
, 1–29
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What is a Logic Translation?
In memoriam Joseph Goguen

Till Mossakowski, Răzvan Diaconescu and Andrzej Tarlecki

Abstract. We study logic translations from an abstract perspective, with-
out any commitment to the structure of sentences and the nature of logical
entailment, which also means that we cover both proof-theoretic and model-
theoretic entailment. We show how logic translations induce notions of logical
expressiveness, consistency strength and sublogic, leading to an explanation of
paradoxes that have been described in the literature. Connectives and quanti-
fiers, although not present in the definition of logic and logic translation, can
be recovered by their abstract properties and are preserved and reflected by
translations under suitable conditions.

1. Introduction

The development of a notion of logic translation presupposes the development of
a notion of logic. Logic has been characterised as the study of sound reasoning,
of what follows from what. Hence, the notion of logical consequence is central. It
can be obtained in two complementary ways: via the model-theoretic notion of
satisfaction in a model and via the proof-theoretic notion of derivation according
to proof rules. These notions can be captured in a completely abstract manner,
avoiding any particular commitment to the nature of models, sentences, or rules.
The paper [40], which is the predecessor of our current work, explains the notion
of logic along these lines.

Similarly, an abstract notion of logic translation can be developed, both at
the model-theoretic and at the proof-theoretic level. A central question concern-
ing such translations is their interaction with logical structure, such as given by
logical connectives, and logical properties. Moreover, an abstract notion of logic
translation opens the door to the abstract study of other notions like sublogic and
expressiveness.
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We shed light on the paradoxical situations spotted out by Béziau [4] and
others, namely that a sublogic may turn out to be more expressive than its su-
perlogic. For this, it is important to be precise about the notions of sublogic and
of expressiveness. Expressiveness cannot be equated with consistency strength,
rather, it corresponds to discriminatory strength. It turns out that discriminatory
strength increases when fewer symbols are axiomatised in a specific way.

We also study logical consequence, satisfaction and translation in the con-
text of a “signature”, that is, a vocabulary containing the non-logical symbols, like
propositional variables, relation symbols, function symbols, and so on. As with sen-
tences, models and rules, we leave the nature of signatures completely open; this
is achieved by the use of category theory and made explicit in the notion of insti-
tution. Using signatures, the ingredients of a logic (and also of a logic translation)
become explicitly indexed by the context. This can be motivated philosophically
by arguments like those given by Peirce [42] for his “interpretants”, which al-
low for context dependency of denotation in his semiotics. Technically, this allows
more complex concepts like quantification, interpolation, definability, etc., and
their interaction with translations, to be studied at the same level of abstraction
as indicated above.

Actually, both the model-theoretic and, even more, the signature-indexed
view of logic seem to be underrepresented in the universal logic community. We
therefore provide a motivation of and introduction to these aspects of logic, starting
with the more widely used concept of entailment relation, then proceeding to
satisfaction systems that capture model theory, and finally to the level where
indexing by signatures is made explicit.

The main contribution of this paper is twofold: on the one hand, we develop
several results concerning the interaction of different types of translations with
different kinds logical connectives and quantifiers. On the other hand, we show
that some well-known translations between (variants of) classical and intuitionistic
logic can be turned into semantic translations (thereby also providing a simpler
and more conceptual explanation of their faithfulness).

This paper was presented at the contest “How to translate a logic into another
one?” of the 2nd World Congress and School on Universal Logic in Xi’an, China,
in August 2007, where it won the contest prize.

