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Abstract Various calculi have been designed for qualitative constraint-
based representation and reasoning. Especially for orientation calculi, it
happens that the well-known method of algebraic closure cannot decide
consistency of constraint networks, even when considering networks over
base relations (= scenarios) only. We show that this is the case for all
relative orientation calculi capable of distinguishing between “left of”
and “right of”. Indeed, for these calculi, it is not clear whether efficient
(i.e. polynomial) algorithms deciding scenario-consistency exist.
As a partial solution of this problem, we present a technique to decide
global consistency in qualitative calculi. It is applicable to all calculi
that employ convex base relations over the real-valued space Rn and it
can be performed in polynomial time when dealing with convex relations
only. Since global consistency implies consistency, this can be an efficient
aid for identifying consistent scenarios. This complements the method of
algebraic closure which can identify a subset of inconsistent scenarios.
Keywords: Qualitative Spatio-Temporal Reasoning

1 Introduction

Since the work of [1] on temporal intervals, constraint calculi have been used
to model a variety of aspects of space and time in a way that is both quali-
tative (and thus closer to natural language than quantitative representations)
and computationally efficient (by appropriately restricting the vocabulary of
rich mathematical theories about space and time). For example, the well-known
region connection calculus by [2] allows for reasoning about regions in space. Ap-
plications include geographic information systems, human-machine interaction,
and robot navigation.

Efficient qualitative spatial reasoning mainly relies on the algebraic closure
algorithm. It is based on an algebra of (often binary) relations: using relational
composition and converse, it refines (basic) constraint networks in polynomial
time. If algebraic closure detects an inconsistency, the original network is surely
inconsistent. If no inconsistency is detected, for some calculi, this implies con-
sistency of the original network — not for all calculi, though.



Orientation calculi focus on relative directions in Euclidean space, like “to
the left of”, “to the right of”, “in front of”, or “behind of”. They face two dif-
ficulties: often, these calculi employ ternary relations, for which the theory is
much less developed than for binary ones. Moreover, in this work, we show that
algebraic closure can badly fail to approximate the decision of consistency of con-
straint networks. Hence, we look for alternative ways of tackling the consistency
problem. We both refine the algebraic closure method by using compositions
of higher arities, and present a polynomial decision procedure for global consis-
tency of constraint networks that consist of convex relations. These two methods
approximate consistency from below and above.

2 Qualitative Calculi

Qualitative calculi are employed for representing knowledge about a domain
using a finite set of labels, so-called base relations. Base relations partition the
domain into discrete parts. One example is distinguishing points on the time
line by binary relations such as “before” or “after”. A qualitative representation
only captures membership of domain objects in these parts. For example, it can
be represented that time point A occurs before B, but not how much earlier nor
at which absolute time. Thus, a qualitative representation abstracts, which is
particularly helpful when dealing with infinite domains like time and space that
possess an internal structure like for example Rn.

In order to ensure that any constellation of domain objects is captured by
exactly one qualitative relation, a special property is commonly required:

Definition 1. Let B = {B1, . . . , Bk} be a set of n-ary relations over a domain
D. These relations are said to be jointly exhaustive and pairwise disjoint (JEPD),
if they satisfy the properties

1. ∀i, j ∈ {1, . . . , k} with i 6= j : Bi ∩Bj = ∅
2. Dn =

⋃
i∈{1,...,k}Bi

For representing uncertain knowledge within a qualitative calculus, e.g., to
represent that objects x1, x2, . . . , xn are either related by relation Bi or by rela-
tion Bj , general relations are introduced.

Definition 2. Let B = {B1, . . . , Bk} be a set of n-ary relations over a domain
D. The set of general relations RB (or simply R) is the powerset P(B). The
semantics of a relation R ∈ RB is defined as follows:

R(x1, . . . , xn) :⇔ ∃Bi ∈ R,Bi(x1, . . . , xn)

In a set of base relations that is JEPD, the empty relation ∅ ∈ RB is called
the impossible relation. Reasoning with qualitative information takes place on
the symbolical level of relations R, so we need special operators that allow us
to manipulate qualitative knowledge. These operators constitute the algebraic
structure of a qualitative calculus.



