
Towards Merging PlatΩ and PGIP

David Aspinall

LFCS, School of Informatics, University of Edinburgh
Edinburgh, U.K. (homepages.inf.ed.ac.uk/da)

Serge Autexier

DFKI GmbH, 28359 Bremen, Germany (www.dfki.de/∼serge)

Christoph Lüth

DFKI GmbH & FB Informatik, Universität Bremen
28359 Bremen, Germany (www.informatik.uni-bremen.de/∼cxl)

Marc Wagner

DFKI GmbH, 28359 Bremen, Germany & FR Informatik, Universität des
Saarlandes, 66123 Saarbrücken, Germany (www.ags.uni-sb.de/∼marc)

Abstract

The PGIP protocol is a standard, abstract interface protocol to connect theorem provers with
user interfaces. Interaction in PGIP is based on ASCII-text input and a single focus point-of-
control, which indicates a linear position in the input that has been checked thus far. This fits
many interactive theorem provers whose interaction model stems from command-line interpreters.
PlatΩ, on the other hand, is a system with a new protocol tailored to transparently integrate
theorem provers into text editors like TEXmacs that support semi-structured XML input files and
multiple foci of attention. In this paper we extend the PGIP protocol and middleware broker to
support the functionalities provided by PlatΩ and beyond. More specifically, we extend PGIP
(i) to support multiple foci in provers; (ii) to display semi-structured documents; (iii) to combine
prover updates with user edits; (iv) to support context-sensitive service menus, and (v) to allow
multiple displays. As well as supporting TEXmacs, the extended PGIP protocol in principle can
support other editors such as OpenOffice, Word 2007 and graph viewers; we hope it will also provide
guidance for extending provers to handle multiple foci.

Keywords: PlatΩ, Proof General, Mediator, Protocol, PGIP

Electronic Notes in Theoretical Computer Science 226 (2009) 3–21

1571-0661/© 2008 Elsevier B.V. Open access under CC BY-NC-ND license.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.12.094

homepages.inf.ed.ac.uk/da
www.dfki.de/~serge
http://www.informatik.uni-bremen.de/~cxl
http://www.ags.uni-sb.de/~marc
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Proof General [2,3] is widely used by theorem proving experts for several
interactive proof systems. In some cases, there is no alternative interface;
in others, the alternatives are little different. Yet the limitations of Proof
General are readily apparent and reveal its evolution from simple command
line systems. For one thing, the input format is lines of ASCII-text, with the
minor refinement of supporting Unicode or TeX-like markup. The presentation
format during interaction is the same. For another thing, the proof-checking
process has an overly simple linear progression with a single point-of-focus;
this means that the user must explicitly undo and redo to manage changes in
different positions in the document, which is quite tedious.

Meanwhile, theorem provers have increased in power, and the ability for
workstations to handle multi-threaded applications with ease suggests that it
is high time to liberate the single-threaded viewpoint of a user interface syn-
chronised in lock-step to an underlying proof-checking process. Some provers
now provide multiple foci of attention, or several prover instances might be run
in concert. Text editors, too, have evolved beyond linear ASCII-based layout.
The scientific WYSIWYG text editor TEXmacs, for example, allows editing
TEX and LATEX-based layout, linked to an underlying interactive mathematical
system.

Significant experiments with theorem proving using richer interfaces such
as TEXmacs have already been undertaken. In particular, the PlatΩ sys-
tem [9,4] mediates between TEXmacs and the theorem prover Ωmega. While
experiments with individual systems bring advances to those specific systems,
we believe that many parts of the required technology are generic, and we
can benefit from building standard protocols and tools to support provers and
interfaces. The aim of this paper, then, is to integrate lessons learned from
the PlatΩ system prototype with the mainstream tool Proof General and its
underlying protocol PGIP, putting forward ideas for a new standard for theo-
rem prover interfaces, dubbed here PGIP 2. Specifically, our contributions are
to combine ideas of state-tracking from PGIP with semi-structured document
models and menus as in PlatΩ, and to add support for possibly distributed
multiple views.

1.1 PG Kit system architecture

The Proof General Kit (PG Kit) is a software framework for conducting
interactive proof. The framework connects together different kinds of compo-
nents, exchanging messages using a common protocol called PGIP. The main
components are interactive provers, displays, and a broker middleware compo-

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–214

nent which manages proof-in-progress and mediates between the components.
Fig. 1 shows the system architecture; for details of the framework, we refer to
[3].

The PG Kit architecture makes
some assumptions and design deci-
sions about the components. Gen-
eralising from existing interactive provers
(such as Isabelle, Coq, or Lego),
it assumes that provers implement
a single-threaded
state machine model, with states toplevel,
file open, theory open and proof open.

PGIP
D

PGIP
D

PGIP
D

Prover

Prover

Graphical User

Interface

Text Editor

Eclipse

Broker

File System Theory Store

Prover Components Display Components

PGIP

PGIP

P

P

Fig. 1: PG Kit System Architecture

Displays, on the other hand, are as-
sumed to be nearly stateless. Through the display, the user edits the proof
text and triggers prover actions, e.g., by requesting that a part of the proof
script is processed. Abstractly, the broker mediates between the nearly state-
less display protocol PGIPD, and the statefull prover protocol PGIPP; it keeps
track of the prover states, and translates display state change requests into
sequences of concrete prover commands, which change the state of the prover
as required.