Joseph Goguen. Joseph Goguen, with whom we co-authored the precursor
paper “What is a logic?” [40], died on July 3rd, 2006. The scientific community
lost a great scientist, well-known for his pioneering research in many diverse areas.
We lost also a close friend and teacher. Shortly before his death, we were priv-
ileged to take part in the Festschrift colloquium for his 65th birthday [19]. His
most important message to the participants was a commitment to solidarity and
cooperation.
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2. Entailment Relations

The most basic ingredient of a logic is an ‘entailment’ relation between sentences.
In the literature this is sometimes called a ‘consequence’ relation. The notion of
(abstract) consequence relation has been formalised by Gentzen, Tarski and Scott
[22, 45, 2].1

Definition 2.1. An entailment relation (abbreviated: ER) S = (S,`) on a set of
sentences S is a binary relation ` ⊆ P(S)× S between sets of sentences and
sentences such that

1. reflexivity: for any ϕ ∈ S, {ϕ} ` ϕ,
2. monotonicity: if Γ ` ϕ and Γ′ ⊇ Γ then Γ′ ` ϕ,
3. transitivity: if Γ ` ϕi, for i ∈ I, and Γ ∪ {ϕi | i ∈ I} ` ψ, then Γ ` ψ.

An ER is said to be compact when for each E ` ϕ there exists a finite subset
E0 ⊆ E such that E0 ` ϕ.

A generalisation by Avron [2] also allows for inclusion of substructural (e.g.
non-monotonic) logics. For simplicity, we here restrict ourselves to Tarskian en-
tailment relations, i.e. those satisfying the above axioms. However, note that sub-
structural logics can be encoded into Tarskian entailment relations by considering
whole sequents as sentences. Entailment between such sequents is monotone.

Example 2.2. Intuitionistic propositional logic (IPL) has sentences given by the
following grammar

ϕ ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |ϕ1 ∨ ϕ2 |ϕ1 → ϕ2 | > |⊥
where p denotes propositional variables, taken from a countable supply. The en-
tailment relation is the minimal relation satisfying the properties listed in Table 1.

Classical propositional logic (CPL) is defined like IPL, except that the prop-
erty ¬¬ϕ ` ϕ is added.

The study of translations between entailment relations has a long history. The
origins date back the 1920ies and 1930ies, when Kolmogorov, Glivenko, Gödel,
Gentzen and others studied translations among IPL, CPL and propositional
modal logic [32, 23, 24, 25, 21], see [43, 16, 10, 17] for surveys and discussion.
In these works, “logic” is mostly identified with “entailment relation”. The point
of the present work is to take a broader view, which will be detailed below.

Definition 2.3. Given two ERs S1 = (S1,`1) and S2 = (S2,`2), a morphism of
entailment relations α : S1−→S2, ER-morphism for short, is a function α : S1−→
S2 such that

Γ `1 ϕ implies α(Γ) `2 α(ϕ)
If also the converse implication holds, the ER morphism is said to be conservative.2

1More general notions work with multisets instead of sets of premises [2]. Here, we use the notion

that seems to be most natural and simplest.
2Prawitz and Malmnäs [43] also use a more permissive notion of conservative translation where
the equivalence is only required for Γ = ∅.
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ER morphisms compose and there are obvious identity ER morphisms; hence,
ERs and ER morphisms form a category ER. See [17] for properties of this category
and its subcategory of conservative morphisms.

Example 2.4. Kolmogorov’s translation K of classical propositional logic (CPL)
into intuitionistic propositional logic (IPL) [32] adds a double-negation for each
subsentence:

K(p) = ¬¬p for each propositional symbol p
K(¬ϕ) = ¬K(ϕ)
K(ϕ1 ∧ ϕ2) = ¬¬(K(ϕ1) ∧K(ϕ2))
K(ϕ1 ∨ ϕ2) = ¬¬(K(ϕ1) ∨K(ϕ2))
K(ϕ1 → ϕ2) = ¬¬(K(ϕ1)→ K(ϕ2))
K(>) = >
K(⊥) = ⊥

This is a conservative ER morphism [43]. Below we will develop our own proof of
this result (see Cor. 3.13).

ERs can be alternatively described as closure operators [8, 12]:

Definition 2.5. A closure operator on a set S is a map C : P(S) −→ P(S) such
that for Γ,∆ ⊆ S,
• Γ ⊆ C(Γ)
• Γ ⊆ ∆ implies C(Γ) ⊆ C(∆)
• C(C(Γ)) ⊆ C(Γ).