2.1 Algebraic Structure of Qualitative Calculi

The most fundamental operators in a qualitative calculus are those for relating
qualitative relations in accordance to their set-theoretic disjunctive semantics.
So, for R,S ∈ R, intersection (∩) and union (∪) are defined canonically. The
set of general relations is closed under these operators. Set-theoretic operators
are independent of the calculus at hand, further operators are defined using the
calculus semantics.

Qualitative calculi need to provide operators for interrelating relations that
are declared to hold for the same set of objects but differ in the order of argu-
ments. Put differently, we need operators which allow us to change perspective.
For binary calculi only one operator needs to be defined:

Definition 3. The converse (^) of a binary relation R is defined as:

R^ := {(x2, x1)|(x1, x2) ∈ R}

Ternary calculi require more operators to realize all possible permutations of
three variables. The three commonly used operators are shortcut, homing, and
inverse:

Definition 4. Permutation operators for ternary calculi:

INV (R) := { (y, x, z) | (x, y, z) ∈ R } (inverse)
SC(R) := { (x, z, y) | (x, y, z) ∈ R } (shortcut)
HM(R) := { (y, z, x) | (x, y, z) ∈ R } (homing)

Additional permutation operations can be defined, but a small basis that
can generate any permutation suffices, given that the permutation operations
are strong (see discussion further below) [3]. A restriction to few operations
particularly eases definition of higher arity calculi.

Definition 5 ([3]). Let R1, R2, . . . , Rn ∈ RB be a sequence of n general rela-
tions in an n-ary qualitative calculus over the domain D. Then the operation

◦ (R1, . . . , Rn) := {(x1, . . . , xn) ∈ Dn | ∃u ∈ D, (x1, . . . , xn−1, u) ∈ R1,

(x1, . . . , xn−2, u, xn) ∈ R2, . . . , (u, x2 . . . , xn) ∈ Rn}

is called n-ary composition.

Note that for n = 2 one obtains the classical composition operation for binary
calculi (cp. [4]) which is usually noted as infix operator. Nevertheless different
kinds of binary compositions have been used for ternary calculi, too.



2.2 Strong and Weak Operations

Permutation and composition operators define relations. Per se it is unclear
whether the relations obtained by application of an operation are expressible
in the calculus, i.e. whether the set of general relations RB is closed under an
operation. Indeed, for some calculi the set of relations is not closed, there even
exist calculi for which no closed set of finite size can exist, e.g. the composition
operation in Freksa’s double cross calculus [5].

Definition 6. Let an n-ary qualitative calculus with relations RB over domain
D and an m-ary operation φ : Bm → P(Dn) be given. If the set of relations is
closed under φ, i.e. for ∀B ∈ Bm ∃R′ ∈ RB : φ(B) =

⋃
B∈R′ B, then the

operation φ is called strong.

In qualitative reasoning we must restrict ourselves to a finite set of rela-
tions. Therefore, if some operation is not strong in the sense of Def. 6, an upper
approximation of the true operation is used instead.

Definition 7. Given a qualitative calculus with n-ary relations RB over domain
D and an operation φ : Bm → P(Dn), then the operator

φ? : Bm → RB
φ?(B1, . . . , Bk) := {R ∈ B|R ∩ φ(B1, . . . , Bk) 6= ∅}

is called a weak operation, namely the weak approximation of φ.

Note that the weak approximation of an operation is identical to the original
operation if and only if the original operation is strong. Further note that any
calculus is closed under weak operations. Applying weak operations can lead to
a loss of information which may be critical in certain reasoning processes. In the
literature the weak composition operation is usually denoted by �.

Definition 8. We call an m-ary relation R over Rn convex, if

{y | R (x1, . . . , xm−1, y) , (x1, . . . , xm−1, y) ∈ Rn}

is a convex subset of Rn.

