‘)’ ALTC ‘>’
ALTC ::= ‘It’ ‘holds’ ‘that’ FORM ‘.’
PRF ::= ‘<proof|’ STEPS? ‘>’
STEPS ::= (OSTEP STEPS?)|CSTEP
OSTEP ::= SET|ASS|FACT|GOAL|CGOAL
CSTEP ::= GOALS|CASES|CGOALS|TRIV
TRIV ::= ‘Trivial’ BY? FROM? ‘.’
SET ::= ‘We’ ‘define’ FORMS ‘.’
ASS ::= ‘We’ ‘assume’ FORMS FROM? ‘.’
FACT ::= ‘It’ ‘follows’ ‘that’ FORMS BY? FROM? ‘.’
GOAL ::= ‘We’ ‘have’ ‘to’ ‘prove’ FORM BY? FROM? ‘.’
GOALS ::= ‘We’ ‘have’ ‘to’ ‘show’ FORMS BY? FROM? ‘.’

SPRF∗

CASES ::= ‘We’ ‘have’ ‘the’ ‘cases’ FORMS BY? FROM? ‘.’
SPRF∗

CGOAL ::= ‘We’ ‘have’ ‘to’ ‘prove’ CFORM BY? FROM? ‘.’
CGOALS ::= ‘We’ ‘have’ ‘to’ ‘show’ CFORMS BY? FROM? ‘.’

SPRF∗

SPRF ::= ‘We’ ‘prove’ LABEL ‘.’ STEPS?

BY ::= ‘by’ NAME
FROM ::= ‘from’ LABEL (‘,’ LABEL)∗ (‘and’ LABEL)?

CFORMS ::= CFORM (‘,’ CFORM)∗ (‘and’ CFORM)?

CFORM ::= FORM ‘assuming’ FORMS

is aware of the positions of defining and using occurrences for notation but it does not
take into account notational knowledge obtained by proven theorems yet; this is future
work.

Speed Issues. Although we minimized the need for compiling parsers, the process-
ing of the standard example in [3] took ≈ 1min. The main reasons for inefficiency were
(1) the parsers were compiled in interpreted mode in the text-editor, and (2) the scal-
ability problem of LALR parser generators. Problem (1) has been solved by moving
the parser generation to the mediator, but even in compiled mode the processing took
≈ 6sec which is still not sufficiently fast for real-time usage. The remaining issue (2)
is severe because when notations are changed or extended all parsers for dependent
theories in the hierarchy have to be recompiled. Therefore we integrated a directly-
executable variant of an Earley parser [6] which is substantially faster than standard
Earley parsers to the point where it is comparable with standard LALR(1) parsers. Al-
though the time for parsing a single formula increases slightly, the overall processing
of the example takes ≈ 0.1sec which is perfectly suitable for a real-time application.

Algorithm. First of all, the document is preprocessed and split into segments almost
corresponding to sentences. Then the following steps are incrementally performed for
each segment: (1) the static parts of the authoring language, i.e. the controlled phrase
structure, are parsed using a precompiled LALR(1) parser; (2) the dynamic parts of the
authoring language, i.e. the formulas and notations, are parsed using a theory-specific
Earley parser; (3) the segment is propagated to the proof assistance system. Note that
the dynamic parts are always strictly separated from the static parts in the document
because they are written inside a math mode macro.

Normalization and Abstraction. The concrete syntax of the authoring language
allows for variant kinds of syntax sugaring that has to be normalized for machine
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Table 2. Grammar for the Abstract Syntax of the Proof Language

PROOF ::= STEPS
STEPS ::= (OSTEP;STEPS)|CSTEP
OSTEP ::= SET|ASSUME|FACT
CSTEP ::= GOALS|CASES|COMPLEX|TRIVIAL|ε
FORMULA ::= (LABEL :)? TERM
BY ::= by NAME?

FROM ::= from (LABEL (, LABEL)∗)?