1.2 PlatΩ system architecture

The aim of the PlatΩ system is to support the transparent integration of
theorem provers into standard scientific text editors. The intention is that
the author can write and freely edit a document with high-quality typesetting
without fully imposing a restricted, formal language; proof support is pro-
vided in the same environment and in
the same format. The PlatΩ system
is the middleware that mediates be-
tween the text editor and the prover
and currently connects the text edi-
tor TEXmacs and the theorem prover
Ωmega. For the architecture of the
system, see Fig. 2.

Text EditorProver

Plato

PLATO P
PLATO

D

URI to Theories

in Text−Editor

Document Format

or OMDOC

OMDOC PL

Fig. 2: PlatΩ System Architecture

1.3 Outline

The rest of the paper is structured as follows. In Section 2 we give a scenario
for conducting a simple proof, and describe the interaction processes in PlatΩ
and in Proof General. Section 3 begins discussion of our proposal to merge
the two architectures, explaining how to extend PGIP to support documents

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 5

Fig. 3. Formalisation of the example scenario in TEXmacs and PG Kit.

with more structure and multiple points of focus. Section 4 describes how to
extend PGIP with a menu facility like that provided in PlatΩ, and Section 5
describes how to handle multiple displays, extending what is presently possible
in PlatΩ. To complete our proposal, Section 6 explains how we can reconcile
semi-structured documents with PGIP flat-structured documents, to connect
theorem provers based on classical flat structured procedural proofs with our
enhanced middleware for a richer document format. Section 7 discusses related
work and future plans.

2 Interaction in PlatΩ and Proof General

We illustrate the overall functionality and workflow of PlatΩ and PG Kit with
the following example, in which student Eva wants to prove the commutativity
of addition in the standard Peano axiomatisation. Eva is typing this proof in
a text editor, TEXmacs or Emacs, and receives assistance from a theorem
prover, Ωmega or Isabelle, for PlatΩ and PG Kit respectively (cf. Fig. 3).

Eva’s authoring process splits into the following five phases:

Phase 1. After having specified the theory and the conjecture

∀x, y.x + y = y + x (1)

in the text editor the document is passed to the theorem prover.

Phase 2. Eva begins to prove the conjecture. She does an induction on x and
gets stuck with the subgoals: (1a) 0 + y = y + 0 and (1b) (z + y = y + z) ⇒
(s(z) + y = y + s(z)).

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–216

Phase 3. She quickly realises that two lemmas are needed. Hence, she adds
the following two lemmas somewhere in the document:

∀x.0 + x = x + 0 (2)

∀x, y.(x + y = y + x)⇒ (s(x) + y = y + s(x)) (3)

Phase 4. Eva then tackles these lemmas one by one: for each, doing an
induction on x and simplifying the cases proves the lemmas.

Phase 5. Eva then continues the proof of (1) by applying both lemmas to
(1a) and (1b) respectively, which completes the proof.

2.1 PlatΩ

PlatΩ uses a custom XML document format called PL to connect to the text
editor. The PL document contains markup for theories, theory items and
linear, text-style proofs, and also notation definitions for defined concepts.
Formulas in axioms, lemmas and proofs are in the standard, non-annotated
LATEX-like syntax of TEXmacs. To connect to the theorem prover, PlatΩ
uses OMDoc for the hierarchical, axiomatic theories and another custom
XML format (TL) for the proofs. 1 PlatΩ holds the representations simulta-
neously, with a mapping that relates parts of the PL document to parts of the
OMDoc(TL) document; a major task of the system is to propagate changes
between the documents and maintain the mapping.

The text editor interface protocol (PLATOD, see Fig.2) uses XML-RPC,
with methods for complete document upload, service requests for specific parts
of the PL document, and the execution of specific prover commands. On
receiving a new document version, PlatΩ parses the live formulas using the
document notations, producing OpenMath formulas. If a parse error occurs,
an error description is returned to the editor. Otherwise PlatΩ performs an
XML-based difference analysis [11] against the old PL document, resulting
in a list of XUpdate modifications, 2 which are transformed into XUpdate
modifications for the OMDoc(TL) document.

The interface to the theorem prover (PLATOP) also uses XML-RPC, with
methods for applying XUpdate modifications, service requests for parts of the
OMDoc(TL) document, and executing specific prover commands. Applying
an XUpdate modification may result in an error (e.g. a type error) or is
simply acknowledged; either response is then relayed by PlatΩ to the display
as an answer to the corresponding document upload method call. The result
of a service request is a menu description in a custom XML format. That

1 The next version of PlatΩ will use the OMDoc format for proofs, though still with
Ωmega specific justifications for proof steps.
2 see xmldb-org.sourceforge.net/xupdate/

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 7

http://xmldb-org.sourceforge.net/xupdate/

menu is relayed to the display as a reply to the corresponding service request,
rendering OpenMath formulas in the menu into TEXmacs syntax using the
notation information already used for parsing.

The result of executing a menu action is a list of XUpdates, which can
either patch the menu (for lazy computation of sub-menus), or patch the
document (for instance, inserting a subproof). PlatΩ transforms these OM-
Doc(TL) patches into PL patches and renders occurring OpenMath formulas
into TEXmacs markup before sending the patch to the text editor.