3 Constraint Based Qualitative Reasoning

Qualitative reasoning is concerned with solving constraint satisfaction problems
(CSPs) in which constraints are expressed using relations of the calculus. Defi-
nitions from the field of CSP are carried over to qualitative reasoning (cp. [6]).

Definition 9. Let R be the general relations of a qualitative calculus over the
domain D. A qualitative constraint is a formula R(X1, . . . , Xn) (also written
X1 . . . Xn−1RXn) with variables Xi taking values from the domain and R ∈ R.
A constraint network is a set of constraints. A constraint network is said to
be a scenario if it gives base relations for all relations R(X1, . . . , Xn) and the
base relations obtained for different permutations of variables X1, . . . , Xn must
be agreeable wrt. the permutation operations.



One key problem is to decide whether a given CSP has a solution or not. This
can be a very hard problem. Infinity of the domain underlying qualitative CSPs
inhibits searching for an agreeable valuation of the variables. This is why decision
procedures that purely operate on the symbolic, discrete level of relations (rather
than on the level of underlying domain) receive particular interest.

Definition 10. A constraint network is called consistent if a valuation of all
variables exists, such that all constraints are fulfilled. A constraint network is
called n-consistent (n ∈ N) if every solution for n− 1 variables can be extended
to a n variable solution involving any further variable. A constraint network
is called strongly n-consistent, if it is m-consistent for all m ≤ n. A CSP in
n-variables is globally consistent, if it is strongly n-consistent.

A fundamental technique for deciding consistency in a classical CSP is to en-
force k-consistency by restricting the domain of variables in the CSP to mutually
agreeable values. Backtracking search can then identify a consistent variable as-
signment. If the domain of some variable gets restricted to down to zero size
while enforcing k-consistency, the CSP is not consistent. This procedure except
for backtracking search (which is not applicable in infinite domains) is also ap-
plied to qualitative CSPs [4]. For a JEPD calculus with n-ary relations any
qualitative CSP is strongly n-consistent unless it contains a constraint with the
empty relation. So the first step in checking consistency would be to test n+ 1-
consistency. In the case of a calculus with binary relations this would mean
analyzing 3-consistency, also called path-consistency. This is the aim of the al-
gebraic closure algorithm which exploits that composition lists all 3-consistent
scenarios.

Definition 11. A CSP over binary relations is called algebraically closed if for
all variables X1, X2, X3 and all relations R1, R2, R3 the constraint relations

R1(X1, X2), R2(X2, X3), R3(X1, X3)

imply
R3 ⊆ R1 �R2

To enforce algebraic closure, the operation R3 := R3 ∩ R1 � R2 (as well as a
similar operation for converses) is applied for all variables until a fixpoint is
reached.

Enforcing algebraic closure preserves consistency, i.e., if the empty relation
is obtained during refinement, then the qualitative CSP is inconsistent. How-
ever, algebraic closure does not mandatorily decide consistency: a CSP may be
algebraically closed but inconsistent — even if composition is strong [7].

Algebraic closure has also been adapted to ternary calculi using binary com-
position [8]. Binary composition of ternary relations involves 4 variables, it
may not be able to represent all 4-consistent scenarios though. Scenarios with
4 variables are specified by 4 ternary relations. However, binary composition
R1 �R2 = R3 only involves 3 ternary relations. Therefore, using n-ary composi-
tion in reasoning with n-ary relations is more natural (cp. [3]).