TRIVIAL ::= trivial BY FROM
SET ::= set FORMULA
ASSUME ::= assume FORMULA FROM
FACT ::= fact FORMULA BY FROM
GOALS ::= subgoals (FORMULA { PROOF })+ BY FROM
CASES ::= cases (FORMULA { PROOF })+ BY FROM
COMPLEX ::= complex COMP+ BY FROM
COMP ::= FORMULA under FORMULA { PROOF }

processing, e.g. formula aggregation (x ∈ A,x ∈ B and x ∈ C) or the ordering of sub-
proofs. Table 2 defines a normalized abstract syntax for the proof part of the authoring
language. Aggregated formulas are composed to one formula by conjunction or dis-
junction depending on whether they are hypotheses or goals respectively. If an abstract
proof step is generated by the system, the mediator tries to decompose the formula for
aggregation accordingly. A proof is implicitly related to the last stated theorem previous
to this proof in the document. Subproofs are grouped together with their subgoal or case
they belong to. A single goal reduction is normalized to a subgoals step.

Management of Change. Using management of change we propagate incremen-
tally arbitrary changes between the concrete and abstract representation. By additionally
considering the semantics of the language we can optimize the differencing mechanism
[12]. For example the reordering of subgoals or their subproofs in the text-editor is not
propagated at all because it has no impact on the formal verification. The granularity
of differencing is furthermore limited to the reasonable level of proof steps and for-
mulas, s.t. deep changes in a formula are handled as a complete modification of the
formula. The propagation of changes is essential for this real-time application because
complete re-transformation and re-verification slows down the response time too much.
Apart from that the differencing information allows for the local re-processing of af-
fected segments instead of a global top-down re-processing using a replay mechanism.
In order to recheck only dependent parts ΩMEGA uses Development Graphs [4] for the
management of change for theories.

Let us now continue our example with a new theory in Figure 3 that refers to the
previous one and that states a theorem the author already started to prove.

Fig. 3. Theorem with partial proof

Table 3. Proof in abstract syntax

Proof.
assume x ∈ A ∩ (B ∪C) from . ;
fact x ∈ A∧x ∈ (B∪C) by . from . ; ε

This partial proof in concrete syntax is then
abstracted as shown in Table 3, where we
additionally emphasized underspecified parts
with a dot.
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4 Formal Proof Representation

In this section we describe how proofs are internally represented in ΩMEGA. This will
allow us to describe how proof scripts are processed by the prover. In the ΩMEGA

system proofs are constructed by the TASKLAYER that uses an instance of the generic
proof data structure (PDS) [1] to represent proofs. One main feature of the PDS is the
ability to maintain subproofs at different levels of granularity simultaneously, including
a so-called PDS-view representing a complete proof at a specific granularity.

Task. At the TASKLAYER, the main entity is a task, a multi-conclusion sequent
F1, . . . ,Fj � G1, . . . ,Gk. Each formula can be named by assigning a label l to the formula.
We denote the set of all term positions by Pos, the set of all admissible positions of a
task T by Pos(T ), and the position of the formula with label l by pos(l). Moreover, we
write Tπ to denote the subformula at position π and write Tπ←s for the type compliant
replacement of the subterm Tπ by s. We use the notation Γ�ϕ to denote the set Γ∪{ϕ}.

Agenda. The proof attempt is represented by an agenda. It maintains a set of tasks,
that are the subproblems to be solved, and a global substitution which instantiates meta-
variables. Formally an agenda is a triple A = 〈T1, . . . ,Tn;σ;Tj〉 where T1, . . . ,Tn are
tasks, σ is a substitution, and Tj is the task the user is currently working on. We will use
the notation 〈T1, . . . ,Tj−1,Tj,Tj+1 . . .Tn;σ〉 to denote that the task Tj is the current task.
Note that the application of a substitution is a global operation. To reflect the evolutional
structure of a proof, a substitution is applied to the open tasks of the agenda. Whenever
a task is reduced to a list of subtasks, the substitution before the reduction step is stored
within the PDS in the node for that task.
The Figure on the right
shows the reconstruction
of the first proof step of
the partial proof of The-
orem 8. Tasks are shown
as oval boxes connected
by justifications, where
the squared boxes indicate
which inference has been
applied. The agenda to the
shown PDS consists of the
two leaf tasks. The global
substitution σ is the iden-
tity id.

