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Abstract We discuss the problem of consistency proofs for large and complex
first-order theories originating from the realm of ontologies. In particular, we argue
that ‘standard’ automated reasoning methods are often insufficient for proving such
consistency results.

We advocate an approach where a global model of a theory is built from smaller
models together with amalgamability properties between such models. To illustrate
the feasibility of this technique, we have constructed a modular version (a so-called
architectural specification) of the first-order version of the foundational ontology
DOLCE.
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The field of formal ontology may be subdivided into the study of domain
ontologies, devoted to specific application areas, and foundational ontologies,
axiomatising fundamental and domain-independent concepts. Foundational
ontologies, such as SUMO [Niles and Pease, 2001] and DOLCE [Gangemi et al.,
2002], are typically specified in some variant of first-order logic1, and their
first-order theories tend to be rather large (DOLCE consists of a few hundred
axioms, and SUMO of several thousand).

Automated and semi-automated theorem proving systems have success-
fully been applied to reasoning about foundational ontologies. In particular, us-
ing automated provers, a number of inconsistencies in SUMO have been found
[Voronkov, 2006], and SUMO has been corrected accordingly. The problem of
proving the consistency of ontologies, however, is much harder in general.

1There are, however, also versions of DOLCE that use modal logic and second-order constructs.



There are several model finders for first-order logic available. Some of
them search for finite models by a translation to propositional logic (and then
using SAT solvers) (e.g. Isabelle-refute [Weber, 2005]), some of them
use more advanced methods like the model evolution calculus (e.g. Darwin
[Baumgartner and Tinelli, 2003; Baumgartner et al., 2004]), or resolution via
detecting a saturated set of clauses (e.g. SPASS [Weidenbach et al., 2002]).
However, these techniques currently only suffice to find models for relatively
small first-order theories—they do not scale to DOLCE, let alone SUMO.2

The complexity of the DOLCE ontology stems from the fact that it com-
bines several (non-trivial) formalised ontological theories into one theory, viz.
the theories of essence and identity, parts and wholes (mereology), dependence,
composition and constitution, as well as properties and qualities.

In this work, we propose to construct models not in a monolithic, but in
a structured way. That is, the task of constructing a model of a (large) theory
should be decomposed into subtasks of finding models for smaller theories. Of
course, such a decomposition is not accomplished easily. We propose to use a
set of operations for model construction that have been introduced in the con-
text of software specification under the name of architectural specifications.
Basically, an architectural specification consists of a sequence of declarations
of units (which are just named models), declarations of unit functions (mapping
models of a smaller theory to models of an extended theory), and definition of
units by unit terms. A unit term may refer to named units, apply unit functions
to other units, take reducts of units, and amalgamate units to larger units. Fi-
nally, an overall result unit term yields the overall model that is provided by
the architectural specification.

The semantics of architectural specifications ensures that this is done in
such a way that any realisation of the declared units leads to a model corre-
sponding to the result unit term. In particular, this means that appropriate shar-

2We have experimented with several model-finders to find models for the sub-theories ‘classical
extensional parthood’ (CEP) and ‘constitution’ (CON) of DOLCE. These experiments were largely
disillusioning. Darwin as well as Paradox are able to find trivial models with exactly one atom
for both theories; here, models are generated by the atoms which themselves have no proper (tem-
poral or spatial) parts. But this is where their power ends. Trying to find a model with 4 atoms
for CEP made Darwin as well as Paradox calculate for two days at which point they termi-
nated with error messages. We then tried Isabelle-refute with the SAT solver zChaff on
CEP trying to find a model with 4 atoms. This even worked out with an enlarged variable pool for
Isabelle-refute and setting the model size to the required one. Isabelle-refute was
able to present a model with these settings after 5 to 10 minutes depending on the speed of the
computer. Trying to find a model with 4 atoms for CON just led Isabelle-refute to con-
sume about 14.8 GB of memory on a 16 GB machine while preparing the input for a SAT solver.
Similarly, Mace4 worked on this theory for several days without finding a model with 4 atoms.



ing conditions are checked; namely, if two (or more) units are amalgamated,
then the shared symbols must originate from the same declared unit.

In this way, the consistency of large theories can be reduced to the con-
sistency of a number of unit declarations. The latter amounts to consistency
of smaller theories (in case of simple units) or to conservativity of theory ex-
tensions (in the case of parametrised units). Consistency of small theories can
be checked with the means discussed above, while for conservativity of theory
extensions, several options are available: the fact that an extension is merely an
extension by definition can be checked automatically, using syntactic criteria.
But often, the extension carries some looseness, allowing for several expan-
sions of a given model of the smaller theory to the larger one. In this case, we
can either try to use SMT solvers or QBF provers to prove conservativity, or
we can try to describe the model expansion explicitly by a theory extension
that is known to be conservative by syntactic criteria. The latter is a kind of
(localised) relative consistency proof.

We have carefully analysed the DOLCE theory and have designed an archi-
tectural specification for it. In the process of this design, we had to re-arrange
the architectural decomposition several times in order to find an optimal de-
composition. The forces to be balanced out are the following:

• the theories of the individual units (and theory extensions, for parametrised
units) should be small enough in order to keep the consistency and con-
servativity checks feasible;

• the theory extensions of the parametrised units must be large enough to
make the conservativity checks work (that is, if a new symbol is intro-
duced, the theory extension should contain all essential constraints for
that symbol);

• the theory extensions must be large enough to guarantee the amalgam-
ability conditions.

Indeed, the check of the amalgamability conditions has been implemented
as part of the Heterogeneous Tool Set HETS [Klin et al., 2001; Mossakowski
et al., 2007]. This is of great help when designing an architectural decompo-
sition for DOLCE. Full technical details as well as the corresponding architec-
tural specification (in notation of the Common Algebraic Specification Lan-
guage CASL [CoFI (The Common Framework Initiative), 2004]) can be found
in Kutz et al. [2008].
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