4 Reasoning About Relative Orientation

In this section we give an account on findings for deciding consistency of qualita-
tive CSPs. Our study is based on the LR-calculus (ref. to [9]), a coarse relative
orientation calculus. It defines nine base relations which are depicted in Fig. 1.
The LR-calculus deals with the relative position of a point C with respect to
the oriented line from point A to point B, if A 6= B. The point C can be to the
left of (l), to the right of (r) the line, or it can be on a line collinear to the given
one and in front of (f) B, between A and B with the relation (i) or behind (b)
A, further it can be on the start-point A (s) or an the end-point B (e). If A = B,
then we can distinguish between the relations Tri , expressing that A = C and
Dou, meaning A 6= C. Freksa’s double cross calculus DCC is a refinement of the
LR-calculus and, henceforth, our findings for the LR-calculus can be directly
applied to the DCC-calculus as well. We give negative results on the applicability
of existing approaches for qualitative reasoning and discuss how computations
on the algebraic level can nevertheless be helpful. We begin with a lower bound
of the complexity.
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Figure 1. The nine base relations of the LR-calculus; tri designates the case of A =
B = C, whereas dou stands for A = B 6= C.

Theorem 12. Deciding consistency of CSPs in LR is NP-hard.

Proof (sketch). In a straightforward adaption of the proof given in [10] for the
DCC calculus, the NP-hard problem NOT-ALL-EQUAL-3SAT can be reduced
to equality of points. ut

Algebraic closure usually is regarded the central tool for deciding consistency
of qualitative CSPs. For the first qualitative calculi investigated (point calculus
[11], Allen’s interval algebra [1]) it turned out that algebraic closure decides
consistency for the set of base relations, i.e. algebraic closure gives us a polyno-
mial time decision procedure for consistency of qualitative CSPs when dealing



with scenarios. This leads to the exponential time algorithm for deciding consis-
tency of general CSPs using backtracking search to refine relations in the CSP
to base relations [1]. Renz pioneered research on identifying larger sets for which
algebraic closure decides consistency, thereby obtaining a practical decision pro-
cedure [12]. If however algebraic closure is too weak for deciding consistency of
scenarios, no approaches are known for dealing with qualitative CSPs on the
algebraic level. Unfortunately this is the case for the LR-calculus.

Proposition 13. All scenarios only containing the relations l and r are alge-
braically closed wrt. the LR-calculus with binary composition.

Proof. We have a look at the permutations of LR and see that

operation operand result
INV l r

r l
SC l r

r l
HM l l

r r

the set of {l, r} is closed under all permutations. A look at the binary composition
table of LR reveals that all compositions containing only l and r on their left
hand side, always have the set {l, r} included in their right hand side:

operand 1 operand 2 result
l l {b, s, i, l, r}
l r {f, l, r}
r l {f, l, r}
r r {b, s, i, l, r}

But with this we can conclude, that

Ri,k �Rk,j ∩Ri,j 6= ∅

for all i, k, j, with Rn,m ∈ {l, r}. ut

Of course not all LR-scenarios over the variables l and r are consistent. We
will show that

SCEN := {(AB r C), (AE r D), (DB r A),
(DC r A), (DC r B), (DE r B),
(DE l C), (EB r A), (E C r A),
(E C r B)}

is algebraically closed but inconsistent. Algebraic closure directly follows from
Thm. 13. We will show that any projection of this scenario to the natural do-
main R2 of the LR-calculus yields a contradiction. Therefore we construct equa-
tions for the relations of the LR-calculus. In R2 the sign of the scalar product



sign(〈X,Y 〉) determines the relative direction of X and Y . Given three points
α, β and γ that are connected by an LR-relation, we can construct a local co-
ordinate system with origin α. It has one base vector going from α to β; we call
this vector α. The vector orthogonal to this one and and facing to the right is
called α′, as shown in Fig. 2. The vector from α to γ is called σ. With this we
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Figure 2. Constructing equations

get that (αβ r γ) is true iff 〈α′,σ〉 > 0, and (αβ l γ) is true iff 〈α′,σ〉 < 0,
and of course we know that the points α, β, and γ are different points in these
cases. The vectors α′ and σ are described by

α′ =
(
yβ − yα
xα − xβ

)
, σ =

(
xγ − xα
yγ − yα

)
.

With this we get

(αβ r γ)⇔ (yβ − yα) · (xγ − xα) + (xα − xβ) · (yγ − yα) > 0

(αβ l γ)⇔ (yβ − yα) · (xγ − xα) + (xα − xβ) · (yγ − yα) < 0.