Semantic Citation. A characteristic of PlatΩ is that everything that can
be used comes from a document. Hence, there is a specific mechanism to
“semantically” cite other TEXmacs documents (see Fig. 2); these appear as
normal citations in the editor but behind the scenes, are uploaded into PlatΩ,
which then passes them to Ωmega. As a consequence, PlatΩ does not allow
reuse of theories that are predefined in the theorem prover.

We now illustrate PlatΩ by describing the phases of the example scenario.

Phase 1. First, the whole document is passed from TEXmacs to PlatΩ which
extracts the formal content of the document including notational information
to parse formulas. From the document, PlatΩ builds up the corresponding
OMDoc theories and passes them as an XUpdate to Ωmega, which builds
up the internal representation of the theory and initialises a proof for the open
conjecture.

Phase 2. To start the proof of the theorem, Eva requests a menu from Ωmega,
which returns a menu that lists the available strategies. Eva selects the strat-
egy InductThenSimplify, which applies an induction on x to the open conjec-
ture, simplifies the resulting subgoals terminates with the two open subgoals.
This partial proof for Theorem (1) inside Ωmega is compiled into patch de-
scription and then passed to PlatΩ. PlatΩ transforms it into a patch for
TEXmacs by rearranging the obtained tree-like subproof representation into
a linear, text-style proof representation using pseudo-natural language, and
rendering the formulas using the memorised notational information.

Phase 3. After the two lemmas are written in the document, the whole doc-
ument is uploaded and, after parsing, the difference analysis computes the
patch to add the two lemmas. This is transformed into a patch description to
add their formal counter-parts as open conjectures to the theory and sent to
Ωmega. Ωmega, in turn, triggers the initialisation of two new active proofs.

Phase 4. Eva uses for both lemmas the strategy InductThenSimplify (again
suggested by Ωmega in a menu) which succeeds in proving them. The re-
sulting proof descriptions are again transformed by PlatΩ into proof patches

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–218

for the document and both lemmas are immediately available in the ongoing
proof of Theorem (1).

Phase 5. Ωmega proposes in a menu to apply the lemma (2) to the sub-
goal (1a) and the lemma (3) to the subgoal (1b). Eva selects these suggestions
one by one, which then completes the proof inside Ωmega. Subsequently, only
the proof patch descriptions are transformed into patches for the TEXmacs
document as before.

2.2 Proof General

Unlike OMDoc, PGIP is not a proof format, nor does the PG Kit prescribe
one. Instead, PGIP uses proofs written in the prover’s native syntax, which
are lightly marked up to exhibit existing implicit structure. The mark up
divides the text into text spans, corresponding to prover commands which
can be executed one-by-one in sequence. Different commands have different
mark up, characterising e.g., start of a proof, a proof step, or (un)successful
completion of a proof, as in:

<opengoal>theorem add commute: "x+ y= y+ x"</opengoal>
<proofstep>proof (induct x rule: N.induct)</proofstep>

Elements like <opengoal> do not carry an inherent semantics (and they
cannot be sent to the prover on their own), they merely make it clear that e.g.
the command theorem add commute: ”. . . ” starts the proof. Each of these
text spans has a state; the main ones are parsed, processed and outdated.
Proving a given theorem means to turn the whole proof into the processed
state, meaning that the prover has successfully proved it. Returning to the
scenario, we discuss the flow of events between the Emacs display, the PG Kit
broker and the Isabelle prover.

Phase 1. Eva starts with an initial plain text Isabelle file, giving the definitions
for the natural numbers, addition and the conjecture. She requests the file
to be loaded, causing the broker to read it and send the contents to Isabelle
for parsing. While this happens, the display shows the unparsed text to give
immediate feedback. Isabelle returns the parsed file, which is then inserted
into the Emacs buffer.

Phase 2. Eva now wants to prove the conjecture. She requests the conjecture
to become processed so she can work on the proof (a command <setcmdstatus>
is sent to the broker). This triggers sending a series of commands to Isabelle,
ending with the conjecture statement. Isabelle answers with the open subgoal,
which is then shown on the display.

Eva attempts proof by induction. She writes the appropriate Isabelle com-

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 9

mands (proof (induct x rule: N.induct)). The new text is sent to the broker
and then on to Isabelle for parsing. Once parsed the broker breaks the text
into separately processable spans (here, only one), which is sent back to the
display. Now Eva asks for the proof step to be processed, which sends the
actual proof text to Isabelle, which answers with two open subgoals.

Phase 3. Realising she needs additional lemmas, and knowing Isabelle’s linear
visibility, Eva knows she has to insert two lemmas before the main theorem
she is trying to prove. Since she cannot edit text which is in state processed,
she first requests the text to change state to outdated. This causes a few undo
messages to be sent to the prover to undo the last proof commands, resetting
Isabelle’s state back to where it has not processed the start of the main proof
yet. Eva then inserts the needed lemmas in the document, and has them
parsed as before.

Phase 4. Eva processes the lemma, and sees a message indicating that the
proof worked. She finishes the other lemma similarly.