Given closure operators (S1, C1) and (S2, C2), a function α : S1−→S2 is said to
be continuous, if α(C1(Γ)) ⊆ C2(α(Γ)) for any Γ ⊆ S1.

Proposition 2.6. ER is isomorphic to the category of closure operators and contin-
uous functions.

Proof. Given an ER, define a closure operator by C(Γ) = {ϕ |Γ ` ϕ}. Conversely,
given a closure operator, obtain an ER by defining Γ ` ϕ iff ϕ ∈ C(Γ). Morphisms
are left untouched. This is easily shown to be the desired isomorphism. �

2.1. Logical connectives

A common requirement on translations (e.g. adopted by Wojcicki [48] and made
explicit by Epstein and Krajewski [16]) is that they are schematic or grammatical
[16], which means that they preserve the algebraic structure of the sentences —
in other words, they are defined inductively over the structure of the sentences in
the source ER. However, this preservation requirement rules out e.g. the standard
translation of modal logic to first-order logic, which adds a quantifier at the very
top. [16] lists other translations that are not schematic. Moreover, since we consider
abstract ERs, it is not clear from the outset what the algebraic structure of the
sentences is.

Hence, rather than treating logical connectives as given by an algebraic struc-
ture that must be preserved, it seems to be more promising to characterise logical
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connective defining property
proof-theoretic conjunction ∧ Γ ` ϕ ∧ ψ iff Γ ` ϕ and Γ ` ψ
proof-theoretic disjunction ∨ ϕ ∨ ψ,Γ ` χ iff ϕ,Γ ` χ and ψ,Γ ` χ
proof-theoretic implication → Γ, ϕ ` ψ iff Γ ` ϕ→ ψ
proof-theoretic truth > Γ ` >
proof-theoretic falsum ⊥ ⊥ ` ϕ
proof-theoretic negation ¬ Γ, ϕ ` ⊥ iff Γ ` ¬ϕ

Table 1. Properties of proof-theoretic connectives

connectives in terms of their properties. This is well-known in proof theory; we
adapt the standard definitions from [34], see also [40]. Note that our definition
of negation also covers intuitionistic negation (unlike the treatment in [2], which
assumes ¬¬-elimination).

These properties characterise connectives essentially by their proof-theoretic
behaviour; they mostly directly correspond to proof rules. Below, we will also
introduce semantic connectives. An ER is said to have a proof-theoretic connective
(or that the connective is present in it) if it is possible to define a corresponding
operation on sentences with the properties specified in Table 1. For example, both
IPL and CPL have all proof-theoretic connectives. We will see below that, by
contrast, IPL has only rather few model-theoretic connectives.

Thus prepared, we can recover Wojcicki’s notion of schematic translation at
the level of abstract ERs as follows:

Definition 2.7. Given an ER S = (S,`), let ΣS be the (single-sorted) algebraic
signature that has the elements of S, i.e. all sentences of S, as constants and all
the proof-theoretic connectives present in S as operation symbols (where each op-
eration symbol inherits its arity from the connective). By interpreting sentences as
themselves and operation symbols as the corresponding proof-theoretic connectives,
we obtain a ΣS-algebra with carrier set S, which by abuse of notation we will also
denote by S.

Fix a set X = {X1, X2, . . .} of (schematic) variables. A propositionally
schematic sentence is a term Φ ∈ TΣS (X) over ΣS with variables from X. Any
valuation ν : X−→S is a substitution of sentences for schematic variables; it can
be uniquely extended to ν# : TΣS (X)−→S. Let Φ[ν] = ν#(Φ) denote the result of
applying substitution ν to schematic sentence Φ.

An ER morphism α : S1−→S2 is called propositionally schematic if for each
n-ary connective c present in S1, there is a propositionally schematic sentence Φc
in schematic variables X1, . . . , Xn in S2 such that for all sentences ϕ1, . . . , ϕn ∈ S1

α(c(ϕ1, . . . , ϕn)) à Φc[α(ϕ1)/X1, . . . , α(ϕn)/Xn]
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Here, à means entailment in both directions. Most of the ER morphisms
in this paper will be propositionally schematic, but recall that there are impor-
tant exceptions. The above definition does not require sentences to be inductively
defined; they could also be defined in a non-well-founded way.