� A ∩ (B ∪C) = (A ∩B)∪ (A ∩C)

“Set Equality”

� A ∩ (B ∪C) ⊂ (A ∩B)∪ (A ∩C)

“Subset”

� x ∈ A ∩ (B ∪C) ⇒ x ∈ (A ∩B)∪ (A ∩C)

assume x ∈ A ∩ (B ∪C)

x ∈ A ∩ (B ∪C)� x ∈ (A ∩B)∪ (A ∩C)

� (A ∩B)∪ (A ∩C)⊂ A ∩ (B ∪C)

“Subset”

x ∈ A ∩B ∪A ∩C � x ∈ A ∩ (B ∪C)

Fig. 4. Proof in ΩMEGA

5 Incremental Proof Step Verification and Correction

In this section we describe how information encoded as a proof script can be exchanged
between the mediator and the prover. There are two possible information flows: First,
a proof script sent by the mediator must be converted into the internal proof structure
of the prover and thereby be checked. Second, given a proof generated by the prover,
a corresponding proof script must be extracted, which can then be propagated to the
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mediator. Note that the last step is necessary as there is no guarantee that all parts of the
proof have been constructed by a proof script. Before describing both directions we give
an overview of the proof operators of the prover, which are inferences and strategies.

Inferences. Intuitively, an inference is a proof step with multiple
[H1 : ϕ]

...
P1 : ψ

C : ϕ ⇒ ψ ImplIntro

premises and one conclusion augmented by (1) a possibly
empty set of hypotheses for each premise, (2) a set of applica-
tion conditions that must be fulfilled upon inference applica-
tion, (3) a set of completion functions that compute the values
of premises and conclusions from values of other premises
and conclusions (see [2] for a formal definition). Each premise and conclusion consists
of a unique name and a formula scheme. Consider for example the inference ImplIntro
shown above. It consists of one conclusion with name C and formula scheme ϕ ⇒ ψ.
Moreover, it has one premise with name P1, formula scheme ψ, and hypothesis H1,
which has the formula scheme ϕ associated with it. In the sequel we write C to denote
the conclusion of the inference and Pi to denote the ith premise of the inference.

Given a task, we can instantiate an inference with respect to the task by trying to
find formulas in the task unifying with the formula scheme of a premise or conclusion.
Technically, such an instantiation is represented by an inference substitution σ which
binds premises and the conclusion to formulas or positions. We consider two parts of
the substitution: σx contains instantiations of meta-variables of the task, and σc maps
a premise or conclusion A to positions of the task (see [2] for details), which is ⊥
in case that A is not matched. The instantiated formula scheme is denoted by fs(A).

T

strat T ′

s1 . . .

h

Strategies. As basis for automation ΩMEGA provides
so-called strategies, which tackle a problem by some
mathematical standard problem solving workflow that
happens to be typical for this problem. To achieve a goal, a strategy performs a heuris-
tically guided search using a dynamic set of inferences (as well as other strategies),
and control rules. A strategy application either fails or constructs a subproof using the
specified inferences and substrategies. In the latter case the constructed subproof is ab-
stracted by inserting a justification labelled with the strategy application and connecting
the task the strategy has been applied to with the nodes resulting from the strategy ap-
plication. This has the advantage that the user can switch between the abstract step or
the more detailed step. Note that from a technical point of view a strategy is similar to
a tactic. However, by using explicit control knowledge its specification is declarative,
whereas tactics are usually procedurally specified.

Consider a strategy strat which is applied to a task T , and constructs a subproof
starting with the application of s1 and finally leading to the task T ′. In this case, a new
justification labelled with strat is inserted connecting T and T ′. To indicate that the
strategy application is more abstract than the subproof a hierarchical edge h is inserted,
defining an ordering on the outgoing edges of T . The resulting PDS is shown above.

5.1 Proof Checking and Repair

The verification of a single proof step can become time consuming if some information
is underspecified. In the worst case a complete proof search has to be performed. To
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obtain adequate response times a given step is worked off in two phases. First, we per-
form a quickcheck, where we assume that the given step can be justified by the prover
by a single inference application. This can be tested by a simple matching algorithm. If
the test proceeds the step is sound, as the inference application is proved to be correct.

If it is not possible to justify the step with a single inference application, a more com-
plex repair mechanism is started. This mechanism tries to find the missing information
needed to justify the step by performing a heuristically guided resource bounded search.
If we are not able to find a derivation within the given bound, a failure is reported and
sent to the mediator, which can then initiate a specific reaction.