Phase 5. Eva returns to the main proof, editing the induction proof by in-
serting the induction base and induction step. Fig. 3 (right) shows the Emacs
display at this point: the window is split in two parts, with the proof script in
the upper part and the prover responses displayed below. The top portion of
the proof script is blue, showing it has been processed, indicating the linear
point of focus. After the induction step succeeds, Eva closes the proof with
the command qed, which registers the theorem with the authorities. By turn-
ing the state of this closing command to processed, the proof is successfully
finished.

3 Semi-Structured Documents

We have now seen how PlatΩ and the PG Kit handle documents. The architec-
ture is similar: a central component handles the actual document, managing
communication with the prover on one side and a user-interface component on
the other side. The main differences are technical, summarised in the first two
columns of Tables 1 and 2. Given the similarity, the question naturally arises:
can we overcome these differences and provide a unified framework? This sec-
tion will tentatively answer in the positive by extending PGIP on the prover
side with the necessary new concepts (Section 3.1) and multiple foci (Sec-
tion 3.2), and by using XUpdate pervasively on the display side (Section 3.3).
The right-most columns of Tables 1 and 2 show the technical unification for
the proposed PGIP 2.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2110

PlatΩ Display PG Kit Display PGIP 2 Display

Document format XML Plain text XML

Document syntax TEXmacs ASCII Generic

Change protocol XUpdate PGIPD XUpdate

Change management Dynamic Notation Provided by prover Provided by prover or
display

Operations supported Context-dependent
menus

Global menus,
typed operations

Context-dependent
menus, typed operations

Table 1. Summary of differences between the Display Interfaces of PlatΩ and PG Kit

PlatΩ Prover PG Kit Prover PGIP 2 Prover

Document format XML Plain text XML

Document syntax OMDoc Native prover
syntax

Generic

Change protocol XUpdate PGIPP XUpdate/PGIPP

Change management Provided by Maya Provided by Prover Provided by Prover

Prover support Ωmega Generic (Coq,
Isabelle, etc)

Generic (Coq, Isabelle,
Ωmega, etc)

Operations supported Context-dependent
menus

Global menus,
typed operations

Context-dependent
menus, typed operations

Table 2. Summary of differences between the Prover Interfaces of PlatΩ and PG Kit

3.1 Document Formats

The two different document formats can both be treated as arbitrary XML,
with the difference that for PlatΩ and OMDoc, there is deep structure inside
the proof script (i.e., inside goals, proof steps etc) whereas in the case of
PG Kit, there is only a shallow XML structure where the proof script is
mainly plain text. To overcome this difference, we allow PGIP 2 proof scripts
to contain arbitrary marked-up XML instead of marked-up plain text, turning
the document into a proper XML tree. Here is the present PGIP schema,
excerpted and slightly simplified: 3

opentheory = element opentheory { thyname_attr, parentnames_attr?, plaintext }
closetheory = element closetheory { plaintext }
theoryitem = element theoryitem { objtype_attr, plaintext }
openblock = element openblock { objtype_attr, plaintext }
closeblock = element closeblock { }
opengoal = element opengoal { thmname_attr?, plaintext }
proofstep = element proofstep { plaintext }
closegoal = element closegoal { plaintext }

The proposed PGIP 2 amends this as follows, again excerpted:
theory = element theory { thyname_attr, parentnames_attr?, any }
theoryitem = element theoryitem { objtype_attr, any }
block = element block { objtype_attr, xref_attr?, any }

3 This XML schema is written in RELAX NG, which can be read much as a BNF grammar,
with non-terminals named on the left and element and attribute introducing terminals;
see http://relaxng.org/.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 11

http://relaxng.org/

<assertion>theorem add commute: "x+ y= y+ (x::N)"
<block objtype=”proof body”>
<proofstep>proof (induct x rule: N.induct)</proofstep>
<proofstep>case Z</proofstep><assertion>thus ?case
<block objtype=”proof body”><endproof status=”proven”>by (simp add: add Z r)</endproof>
</block></assertion>

<proofstep>case S</proofstep><assertion>thus ?case
<block objtype=”proof body”><endproof status=”proven”>by (simp add: add S)</endproof>
</block></assertion>

<endproof status=”proven”>qed</endproof></block></assertion>

Fig. 4. Excerpt from the short example proof, marked up with PGIP 2 (edited slightly for read-
ability).

assertion = element assertion { thmname_attr?, id_attr?, any }
proofstep = element proofstep { xref_attr?, any }
endproof = element endproof { xref_attr?, proofstatus_attr?, any }

id_attr = attribute xml:id
thmname_attr = attribute thmname { xml:id }
thyname_attr = attribute thyname { xml:id }
xref_attr = attribute xref
proofstatus_attr = attribute ("proven"|"assert"|"unproven")

any = (text | anyElement) *
anyElement = element * { (attribute * { text } | any) * }
text = element text { plaintext }

There are two major changes here: (i) arbitrary XML can occur where before
only text was allowed; of course, the prover must understand whatever XML
syntax is used here (e.g. Ωmega can understand OMDoc); (ii) instead of a
flat list structure, we now use a proper tree; that is, a theory is not everything
between an <opentheory> and <closetheory> element, but the contents
of the <theory> element; and similarly, a proof is not everything between
<opengoal> and <closegoal>, but the contents of the <block> element of
type proofbody that belongs to an <assertion> element. The <endproof>
element replaces <closegoal> and can be annotated with status information
about the proof proven, assert, or unproven. Another extension is the corre-
sponding attributes xml:id for the <assertion>, and xref for the <block>
elements, which allow assertions to refer to proofs which are elsewhere in the
document, and not directly following the assertion. These attributes are op-
tional, and may only appear in the display protocol (i.e., between displays and
the broker); we assume that provers always expect proof scripts to be in linear
order, and it is the responsibility of the broker to rearrange them if necessary
before sending them to be checked.