We will now turn to preservation properties.

Definition 2.8. An ER-morphism α : S1 −→ S2 is said to transport a connective
if the presence of the connective in S1 implies its presence in S2. The converse
implication is called reflection of connectives. If two ERs have a connective c, the
property that α(c(ϕ1, . . . , ϕn)) à c(α(ϕ1), . . . , α(ϕn)) is called preservation of the
connective.

It is straightforward to prove the following:

Proposition 2.9. Let α : S1−→S2 be a conservative ER-morphism.
1. It reflects all those proof-theoretic connectives under which α(S1) is closed.
2. If in addition α is also surjective, then it transports and reflects all proof-

theoretic connectives, and preserves all existing proof-theoretic connectives.

2.2. Consistency Strength

A theory Γ ⊆ S is consistent if Γ 6` ϕ for some ϕ, otherwise, it is inconsistent.3

An ER is consistent if there is at least one consistent theory. Perhaps the most
famous inconsistent logic is Frege’s Begriffsschrift, a higher-order logic amenable
to Russell’s paradox.

The notion of consistency strength is usually formulated as follows:

Definition 2.10. If the consistency of a theory Γ1 (or an ER S1) implies the con-
sistency of a theory Γ2 (or an ER S2), the former is said to have consistency
strength greater or equal to that of the latter. Formally, we denote this by Γ1 � Γ2

(or S1 � S2).

Example 2.11. By Gödel’s famous result, the first-order theories ZF and ZFC
have equal consistency strength [26].

An ER morphism can transport consistency strength in both directions, de-
pending on suitable conditions (generalising results in [17]):

Proposition 2.12. Let α : S1−→S2 be an ER morphism.
1. Let α be conservative. Then it transports consistency, i.e. for any theory Γ,

we have Γ � α(Γ), and S1 � S2.
2. Let α be surjective. Then it reflects consistency, i.e. Γ � α(Γ), and S1 � S2.
3. Let α preserve proof-theoretic falsum (which assumes that both S1 and S2

have proof-theoretic falsum). Then Γ � α(Γ), and S1 � S2.

Proof. 1. and 2. are straightforward. For 3., note that in presence of proof-theoretic
falsum, consistency of Γ is equivalent to Γ 6` ⊥, and consistency of an ER is
equivalent to ∅ 6` ⊥. �

3Inconsistent theories are called trivial in [10].
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A non-conservative, non-surjective ER morphism (even if it is an inclusion)
need neither transport nor reflect consistency, as the following counterexamples
show:

Example 2.13. Consider classical propositional logic CPL (Ex. 2.2), which has an
explicit truth, and let T be the restriction of CPL to truth as the only sentence.
Then T is trivially inconsistent, but it has a (non-surjective) inclusion4 into CPL,
which is consistent. This shows that such inclusions do not need to reflect consis-
tency. They do not need to preserve consistency either: consider the inclusion of
CPL into the logic which has sentences like CPL, but an entailment relation that
is the universal relation.5

2.3. Expressiveness

Consistency strength should not be equated with expressiveness, as Humberstone
[30, 31] argues convincingly. Indeed, Humberstone shows that under rather mild
conditions, increasing logical strength coincides with decreasing discriminatory
strength (and the latter is closely related to expressiveness). Unfortunately, we
cannot adopt Humberstone’s notion of discriminatory strength here, because it
is based on a notion of substitution, which we cannot expect to be available for
arbitrary ERs (for example, it could very well make sense to consider ERs with
graphs as sentences). Instead, we take a different measure of expressiveness: the
more logics are embeddable into a logic, the more expressive it is. This leads to
the following definition (cf. also [33]):

Definition 2.14. S1 ≤ER S2 iff there is some conservative α : S1−→S2.

S1 ≤ER S2 is read as “S1 is at most as expressive as S2” or “S2 is at least as
expressive as S1”.