In the sequel we describe for each construct of our proof language its quickcheck
and its repair mechanism, which are both modeled as a proof strategy in ΩMEGA. The
quickcheck rules are summarized in Table 4. We use the notation 〈{Γ � Δ,T2, . . . ,Tn},
σ〉 : s ; S → 〈{Γ′ � Δ′,T2, . . . ,Tn},σ〉 : S′ to indicate that under the agenda 〈{Γ � Δ,T2, . . .
,Tn},σ〉 the proof step s in the sequence s ; S can be checked, and that the checking
results in a new agenda 〈{Γ′ � Δ′,T2, . . . ,Tn},σ〉 where the steps S′ have to be checked.

Fact. The command fact derives a new formula ϕ with label l from the current proof
context. The quickcheck tries to justify the new fact by the application of the inference
or strategy name to term positions in the formulas with labels l1, . . . , ln in the current
task. Although the specification of these formulas speeds up the matching process, both
informations by and from can be underspecified in general. In this case, all inferences
are matched against all admissible term positions, and the first one which delivers the
desired formula ϕ is applied.

Γ � Δ

fact l : ϕ

Γ� l : ϕ � Δ

Γ � ϕ
If the above check fails, the repair strategy for fact is started. It

generates a new lemma, i.e. a new proof tree, containing the as-
sumptions of the current task and the newly stated fact ϕ as goal. It
then tries to automatically close the lemma by standard forward and
backward reasoning. If the new lemma can be proved, the lemma is
automatically transformed to an inference using the mechanism described in [2], which
then justifies the step by a single inference application in the original proof.

Stating a new lemma has several advantages: Even if the lemma cannot automatically
be checked, we can continue to check subsequent proof steps. The new lemma can then
be proved with user interaction at a later time. Moreover, as the lemma is transformed
into a single inference, it is globally available and can be used in similar situations by
the quickcheck without performing any search.

Γ � l1 : ϕ ⇒ ψ�Δ

assume l : ϕ

Γ� l : ϕ � ψ�Δ

Assume. The command assume introduces a new assumption ϕ
on the left hand side of the current task. The quickcheck for as-
sume checks whether one of the following situations occurs, each
of which can be justified by a particular inference application:

– Δ contains ϕ ⇒ ψ. The implication is decomposed and l : ϕ is
added to the left side of the task.

– Δ contains ¬ϕ. Then l : ϕ is added to the left side.
– Δ contains ψ ⇒ ¬ϕ. Then l : ϕ is added to the left side and ¬ψ

to the right side of the task.

If the quickcheck fails we try to derive one of the above situations by applying in-
ferences to the goal of the current task. The hypotheses of the task remain untouched.
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Table 4. Quick checking rules

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : fact l : ϕ by name from l1, . . . , ln ;S → 〈{Γ� l : ϕ � Δ,T2 , . . . ,Tm},σname
X ◦σ〉 : S

with σname(C) = ⊥ and
⋃

σname
C (Pi) =

⋃{pos(li)}
〈{Γ � ϕ ⇒ ψ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : ϕ � ψ�Δ,T2, . . . ,Tm},σ〉 : S

with σimplintro
C (C) = pos(l1) and σimplintro

C (P) = ⊥
〈{Γ � ¬ϕ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : ϕ � Δ�⊥,T2, . . . ,Tm},σ〉 : S

with σcontradiction
C (C) = pos(l1) and σimplintro

C (P) = ⊥
〈{Γ � ψ ⇒ ¬φ�Δ,T2, . . . ,Tm},σ〉 : assume l : ϕ from l1;S → 〈{Γ� l : φ � ¬ψ�Δ,T2 , . . . ,Tm},σ〉 : S

with σcontrapositive(C) = pos(l1) and σcontrapositive(P) = ⊥
〈{Γ � ψ�Δ,T2, . . . ,Tm},σ〉 : subgoals l′1 : ϕ1{S1}, . . . , l′n : ϕn{Sn} by name from l1, . . . , ln ;S