Furthermore, the broker must be able to divine the structure in an OM-
Doc proof; e.g., the Ωmega prover or a component acting on its behalf must
answer parse requests, and return XML documents using these elements. The
revised version of our example proof with the PGIP 2 markup is shown in
Fig. 4.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2112

3.2 Multiple Foci

The present PGIP prover protocol imposes an abstract state machine model
which the prover is required to implement. Ωmega can be made to fit this
model, but beyond that provides multiple foci. By this we mean that it can
keep track of more than one active proof at a time and switch between them.
Ignoring this would lose potential benefits (such as the ability to use a natively
multi-threaded implementation of the prover) unnecessarily, and it is easy to
accommodate into PGIP: we merely need to add an attribute to the prover
commands to identify the focus. Some of these attributes already exist for the
display protocol, where files are identified by a unique identifier (srcid). By
adding unique identifiers also for theories and proofs, the prover can identify
which ongoing proof a proof step belongs to, and use the appropriate thread to
handle it. To allow fall-back to the simple case, we need a prover configuration
setting to declare if multiple foci are available.

3.3 XUpdate

In the PGIPD protocol, changes in the document are communicated using
specialised commands <createcmd> and <editcmd> from the display to
the broker, and <newcmd>, <delcmd> and <replacecmd> from the bro-
ker to the display (so the protocol is asymmetric). We can rephrase this in
terms of XUpdate; the unique identifier given by the broker to each com-
mand contained in the cmdid attribute allows to easily identify an object by
the XPath expression *[cmd=c]. The key advantages of XUpdate are that
it is standard, symmetric, and allows several changes to be bundled up in
one <xupdate:modifications> packet that is processed atomically, adding
a transaction capability to the display protocol.

Strict conformance to this protocol requires the displays to calculate or
track differences, i.e., send only the smallest update. Not all displays (editors)
are that sophisticated, and it is unrealistic to expect them to be; a basic design
assumption of PG Kit is that the broker should contain the intelligence needed
to handle proof documents, and displays should be easy to implement. Hence,
displays can send back the whole document as changed, and expect the broker
to figure out the actual differences (whole-document editing) using the XML
difference mechanism from [11] that can take some semantics into account as
already used by PlatΩ.

In the PGIPP protocol, changes in the document communicated via XUp-
date must be mapped to changes in the prover state. In the previous version
of PGIP, this was done by the broker, because the single-focus state model
does not easily accommodate arbitrary changes to the document. However,
the multiple-focus extensions as described in Sect. 3.2 amount to supporting

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 13

XUpdate on the prover side; if the prover offers this support, it should be
exploited, otherwise we use PGIPP.

3.4 Protocols

The underlying transport protocol of PGIP was custom designed, because
communication with an interactive prover fits no simple standard single-request
single-response protocol: the prover asynchronously sends information about
proofs in progress, and we crucially need the ability to send out-of-band inter-
rupts. However, on the display side these reasons do not apply; we might use
XML-RPC or even plain HTTP in a REST architecture. REST (representa-
tional state transfer [6]) is an architecture style for distributed applications
which, in a nutshell, is based on providing resources that are addressed using
URIs and manipulated using four basic operations: creating, reading, up-
dating and deleting (“CRUD”). The resources provided by the broker are as
follows:

• The broker itself, with the list of all known provers, all loaded files, a
global menu, and global configurations as attributes;

• each prover is a resource, with its status (not running or running, busy,
ready, exited) as attributes, preferences for this prover, all identifiers
for the prover, messages sent by the prover, its proof state, and prover-
specific configurations such as types, icons, help documents, and a menu;

• and each file is a resource, containing the document as a structured text,
and the status (saved or modified) as attributes.

Clients affect changes to the document by the XUpdate messages above, and
trigger broker actions by changing the attributes. For example, to start a
prover, the client will change the status of the prover resource from not run-
ning to running. Here, bundling up changes into one XUpdate modification
becomes useful, as it allows displays to send several changes to the document
resource in one transaction.

In the REST view, changes in the document produce a new version of the
document; special links will always point to the latest version of the document,
but may require the client to refresh them. This allows multiple displays; we
will exploit this in Section 5. This REST-style interface is an alternative to
the statefull protocol using PGIP or XML-RPC; in the long run, the broker
will support both.

4 Service Menus

PGIP 2 supports context-sensitive service menus in the display for the inter-
action with the prover. The user can request a menu for any object in the

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2114

document; through the broker this triggers menu generation in the prover for
the formal counterparts of the selected object. It remains to fix a format for
menu descriptions.