For example, Kolmogorov’s double negation translation (Ex. 2.4) shows that
CPL ≤ER IPL.

Note that ≤ER is only a pre-order, not a partial order. S1 and S2 are equally
expressive (S1 ≡ER S2), if both S1 ≤ER S2 and S2 ≤ER S1. S1 is strictly less
expressive than S2 (S1 <

ER S2), if S1 ≤ER S2 but not S1 ≡ER S2.
It might contradict one’s intuitions that a logic with a stronger axiomatisation

is generally less expressive than a logic with a weaker axiomatisation. For example,
Humberstone [30] shows that the modal logic KT is strictly less expressive than
K. Note though that this is based on a stronger notion of ER morphism than
we use: namely, propositional connectives have to be preserved — without this
requirement, it is not clear whether KT is strictly less expressive than K. A similar
example arises when comparing PDL|= generated by the semantic entailment of
basic propositional dynamic logic [5]. We now briefly introduce this logic.

4If we want to take models into account, we can let them be the same for both logics and define

the inclusion to leave them untouched.
5The universal relation contains all pairs of elements. When taking models into account, we can
use the empty model class for this logic.
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Definition 2.15. The sentences of propositional dynamic logic PDL|= are generated
by the grammar for CPL, extended by

ϕ ::= . . . | [π]ϕ

where programs π are generated from a set P of atomic programs by

π ::= P |π1 ∪ π2 |π1;π2 |π∗

A regular Kripke model (W,V,R) for PDL|= consists of a set of worlds W , a map
V from propositional variables to subsets of W , and a family (Rπ) indexed by
programs π, such that each Rπ is a binary transition relation on W , subject to the
following regularity conditions:
• Rπ1∪π2 = Rπ1 ∪Rπ2 ,
• Rπ1;π2 = Rπ1 ◦Rπ2 ,
• Rπ∗ = (Rπ)∗, the reflexive-transitive closure of Rπ.

Satisfaction of a sentence in a world w is defined inductively:
• w `̀ p if w ∈ V (p),
• w `̀ [π]ϕ if for all v with wRπv, v `̀ ϕ
• propositional connectives are handled as usual.

Define an ER out of this by letting Γ ` ϕ if for all models (W,V,R) and all worlds
w ∈W , if w `̀ γ for all γ ∈ Γ, then w `̀ ϕ.

Definition 2.16. PDL|=-Triv extends PDL|= by adding, for any program π and
sentence ϕ, the axiom

[π]ϕ↔ ϕ

Equivalently, PDL|=-Triv may be obtained by restricting attention in PDL|=

to those models where all transition relations are identities and all propositions
are interpreted in the same way in all worlds, which means that PDL|=-Triv is
essentially the same logic as CPL.

Proposition 2.17. PDL|= is strictly more expressive than PDL|=-Triv: PDL|= >ER

PDL|=-Triv. (By the above remark, thus also PDL|= >ER CPL.)

Proof. PDL|=-Triv can be conservatively mapped to PDL|= by erasing all modal-
ities. However, there is no conservative ER morphism in the converse direction:
suppose there were one, say, α : PDL|= → PDL|=-Triv. Since PDL|= is not com-
pact [5], there is an infinite set of sentences Γ (w.l.o.g. assumed to be pairwise
logically inequivalent) and a sentence ϕ such that Γ ` ϕ, but for no finite subset
Γ′ ⊆ Γ, Γ′ ` ϕ. This situation translates along α, contradicting compactness of
PDL|=-Triv. �

Comparing PDL|= and PDL|=-Triv, we note:
• PDL|= (obviously) has a weaker axiomatisation than PDL|=-Triv.
• PDL|= (obviously) has less consistency strength than PDL|=-Triv, i.e. PDL|= �

PDL|=-Triv.
• PDL|= is strictly more expressive than PDL|=-Triv.
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This is in accordance with Humberstone’s [31] observation that weaker logics gen-
erally have more flexibility in interpretation of symbols, and therefore more dis-
criminatory strength, that is, an increased ability to distinguish between different
concepts — and this means more expressiveness. Here, in PDL|=-Triv we are
forced to identify [π]ϕ with ϕ, so that the modalities do not introduce anything
new. Hence, a stronger axiomatisation may constrain the symbols so much that
fewer things can be expressed.