Scenarios of the LR-calculus are invariant wrt. the operations of translation,
rotation and scaling, this means that we can fix two points to arbitrary values,
we chose to set D to (0, 0) and B to (0, 1). With this we obtain the inequations

xA · yE < yA · xE (1)
xC · yA < yC · xA (2)
yE · xC < xE · yC (3)

xC < 0 (4)
xE < 0 (5)

0 < xA (6)

In fact more inequations are derivable, but already these ones are not jointly
satisfiable and we conclude:

Theorem 14. Classical algebraic closure does not enforce scenario consistency
for the LR-calculus.



Proof. We consider the algebraically closed LR scenario SCEN and the inequa-
tions (1) to (6) that we derived when projecting it into R2, the intended domain
of LR. From inequations (1), (6), (4), (5) and (3) we obtain

xE · yC
xC

< yE <
yA · xE
xA

and again using inequations (6), (4) and (5) we get

yC · xA < xC · yA

contradicting (2). Hence our scenario is not consistent. ut

As discussed earlier ternary composition is more natural for ternary calculi
than binary composition. Therefore we examined the ternary composition table
of the LR-calculus3 and conclude:

Theorem 15. Algebraic closure wrt. ternary composition does not enforce sce-
nario consistency for the LR-calculus.

Proof. Let us have a closer look at the ternary composition operation wrt. the
relations contained in SCEN, namely the relation l and r. Recall that the set {l, r}
of LR-relations is closed under all permutation operations. So we only need to
consider the fragment of the composition table with triples over l, r:

� (r, r, r) = {r}, � (r, r, l) = {b, r, l},
� (r, l, r) = {f, r, l}, � (r, l, l) = {i, r, l},
� (l, r, r) = {i, r, l}, � (l, r, l) = {f, r, l},
� (l, l, r) = {b, r, l}, � (l, l, l) = {l}.

We see that any composition that contains r as well as l in the triple on the
left-hand side yields a superset of {r, l} on the right-hand side. So all com-
posable triples that have both l and r on their left hand side cannot yield an
empty set while applying algebraic closure. So, we have to investigate how the
compositions � (l, l, l) and � (r, r, r) are used when enforcing algebraic closure.
Enumerating all composable triples (X1X2 r1X4), (X1X4 r2X3), (X4X2 r3X3)
and their respective refinement relation (X1X2 rf X3) yields a list with 18 entries
shown in Appendix A. All of those entries list l as refinement relation whenever
composing � (l, l, l) and analogously for r. Thus, no refinement is possible, and
the given scenario is algebraically closed wrt. ternary composition. ut

We believe that advancing to even higher arity composition will not provide
us with a sound algebraic closure algorithm. It turns out, however, that moving
to a certain level of k-consistency does indeed make a change.

3 Such a table is available via the qualitative reasoner SparQ. (ref. to
http://www.sfbtr8.spatial-cognition.de/project/r3/sparq/)



Remark 16. Of course it is theoretically possible to solve these systems of inequa-
tions by quantifier elimination, or by the more optimized Cylindrical Algebraic
Decomposition (CAD). Unfortunately the CAD algorithm has a double expo-
nential worst case running time (even though this can be reduced to polynomial
running time with a optimal choice of the involved projections). Our experiments
with CAD tools unfortunately were quite disillusioning, since those tools choked
on our problems mainly because of the large number of involved variables (con-
sider that each point in our scenarios introduces 2 variables in our systems of
inequalities).

5 Deciding Global Consistency

In this section we will generalize a technique from [13] and we will show that this
generalization decides global consistency for arbitrary CSPs over m-ary convex
relations over a domain Rn. The resulting theorem transfers Thm. 5 of [14] from
classical constraint satisfaction to qualitative spatio-temporal reasoning.