Traditionally, menus are fully specified and include all submenus and the
leafs are all actions with all possible actual arguments. Executing an action
triggers modifications of the document and the menu is closed. For theorem
provers, computing all submenus and action instances can be expensive and
unduly delay the appearance of the menu. For example, a menu entry for
applying a lemma would contain as a submenu all available lemmas, and for
each lemma, all possibilities to apply it in the current proof situation. Once
the user makes a choice, the other possibilities are discarded. So on-demand
computation of submenus is desirable.

The PlatΩ system allows lazy menus, where actions executed in a menu can
generate a submenu. The entire menu is modified by replacing the leaf action
by the generated submenu. We adapt this model for PGIP 2 also. However,
not all displays are able to incorporate changes to live menus; therefore we do
not impose the partial menu representation. Instead, the display specifies in
the service request whether it will accept a lazy menu.

The description language for these menus is:
menu = element menu { id, name, for_attr, ((menu|action)+ | error) }
action = element action { id, name, argument* }
argument = element argument { id, name, custom }
custom = element custom { id, alt, any }
error = element error { id, text }

(using the any element from above). A menu entry is rendered by its name and
an action is rendered by its name and its arguments. Arguments are rendered
with the given custom object, e.g., an OpenMath formula or some standard
TEXmacs markup. The alt attribute provides a fallback ASCII representation
in case the custom object content cannot be displayed.

When the user chooses an action, it is executed on the specified arguments.
The result of the action may be an XUpdate patch to the document. This is
sent to the broker and then on to the display, which incorporates the patch
and closes the menu. Alternatively it is a patch for the menu only: in this
case the action is replaced in the menu by the new submenu. If a submenu
is empty, i.e., there are no possibilities to refine the abstract action, then the
submenu consists solely of an error that describes the cause, which should be
displayed inside the menu.

Example 4.1 We illustrate the interactions when requesting a menu for a
display that is able to deal with partial menus. In Phase 5 of the scenario,
Eva requests a menu for the subgoal (1a) 0 + y = y + 0.

Menu Request: The menu is requested for a specific XPath of the document

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 15

and the broker maps it to a menu request to the prover for the corresponding
formal object, that is, the open goal that corresponds to (1a) 0+y = y+0. The
prover generates a top-level menu with the actions “Apply Axiom or Lemma”,
“Apply Tactic” and returns that to the display via the broker.

Lazy Menu Deployment: Selecting “Apply Axiom or Lemma” triggers
computing a submenu containing all available axioms and lemmas. That sub-
menu is sent as an XUpdate patch to the display to replace the action “Apply
Axiom or Lemma”. Selecting Lemma (2) triggers the prover action that com-
putes the possible ways to apply the lemma on the open goal. In this case the
resulting submenu has a few entries for the cases where the lemma is applied
from left to right and one case for the application of the lemma from right to
left. The submenu is sent as an XUpdate patch to the display to replace the
action “Apply Lemma (2)”.

Menu Action Execution: The final top level action execution triggers ap-
plying the specific instance of the Lemma in the prover, modifying the formal
proof. The modification is propagated via the broker to the display, either as
an XUpdate patch for the document if the display is able to deal itself with
these; otherwise the broker computes the new document version and forwards
only the new document. Additionally, a patch description is sent for closing
the menu.

5 Multiple Displays

The architecture of our new system inherits from the architecture of PG Kit
(Fig. 1), which allows multiple displays to be connected to the broker. One use
for this is to allow multiple views on a proof-in-progress, e.g., a display that
shows a dependency graph, or a graphical interpretation of a proof (perhaps
rendering geometric arguments diagrammatically), alongside the main proof
editing display. These displays are prover-specific, but fit smoothly into the
general architecture.

Another use for multiple displays is to support more than one display to
change the document. For this we need a way to synchronise input from
different displays. A way to do this is for the broker to act as a simple kind
of source control repository, illustrated by example in Fig. 5. This works as
follows:

• The broker maintains the latest revision (the head) of a document, and for
each display, a copy of the latest revision acknowledged by that display.
In Fig. 5, the head is Rev. 47.

• When Display 1 sends a change (Rev. 47’), the change is committed to
the new head (Rev. 48), and the new revision broadcast to all displays.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2116

Fig. 5. Example for Editing via Multiple Displays

• Display 1 acknowledges the new revision. However, Display 2 has been
changed meanwhile, so it does not acknowledge, instead attempting to
commit its changes (Rev. 47”). The broker spots a potential conflict,
and (in this case) merges the disjoint changes between 48 and 47” with
respect to 47 into the current head revision without trouble. The merged
document becomes the new head (Rev. 49), and is broadcast to all dis-
plays. Since no further changes have been made in the display, they both
acknowledge.

If a conflict that cannot be merged occurs, the broker sends the merged doc-
ument including conflict descriptions back to the display (using an extension
to XUpdate to markup the conflicts, as in [11, Sect. 7.1.3]). The display (or
the user) then needs to resolve the conflicts, and send in new changes.

This strategy is simple and flexible: displays could always send in changes
to the whole document, and only acknowledge changes sent from the broker if
the user has not edited the document at all. Alternatively, since this may cre-
ate extensive conflicts without realising, displays might block between commit
and acknowledge, or attempt to merge eagerly with new revisions sent by the
broker.