Indeed, this contravariance between expressiveness and consistency strength
can be made formal: by Prop. 2.12 we immediately have

Proposition 2.18. S1 ≥ER S2 implies S1 � S2.

However, we cannot infer the converse, that logics with weaker axiomati-
sation are automatically more expressive. Humberstone [30] has the example of
the modal logics L and K. L has a weaker axiomatisation than K, which means
that there is a (non-conservative) ER morphism L → K, but this does not imply
the existence of a conservative morphism in the other direction.6 This shows that
moving to a weaker axiomatisation not always leads to preservation or increase of
discriminatory strength and expressiveness.

Let us now go to one extreme. Inconsistent logics are inexpressive, because
they do not have any discriminatory strength at all:

Proposition 2.19. If S1 is inconsistent and S2 has a proof-theoretic truth, then
S1 ≤ER S2.

Proof. Map any sentence in S1 to > in S2. �

How does expressiveness interact with the presence of logical connectives?
The extra conditions needed in Prop. 2.9 make it no surprise that a more expressive
ER may have fewer connectives then a less expressive one: consider e.g. proposi-
tional logic with just conjunction embedded into a variant of Horn logic consisting
of implications between conjunctions — the former logic has proof-theoretic con-
junction, while the latter has not. Another example that we encountered is many-
sorted first-order logic embedded into its extension with second-order induction
axioms [41] — the latter are not closed under standard unary and binary logical
connectives at all.

In general, we cannot expect that equally expressive ERs have the same con-
nectives. This only holds under additional requirements, namely those of Prop. 2.9.
Indeed, equivalent ERs have the same connectives. The notion of equivalence on
ERs is obtained by specialising the more general notion for logics in [40], the notion
is very similar to equipollence in [9] or to a more specialised notion (corresponding
to schematic translations) used in the study of algebraisation of logics [6].

6Again note that Humberstone uses a stronger notion of ER morphism. Hence, it is unclear
whether there is a conservative ER morphism from K to L.
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Definition 2.20. Two ERs S1 and S2 are equivalent, if there are conservative maps
α1 : S1 −→ S2 and α2 : S2 −→ S1 such that ϕ à α2(α1(ϕ)) and ψ à α1(α2(ψ)).
(Here, à means entailment in both directions.)

Proposition 2.21. Equivalent ERs have the same proof-theoretic connectives.

Proof. Translate the constituent sentences to the other entailment relation, apply
the connective there, and then translate it back. �

2.4. Theoroidal morphisms

When encoding an ER into another one, e.g. for the purpose of re-using a theorem
prover, we can work with a more general definition of ER morphism, allowing the
target sentences to be considered in the context of a base theory.

Definition 2.22. Given two ERs S1 = (S1,`1) and S2 = (S2,`2), a simple theo-
roidal [29] ER morphism (α,∆): S1−→S2 is a function α : S1−→S2 together with
a theory ∆ ⊆ S2 such that

Γ `1 ϕ implies ∆ ∪ α(Γ) `2 α(ϕ)

See [29, 38, 39] for further motivation and examples. Simple theoroidal mor-
phisms are an abbreviation rather than a new concept since they are special cases
of ordinary morphisms S1 → S∆

2 , where S∆
2 = (S2,`∆) is given by Γ `∆ ϕ iff

Γ∪∆ `2 ϕ. (Ordinary ER morphisms are sometimes called plain in order to stress
the distinction from simple theoroidal ones.)