→ 〈{Γ � Δ� l′1 : σname(P1), . . . ,Γ � Δ� l′n+k : σname(Pn+k),T2, . . . ,Tm},σname
X ◦σ〉 : S1; . . . ;Sn ;S

with T |σname(C) = ψ and (
⋃{σname

C (Pi)}∪{σname
C (C)}) =

⋃{pos(li)}
〈{Γ � Δ,T2, . . . ,Tm},σ〉 : cases l′1 : ϕ1{S1}, . . . , l′n : ϕn{Sn} from l;S

→ 〈{Γ � Δ|pos(l)←ϕ1
, . . . ,Γ � Δ|pos(l)←ϕn ,T2, . . . ,Tm},σ〉 : S1; . . . ;Sn ;S with T |pos(l) = ϕ1 ∨ . . .∨ϕn

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : set x = t;S → 〈{Γ � Δ,T2, . . . ,Tm}, [x = t]◦σ〉 : S if x occurs in (Γ,Δ)

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : set x = t;S → 〈{Γ� x = t � Δ,T2, . . . ,Tm},σ〉 : S if x is new wrt. Γ,Δ
〈{Γ�⊥ � Δ,T2, . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ � Δ��,T2, . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ�ϕ � Δ�ϕ,T2 , . . . ,Tm},σ〉 : trivial → 〈{T2, . . . ,Tm},σ〉 :

〈{Γ � Δ,T2, . . . ,Tm},σ〉 : trivial by name from l1, . . . , ln → 〈{T2, . . . ,Tm},σ〉
with

⋃
σname

C (Pi)∪σname
C (C) =

⋃{pos(li)}
〈{T1, . . . ,Tj−1,Tj ,Tj+1, . . . ,Tm},σ〉 : ε → 〈{T1, . . . ,Tj−1 ,Tj ,Tj+1 , . . . ,Tm},σ〉

To increase the readability, subsequent steps which reduce a task to a single subtask are
grouped together to a single step. Technically this is done by inserting a hierarchical
edge. As default the most abstract proof step is propagated to the mediator.

Subgoals. The command subgoals reduces a goal of a given task to n+m subgoals,
each of which is represented as a new task, where n corresponds to the subgoals spec-
ified by the user and m denotes additional underspecified goals the user has omitted or
forgotten. Each new task stems from a premise Pi of the applied inference, where the
goal of the original task is replaced by the proof obligation for the premise, written as
pob(Pi). The quickcheck succeeds if the specified inference name introduces at least
the subgoals specified by the user.

Γ � Δ

subgoals l1 : ϕ1, . . . , ln : ϕn

Γ � l1 : ϕ1 . . . Γ � ln : ϕn Γ � ϕn+1 . . . Γ � ϕn+m

If there is no inference introducing the subgoals specified by the user within a single
step the repair strategy tries to further reduce the goal in the current task, thus introduc-
ing further subgoals, until all specified subgoals are found. As in the assume case the
antecedent of the sequent is untouched. If a subgoal matches a specified goal, it is not
further refined. If all subgoals are found by a sequence of proof steps, these steps are
abstracted to a single justification, which is by default propagated to the mediator.
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Cases. The command cases reduces a task containing a disjunction on the left hand
side of the task into n + m subtasks where in each case an additional premise is added.
As for the subgoals the user can leave out some of the cases. If the task does not contain
a suitable disjunction, the repair strategy is executed, which tries to derive a desired
disjunction by forward reasoning. The goal remains untouched. As for the subgoal case
the sequence introducing the disjunction is abstracted to a single step.

Γ � Δ

set x = t

Γ� x = t � Δ

Set. The command set is used to bind a meta-variable or to intro-
duce an abbreviation for a term. If x is an unbound meta-variable in
the proof state, set will instantiate this variable with the given term t.
The substitution x → t is added to the proof state. If x is already bound,
a failure is generated. If x does not occur in the proof state, the com-
mand set serves as a shortcut statement for the given term t. The formula x = t will
be added as a new premise to the task. The last case is shown on the right. Adding an
equation x = t with a fresh variable x as premise is conservative in the sense, that a
proof using the new variable x can be converted in a proof without x by just substituting
all occurrences of x by t. There is no repair strategy for the set command.

Γ � Δ

trivial

Trivial. The command trivial is used to indicate that a task is
solved. This is the case if a formula ϕ occurs on both the left and
the right hand side of the task, the symbol false occurs at top level on
the left hand side of the task, or the symbol true occurs at top level on
the right hand side of a task. A task can also be closed if the inference
name is applied and all its premises and conclusions are matched to term positions in
the current task. In case that the quickcheck fails the repair strategy tries to close the
task by a depth limited forward backward reasoning.