6 Supporting Multiple Document Formats

So far the document format used with the display and the prover are essentially
the same: for instance, in the classical PGIP with Isabelle, the document on

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 17

the display is an Isabelle input file with additional markup. With the extension
for arbitrary XML document formats in Section 3, we could connect a display
and prover that both use OMDoc. But we cannot yet connect two different
formats, say, connecting the display based on a document format D, with a
prover that works on a different format P . This is the final missing piece of
the architecture for emulating PlatΩ, which connects D =PL in the PLATOD

protocol to TEXmacs through to P =OMDoc format as used in the PLATOP

protocol to Ωmega.

To support multiple document formats at once, we propose to use a cen-
tral structured document format B in the PG Kit broker that is annotated
by PGIP markup. The broker does not need to know the semantics of the
format B. Instead, dedicated translators are required for each target docu-
ment format, translating D � B and B � P . Each translator maintains a
document representation mapping, and converts XUpdate-patches in either
direction, much as the PlatΩ system does between the PL representation and
the OMDoc representation as described in Section 2.1. The advantage of
using the central format B is that provers do not need to be adapted to the
document format of every display.

Experience with PlatΩ suggest the main difficulty lies in translating patch
descriptions between the different document formats. Suppose we connect
structured TEXmacs documents with plain text Isabelle proof scripts, and
choose OMDoc as the broker’s central document format. On the display
side we have a translator component that mediates between TEXmacs doc-
uments and OMDoc. Prover side, a translator mediates between OM-
Doc and Isabelle ASCII text. We encode ASCII documents in XML as
<document><text>...</text>...<text>...</text></document>, where text nodes are whites-
pace preserving.

Consider now the interactions when uploading and patching a document.
Menu interactions are basically passed unchanged, but document patches must
be translated. Since PlatΩ can already mediate between the TEXmacs and
OMDoc formats, we need only one new translator for OMDoc and Isabelle,
implementing:

XUpdate flattening going from OMDoc to ASCII, the structured XML
representation must be transformed into a linearised text representation. A
mapping must be setup between XML ranges and text ranges, i.e., the start
XPath maps to the start text position (relative to the last range) and the end
XPath maps to the end text position (relative to the last range). Start and
end XPaths have the same parent XPath by definition. To flatten patches, the
affected XML ranges must be recomputed and the mapping adapted; additions
in the patch are flattened similarly.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2118

XUpdate lifting: going from ASCII to OMDoc, the text spans must be
lifted to the XML representation. Generally, this is done by mapping text
spans to the corresponding sequence of adjacent XML ranges. As an invari-
ant it must be checked whether the resulting sequence can be expressed by
start and end XPaths with the same parent XPath. Similar to flattening, the
mapping has to be adapted between text ranges and XML ranges.

Of course, the devil lies in the detail: OMDoc allows some embedding
of legacy formats, but to usefully translate to and from Isabelle, we must
accurately interpret a subset of syntax that reflects theory structure, and
have some confidence about the correctness of the interpretation.

On the other side, we can now provide translators for further displays with
advanced layout possibilities, such as Word 2007. The translator component
must abstract the display document format to simplify it for the broker: e.g.
in Word 2007, the document body is extracted and information about fonts,
colours and spacing is stripped. On the way back, annotations are extracted
from the patches coming from the broker, which guide heuristics for layout of
new or modified text.

7 Related Work, Conclusion and Next Steps

Many user interfaces to theorem provers are similar to the Proof General style
of line-by-line and single focus interaction using ASCII input files in native
theorem prover format. Often, a custom interaction protocol is used. The
main novelties for PGIP 2 proposed here are: (i) to handle semi-structured
XML documents as input formats; (ii) to allow the user to work on different
parts of a document in parallel by using multiple foci; (iii) to allow the theorem
prover to change parts of the input document, possibly using menus, and
(iv) to have multiple views and editing of the same document in different
displays.

With respect to (i), the MathsTiles system [5] also allows to map semi-
structured documents towards several special reasoning systems. However,
the mapping is only unidirectional from the display to the reasoners and also
does not support multiple displays and conjunctive editing. With respect to
(ii), as far as we know, the Ωmega system is the only prover that currently
supports semi-structured document input and multiple foci. State informa-
tion describing which parts of the document have been checked by Ωmega is
managed in an ad hoc style; making this explicit in the multi-threaded state
machine model in PGIP 2 markup improves this and suggests ways to migrate
a single-threaded theorem prover to a multi-threaded mode.

The IAPP infrastructure introduced in [7] is a new architecture designed to

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 19

support asynchronous processing using a communication protocol that trans-
fers the ownership of proof commands between the interface and the prover.
Thus IAPP locks parts of the document to prevent conflicts, whereas we use
a versioning-based approach where conflicts are resolved in the broker (using
undo operations); the obvious advantage is that the interface does not have to
wait for the prover to release parts of the document before editing. Addition-
ally, IAPP tracks changes using a tight integration with the interface based
on the assumption that the interface implements the OBSERVER pattern [8].
We do not impose such strong requirements on the interface because we use
a difference analysis mechanism to compute the changes. This allows us to
support multiple views equally on the interface side.