Theorem 17 (Helly [15]). Let S be a set of convex regions of the n-
dimensional space Rn. If every n+1 elements in S have a nonempty intersection
then the intersection of all elements of S is nonempty.

Theorem 18. A CSP over m-ary convex relations over a domain Rn is globally
consistent, i.e. k-consistent for all k ∈ N, if and only if it is strongly ((m− 1) ·
(n+ 1) + 1)-consistent.

Proof. In the first step of this proof consider an arbitrary CSP over convex m-
ary relations that is strongly (m− 1) · (n+ 1) + 1 consistent. By induction on k,
which is the number of variables that can be instantiated in a strongly consistent
way, we show that it is k+ 1 consistent for an arbitrary k. Assume that for each
tuple (X1, . . . , Xk) of these variables a consistent valuation (z1, . . . , zk) exists.
For this purpose we define sets

ps
((
zi1 , . . . , zim−1

)
, Ri1,...,is,k+1,is+1,...,im−1

)
= {z |

Ri1,...,is,k+1,is+1,...,im−1

(
zi1 , . . . , zis , z, zis+1 , . . . , zim−1

)
}

with 1 ≤ ij ≤ k and 1 ≤ s ≤ m − 1. By assumption, these are sets of
convex regions of the particular space defined by the assignment of the variables
(X1, . . . , Xk) 7→ (z1, . . . , zk) and the particular relation Ri1,...,,is,k+1,is+1,...,im−1 .
Let

P = {ps
((
zi1 , . . . , zim−1

)
, Ri1,...,is,k+1,is+1,...,im−1

)
|

1 ≤ s ≤ m− 1 ∧ 1 ≤ ij ≤ k}

be the set of all such convex regions. Observe that n+ 1 tuples of elements of P
are induced by constraints containing up to (m− 1) · (n+ 1) different variables.



By strong ((m− 1) · (n+ 1) + 1)-consistency we know that the intersection of all
these regions is non-empty. The application of Helly’s Theorem yields⋂

p∈P

p 6= ∅.

Hence a valuation for k + 1 variables exists. The second step of this proof is
trivial, since global consistency implies k-consistency for all k ∈ N. ut

In [7, Prop. 1] it was shown that whether composition is weak or strong is
independent of the property of algebraic closure to decide consistency. However,
in some cases, these two properties are related:

Theorem 19. In a binary calculus over the real line that

1. has only 2-consistent relations
2. and has strong binary composition

algebraic closure decides consistency of CSPs over convex base relations.

Proof (Proof sketch). By Thm. 18 we know that strong 3-consistency decides
global consistency. Since composition is strong, algebraic closure decides 3-
consistency and, since we have 2 consistency, it decides strong 3-consistency
too. Thus algebraically closed scenarios are either inconsistent (containing the
empty relation) or globally consistent. Put differently, global consistency and
consistency coincide. ut

Corollary 20. For CSPs over convex {LR,DCC}-relations strong 7-consistency
decides global consistency.

Proof. Follows directly from Thm. 18 for both calculi. ut

Corollary 21. Global consistency of scenarios in convex {LR,DCC}-relations
is polynomially decidable.

Proof. Compute the set of strongly 7-consistent scenarios in constant time (e.g.
using quantifier elimination4). The given scenario is strongly 7-consistent iff all
7-point subscenarios are contained in the set of strongly 7-consistent scenarios.
By Thm. 18 this decides global consistency. ut

Unfortunately consistency and global consistency are not equivalent in the
LR-calculus.

Proposition 22. For the LR-calculus not every consistent scenario is globally
consistent.