Complex. The command complex is an abstract command which subsumes an arbi-
trary sequence of the previous commands. It is used to represent arbitrary abstract steps.
Note that it is generally not possible to justify such a step with a single inference appli-
cation, and without further information a blind search has to be performed to justify the
step. Hence there is no quickcheck for complex . If however in the by slot a strategy is
specified, this strategy needs to be executed and the result to be compared.

Example. Looking at our running example, the user wanted to show Theorem 8
and stated already a partial proof (c.f. Table 3). As none of the proof checking rules
for assume are applicable, the repair mode is started. The repair strategy tries to fur-
ther refine the goal A ∩ (B ∪C) = (A ∩ B) ∪ (A ∩C) to construct a situation in which
the assume step is applicable. Indeed, after three refinements the proof step becomes
applicable (see Figure 4). Unnecessary derivations, indicated by a dotted line in the
Figure, are deleted. The repair process brought a second subgoal out that now can be
lifted to the abstract proof view. We offer the following lifting modes: (i) fix : repaired
proof fragments are automatically patched into the document (ii) inform : the author
is informed about repair patches and decides their execution. (iii) silent : the author is
only informed about errors, no repair patches are offered.

5.2 Proof Lifting

Whenever a part of the proof is changed, it must be propagated back to the mediator. In
principle the prover can insert arbitrary large parts and multiple hierarchies during the
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Table 5. Proof lifting rules

{diff(T,Ti)|Ti ∈ succ(T )} proof step in abstract syntax

/0 trivial by name from lab(name)
{〈{ϕ},{ξ}〉} assume ϕ by name from lab(name)
{〈 /0, /0〉} set diff(σ,σ′)
{〈 /0,{ξ1}}〉 . . . 〈 /0,{ξm}}〉} subgoals ξ1, . . . ,ξm by name from lab(name)
{〈{x = t}, /0〉} set x = t
{〈{ϕ}, /0〉} fact ϕ by name from lab(name)
{〈{ϕ1}, /0〉 . . . 〈{ϕn}, /0〉} cases ϕ1, . . . ,ϕn by name from lab(name)
{〈Γ1,Δ1〉, . . . ,〈Γm,Δm〉} complex Δ1 under Γ1, . . . ,Δm under Γm

repair phase. As default the most abstract proof hierarchy is communicated as a proof
script to the mediator. However, the mediator can ask for a more detailed or a more
abstract version of the proof script. Given a selected proof hierarchy, each proof step
has to be transformed into a command of the proof script language. This is done by a
static analysis of the proof step.

Task Difference. Technically, a proof step is executed with respect to an agenda
〈{T1, . . . ,Tn},σ〉 and results in a new agenda 〈{T ′

1, . . . ,T
′

k ,T2, . . . ,Tn},σ′〉. The step has
reduced the task T1 to subtasks succ(T ) = {T ′

1, . . . ,T
′

k}. In a first analysis, only the
differences between the tasks are analyzed, defined as follows:

diff(T,T ′) = 〈{ϕ ∈ Γ′|ϕ /∈ Γ},{ξ ∈ Δ′|ξ /∈ Δ}〉

If a task is reduced to several subtasks, we obtain a set of differences for each subtask.
Moreover, we require that the name of the applied proof operator, i.e. the inference or
strategy, for the reduction is given and we denote a substitution introduced by the proof
step with σ. We assume a function lab which returns the set of those labels which are
used in premises and conclusions of the proof operator and . if none of them has a
label.

Table 6. Proof repaired in abstract syntax

Proof.
subgoals

A ∩ (B ∪C) ⊂ (A ∩B)∪ (A ∩C) : {
assume x ∈ A ∩ (B ∪C) from . ;
fact x ∈ A∧x ∈ (B∪C) by . from . ; ε}

(A ∩B)∪ (A ∩C)⊂ A ∩ (B ∪C) : { ε}
by Set Equality from .