Multiple views have been used in various forms in different systems, but not
in a clearly distributed way that also allows editing, as in PGIP 2. In LΩui [12]
the display was split into a graph view on the proof and a display of the ac-
tual proof goals: those were based on pretty-printing and graph-visualisation
tools built into the same display component. Matita’s user interface [1] has
one proof script buffer and a display for the actual proof goal: the latter uses
GtkMathview based on MathML representation of formulas that is generated
from the internal representation of Matita. GeoProof [10] allows one to
generate Coq proofs from its internal, geometric representation which can be
viewed in CoqIDE [13]: this comes close to what we propose with multiple
displays, except that currently there is no way back from Coq into Geo-
Proof. 4 The infrastructure of PGIP 2 and a (partial) mapping from Coq
into GeoProof would allow for simultaneously working in GeoProof and
CoqIDE. Away from proof assistant systems, multiple views are familiar in
IDEs for programming languages such as Eclipse and NetBeans: there the
same file may be presented in different ways in different windows (e.g., code
and model), and either updated dynamically in step, or at clearly defined
points in the interaction (e.g., window activation).

The ability to extend the input document by incorporating information
from the prover has also been supported in various ways before. An example
besides the general change mechanism of PlatΩ/Ωmega is that of Matita,
which can generate a tinycal proof script from the GUI interactions on goals,
and include it into the overall document. We hope that a generic infrastructure
would allow functionality like this to be reused between systems. The facility
to include information from the prover together with the multiple foci provide
a good basis to use PG Kit for provers like Mizar, PVS and Agda that have
different, non-linear interaction styles. The details of adapting to further

4 This could, of course, only be a partial mapping since not all Coq-proofs are geometric
proofs.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–2120

prover interaction styles is left to future work.

The main next step is to implement our planned PGIP 2 and to rebuild
PlatΩ’s functionality on that basis. Future work will also be devoted to use
Word 2007 and OpenOffice as displays and especially to build bi-directional
transformers between prover-specific textual input files and corresponding
OMDoc representations. We hope this will lead to a rich family of improved
prover user interfaces.

References

[1] A. Asperti, C. Sacerdoti Coen, E. Tassi, and S. Zacchiroli. User interaction with the Matita
proof assistant. Journal of Automated Reasoning, 39(2):109–139, 2007. Special Issue on User
Interfaces in Theorem Proving.

[2] David Aspinall. Proof General: A generic tool for proof development. In Susanne Graf and
Michael Schwartzbach, editors, Tools and Algorithms for the Construction and Analysis of
Systems, Lecture Notes in Computer Science 1785, pages 38–42. Springer, 2000.

[3] David Aspinall, Christoph Lüth, and Daniel Winterstein. A framework for interactive proof.
In Mathematical Knowledge Management MKM 2007, LNAI 4573, pages 161– 175. Springer,
2007.

[4] S. Autexier, A. Fiedler, T. Neumann, and M. Wagner. Supporting user-defined notations
when integrating scientific text-editors with proof assistance. In Manuel Kauers, Manfred
Kerber, Robert Miner, and Wolfgang Windsteiger, editors, Towards Mechanized Mathematical
Assistants, LNAI. Springer, june 2007.

[5] W. Billingsley and P. Robinson. Student Proof Exercises using MathsTiles and Isabelle/HOL
in an Intelligent Book. Journal of Automated Reasoning, 39(2):181–218, August 2007.

[6] R. T. Fielding. Architectural Styles and the Design of Network-based Software Archite ctures.
PhD thesis, University of California, Irvine, 2000.

[7] H. Gast. Managing proof documents for asynchronous processing. In S. Autexier and
C. Benzmüller, editors, 8th Workshop on User Interfaces for Theorem Provers (UITP’08),
August 2008.

[8] E. Grammar, R. Helm, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

[9] C. Benzmüller M. Wagner, S. Autexier. Plato: A mediator between text-editors and proof
assistance systems. In Christoph Benzmüller Serge Autexier, editor, 7th Workshop on User
Interfaces for Theorem Provers (UITP’06), volume 174(2) of Electronic Notes on Theoretical
Computer Science, pages 87–107. Elsevier, april 2007.

[10] J. Narboux. A graphical user interface for formal proofs in geometry. Journal of Automated
Reasoning, 39(2):161–180, 2007. Special Issue on User Interfaces in Theorem Proving.

[11] S. Radzevich. Semantic-based diff, patch and merge for XML documents. Master thesis,
Saarland University, Saarbrücken, Germany, April 2006.

[12] J. Siekmann, S. Hess, C. Benzmüller, L. Cheikhrouhou, A. Fiedler, H. Horacek, M. Kohlhase,
K. Konrad, A. Meier, E. Melis, M. Pollet, and V. Sorge. LOUI: Lovely Ωmega User Interface.
Formal Aspects of Computing, 11:326–342, 1999.

[13] The Coq Development Team. The Coq Proof Assistant Reference Manual – Version 8.1.
INRIA, http://coq.inria.fr/doc-eng.html, 2008.

D. Aspinall et al. / Electronic Notes in Theoretical Computer Science 226 (2009) 3–21 21

	Introduction
	PG Kit system architecture
	Plat system architecture
	Outline

	Interaction in Plat and Proof General
	Plat
	Proof General

	Semi-Structured Documents
	Document Formats
	Multiple Foci
	XUpdate
	Protocols

	Service Menus
	Multiple Displays
	Supporting Multiple Document Formats
	Related Work, Conclusion and Next Steps
	References