4 Here we just want to state the computation is possible, we do not claim to suggest
a practical method though.
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Figure 3. Illustration for Prop. 22

Proof. Consider the consistent scenario

{(AB r C), (AB r D), (C D l A)
(C D l B), (AB f E), (C D f E)}

which has a realization as shown in Fig. 3 (left), the lines AB and CD intersect.
Now consider the sub-CSP in the variables A, B, C, and D with the solution
shown in Fig. 3 (right). We see that the lines AB and CD are parallel, but the
constraints (AB f E) and (C D f E) demand that the point E is on the line
AB as well as on the line CD, hence the given scenario is not 5-consistent, and
so it is not globally consistent. ut

6 Discussion & Conclusion

We have shown that for relative orientation calculi capable of distinguishing be-
tween “left of” and “right of” like the LR-calculus, the composition table alone
is not sufficient for deciding consistency of qualitative scenarios. We have argued
that binary composition in ternary calculi in general does not provide sufficient
means for generalizing algebraic closure to ternary calculi. Instead ternary com-
position is required. However, advancing to ternary composition which can list
4-consistent scenarios and thus allows us to generalize algebraic closure is still
not sufficient for deciding consistency. This is a remarkable result that has im-
plications to several relative orientation calculi to which the given proofs can be
transferred:

– LR calculus [16]
– Dipole calculus [17]
– OPRA calculus family [18]
– Double-cross calculus (DCC) [19]

To conclude, at the time being we have no practical method for deciding
consistency in any of the listed relative orientation calculi. This may lead to a
dramatic impact on qualitative spatial reasoning: The highly structured spatial
domain does not yet help us to implement more effective reasoning algorithms
than for general logical reasoning. So far the only backbone for reasoning with
relative information is given by a logic-based approach [20].



In future work the practical utility of the presented polynomial-time decision
procedure given by Cor. 21 for global consistency needs to be analyzed. While the
general problem of deciding consistency of constraint satisfaction problems in LR
is NP-hard, it is likely to be easier for scenarios. Therefore, our future work will
be involved with singling out tractable problem classes and we aim at developing
a method for deciding consistency of qualitative constraint satisfaction problems
contained in NP, possibly finding a polynomial-time method for scenarios.
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räumliches Schließen. Master’s thesis, Universität Freiburg (April 2000) in German.

11. Vilain, M.B., Kautz, H.A., van Beek, P.G.: Constraint propagation algorithms for
temporal reasoning: A revised report. In: Readings in Qualitative Reasoning about
Physical Systems, Morgan Kaufmann (1989)



12. Renz, J.: Qualitative Spatial Reasoning with Topological Information. Volume
LNCS 2293. Springer, Berlin (2002)

13. Isli, A., Cohn, A.: A new approach to cyclic ordering of 2D orientations using
ternary relation algebras. Artificial Intelligence 122(1-2) (2000) 137–187

14. Sam-Haroud, D., Faltings, B.: Consistency techniques for continuous constraints.
Constraints 1 (1996) 85–118
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A Table of composable l/r triples

(AC lB) (AB lD) (BC lD) (AC lD)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(AC lE) (AE lD) (E C lD) (AC lD)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(AC lB) (AB lE) (BC lE) (AC lE)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(EA lB) (EB lC) (BA lC) (EA lC)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(C D lB) (C B lA) (BD lA) (C D lA)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(C D lE) (C E lA) (ED lA) (C D lA)



↓ ↓ ↓ ↓
�( l, l, l) ∩ {l} = {l}

(C E lB) (C B lA) (BD lA) (C E lA)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(E C rB) (EB rA) (BC rA) (E C rA)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(DA lB) (DB lC) (BA lC) (DA lC)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(DA lE) (DE lC) (EA lC) (DA lC)
↓ ↓ ↓ ↓

�( l, l, l) ∩ {l} = {l}

(AD rB) (AB rC) (BD rC) (AD rC)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(AD rE) (AE rC) (ED rC) (AD rC)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(AE rB) (AB rC) (BE rC) (AE rC)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(C ArB) (C B rE) (BArE) (C ArE)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(C ArE) (C E rD) (EArD) (C ArD)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(C ArB) (C B rD) (BArD) (C ArD)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(DC rB) (DB rA) (BC rA) (DC rA)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}

(DC rE) (DE rA) (E C rA) (DC rA)
↓ ↓ ↓ ↓

�( r, r, r) ∩ {r} = {r}