Lifting Rules. If succ(T ) = /0, the proof
step is translated into a trivial step. If
succ(T ) = {T ′}, there are the following
possibilities: If the task T and its succes-
sor task T ′ are the same, we analyze the
difference between σ and σ′ to obtain the
formula x = t needed for the set case. If
the difference between T and T ′ is only
one formula, and this formula has been added on the left hand side of the sequent,
and is of the form x = t, where x is new, then the step is classified as a set case,
otherwise as a fact step. If the new formula has been introduced as a goal, we classify
the step to be a subgoals step. If several hypotheses are introduced, the step is
classified to be a cases step. A formal definition of the proof lifting rules are given in
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Fig. 5. Theorem with repaired partial proof

Table 5. Considering our running example, the abstract proof is repaired as shown in
Figure 4, and presented to the author as illustrated in Figure 5.

6 Extending OMDOC for Authoring Verified Proofs

In ΩMEGA we use the OMDOC format already for theory repositories with acyclic
theory dependencies, axioms, simple definitions and assertions. So far, we only sup-
port a subset of the OMDOC features and exclude e.g. complex theory morphisms
and complex definitions. OMDOC’s current proof module (PF) is designed for rep-
resenting proofs given in a declarative or procedural proof language together with com-
ments in natural language. Additionally, there is the possibility to store formal proofs
as proof terms in proofobject elements. In the following we refer to the extension
of the PF module proposed in [5] to store proofs with proofsteps on different levels of
granularity. Moreover, as we use TEXMACS for authoring, we need to store additional
parsing and rendering knowledge beyond the coverage of OMDOC’s presentation
module. For space reasons we use the compact form <proof>...</> for XML instead
of <proof>...</proof>.

6.1 Hierarchical Proof Data Structure

As we require both, fast reconstruction of the PDS from OMDOC proofs and presen-
tation of a given view of the proof, we need to store the proofs in OMDOC with all
levels of granularity. As a simple example (with only one level of granularity) we show
in Listing 1 the proof from Figure 4 in OMDOC format.

Each proof element represents a sequence of proofsteps. The proofstep consist of a
derive element where the type attribute contains the proof command and the method
element the by information, encoded in its xref attribute. The from information is
stored in premise subelements which point to the corresponding labeled formulas.
The labels are realized using the id attribute of the OMOBJ element.

An assume proofstep introduces always a new local hypothesis which is represented
by the hypothesis element after the assume derive block. We represent a sub-
goals proofstep inside a method block by a sequence of OMOBJ - proof pairs corre-
sponding to a subgoal followed by its subproof. We encode formulas in OMDOC using
OPENMATH.
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<proof xml:id="p1" for="#distr_inter">
<derive xml:id="p1_d1" type="subgoals">
<method xref="#definition_of_set_equality">

<OMOBJ>A ∩ (B ∪C)⊂ A ∩B ∪A ∩C</OMOBJ>
<proof><derive xml:id="p1_d2" type="assume"><method xref="#definition_of_subset"/></>

<hypothesis><FMP>x ∈ A ∩ (B ∪C)</FMP></>
<derive xml:id="p1_d3" type="fact"><FMP>x ∈ A ∧ x ∈ (B ∪C)</FMP>

<method xref="#definition_of_intersection"/></></>
<OMOBJ>A ∩B ∪A ∩C ⊂ A ∩ (B ∪C)</OMOBJ></></></>

OMDOC Listing 1: Proof as XML tree

Finally, Listing 2 shows how we encode proof steps at different levels of granularity.
The alt element contains as first proof element the strategy justification and then
the expansion or refinement of this strategy. Table 7 gives an overview of the added
attributes and content specifications.

<proof xml:id="p1" for="#distr_inter">
<alt>
<proof><derive xml:id="p1_dx" type="complex">

<method xref="#strategy1"/></></>
<proof> ... proof from Listing 1 ... </></></>

OMDOC Listing 2: Hierarchical Justifications

Table 7. Extension of PF

Element Opt. Attrib. Content

proof alt
alt proof+

Table 8. Extension of PRES

Element Opt. Attrib. Content

use cop symbol*, OMOBJ*

6.2 Parsing and Rendering Knowledge

The parsing and rendering facility of PLATΩ uses the following knowledge which we
want to store for each theory and for each community of practice separately in OMDOC
using the presentation module (PRES). Table 8 gives an overview of the extensions to
the PRES module. Each knowledge item is encoded in a presentation block like

<presentation for="URI"><use format="texmacs" cop="name" attributes="type=TYPE">...</></>

Notations for mathematical symbols are given by NOTC. Typed variables are encoded
as symbol elements and each pattern as an OMOBJ element1. While all patterns are
allowed as parser input, the renderer uses by default the first pattern.

<presentation for="#union"><use ... attributes="type=symbol">&lt;cup&gt;</></>
<presentation for="#union"><use ... attributes="type=notation">

<symbol xml:id="x"><type>set</type></symbol>
<symbol xml:id="y"><type>set</type></symbol>
<OMOBJ><OMA>
<OMS cd="local" name="x"/><OMSTR>&lt;cup&gt;</><OMS cd="local" name="y"/></></></></>

Symbolgroups are given by GROUP. We declare a symbolgroup by using a symbol
element before specifying its elements in a presentation block.

<symbol xml:id="setops" role="symbolgroup"/>
<presentation for="#setops"><use ... attributes="type=symbolgroup">

<OMOBJ><OMS cd="th1" name="union"/></OMOBJ>
<OMOBJ><OMS cd="th1" name="intersection"/></OMOBJ></></>

1 We encode a list of terms as argument list of an OMA element.
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Associativity information for symbols, given by ASSOC, with values right or left.

<presentation for="#union"><use ... attributes="type=associativity">left</></>

Precedence constraints for two or more symbol(group)s, expressing that s1 ≺ . . . ≺ sn,
are given by PREC. The symbol(group) s1 is referred to by the for attribute and the
s2, . . . ,sn are encoded as OMOBJ elements.

<presentation for="#intersection"><use ... attributes="type=precedence">
<OMOBJ><OMS cd="th1" name="union"/></OMOBJ></></>

By storing this knowledge separately for each community of practice, our architecture
supports for free the automatic notational translation of a document across communities
of practice. The default notation for all symbols is prefix notation.

7 Related Work

The most prominent system for the publication of machine checked mathematics is
MIZAR [14] with one of the largest libraries of formalized mathematics. The language
of the library is a well-designed compromise between human-readability and machine-
processability. Since the MIZAR system is not interactive, the usual workflow is to
prepare an article, compile it and loop both steps until there is no error reported. In con-
trast to that, our architecture allows for both a human-oriented and a machine-oriented
representation as well as techniques to lift or expand these representations respectively.

ISABELLE/ISAR [17] is a generic framework for human-readable formal proof doc-
uments, both like and unlike MIZAR. The ISAR proof language provides general prin-
ciples that may be instantiated to particular object-logics and applications. ISABELLE

tries to check an ISAR proof, shows the proof status but does not patch the proof script
for corrections. We try to repair detected errors or underspecifications in proof steps.

A very promising representative of distributed systems for the publication of machine
checked mathematics is LOGIWEB [9]. It allows the authoring of articles in a sophisti-
cated customizable language but strictly separates the input from the output document,
resulting in the usual LATEX workflow. By using the WYSIWYG text-editor TEXMACS
we combine input and output representation in a document-centric approach.

Regarding parsing techniques the Matita system provides currently the best strategies
for disambiguation [13]. Definitely, we plan to adapt these methods to our setting since
they reduce efficiently the amount of alternative proofs to be verified.

8 Conclusion

In this paper we presented an architecture for authoring machine checked documents for
mathematics repositories within a text-editor. To meet the real-time requirements of our
scenario, we presented fast parsing and rendering mechanisms as well as incremental
proof checking techniques. To increase the usability, the checking rules are enhanced by
repair strategies trying to fix incomplete or underspecified steps. Finally, we presented
an extension of the OMDOC format to store the formalized content of the document
together with its justifications and notational information. Thus, the proof situations
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can be efficiently restored and verified at a later date and by other authors. With the ap-
proach presented in this paper we have a solid basis for further linguistic improvements.
The plan is on the one hand to generate natural language with aggregation, topicalisa-
tion etc. from the controlled language and on the other hand to be able to understand
that constantly increasing fragment of natural language to extract the controlled lan-
guage. As future work we are going to investigate whether the proposed architecture is
a well-suited foundation for collaborative authoring inside and across communities of
practice.
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