The definitions of conservative morphism and expressiveness carry over. For
the latter, we use the notation ≤ER-th. Before providing an example using simple
theoroidal ER morphisms, we define propositional Horn Clause Logic:

Definition 2.23. Propositional Horn Clause Logic PHCL has sentences

p1 ∧ · · · ∧ pn → p

where p, p1, . . . , pn are propositional variables (taken from a countable supply). (In
the case of n = 0, the sentence is written as p.) Entailment is generated by the
following rules:

(refl) p1 ∧ · · · ∧ pn → pi

(weak-ctr)
p1 ∧ · · · ∧ pn → p and {p1, . . . , pn} ⊆ {q1, . . . , qm}

q1 ∧ · · · ∧ qm → p

(cut)
p1 ∧ · · · ∧ pn → qi and q1 ∧ · · · ∧ qm → q

p1 · · · ∧ pn ∧ q1 ∧ · · · ∧ qi−1 ∧ qi+1 ∧ · · · ∧ qm → q

Proposition 2.24. The entailment relation of PHCL enjoys a deduction theorem:
if

Γ ∪ {q1, . . . , qm} ` p1 ∧ · · · ∧ pn → p,

then
Γ ` q1 ∧ . . . ∧ qm ∧ p1 ∧ · · · ∧ pn → p.
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(where p, p1, . . . , pn, q1, . . . , qm are propositional variables).

Proof. By induction over m, we can reduce the proof to the case m = 1. By
induction over the derivations, we transform any derivation of Γ∪{q1} ` p1∧· · ·∧
pn → p to a derivation of Γ ` q1 ∧ p1 ∧ · · · ∧ pn → p. Every use of the premise q1

in the derivation is replaced with q1 → q1 obtained by (refl). Rule (weak-ctr) can
be used to handle the cases of multiple or no uses of q1. �

Call an ER countable if its set of sentences is countable.

Proposition 2.25. The entailment relation of PHCL has maximal expressiveness
among compact countable ERs (when admitting simple theoroidal ER morphisms).

Proof. Let S be any compact ER. We want to construct a conservative (α,∆): S−→
PHCL. For each sentence ϕ, we introduce a propositional variable which we de-
note by α(ϕ). ∆ consist of all sentences α(ϕ1) ∧ . . . ∧ α(ϕn) → α(ϕ) such that
{ϕ1, . . . , ϕn} ` ϕ in S. Using the properties of ERs, it is easy to show that ∆
is closed under rules (refl), (weak-ctr) and (cut) above. Hence, ∆ is closed under
entailment, i.e., if ∆ ` γ in PHCL then γ ∈ ∆.

We first show that (α,∆) is a simple theoroidal ER morphism. Let Γ ` ϕ
in S. By compactness there exists {ϕ1, . . . , ϕn} ⊆ Γ such that {ϕ1, . . . , ϕn} `
ϕ. Hence α(ϕ1) ∧ . . . ∧ α(ϕn) → α(ϕ) ∈ ∆ and since {α(ϕ1) ∧ . . . ∧ α(ϕn) →
α(ϕ), α(ϕ1), . . . , α(ϕn)} ` α(ϕ) in PHCL it follows that ∆ ∪ α(Γ) ` α(ϕ).

Next we show that (α,∆) is conservative. Let ∆∪α(Γ) ` α(ϕ). By compact-
ness of the entailment relation of PHCL, there exists {ϕ1, . . . , ϕn} ⊆ Γ such that
∆ ∪ {α(ϕ1), . . . , α(ϕn)} ` α(ϕ). By Prop. 2.24, we obtain that ∆ ` α(ϕ1) ∧ . . . ∧
α(ϕn)→ α(ϕ). Since ∆ is closed under entailment, we get α(ϕ1) ∧ . . . ∧ α(ϕn)→
α(ϕ) ∈ ∆ which implies that {ϕ1, . . . , ϕn} ` ϕ and hence Γ ` ϕ.

Thus (α,∆) is a conservative simple theoroidal ER morphism, showing that
S ≤ER-th PHCL. �

Corollary 2.26. Let CPLω be CPL with infinitary countable conjunctions (with `
generated by the rules for CPL plus the obvious infinitary rules for conjunction).
Every compact countable ER can be conservatively embedded into CPLω, using a
plain ER morphism.

Proof. PHCL obviously can be conservatively embedded into CPL, and this in
turn into CPLω. The results then follows by using the translation of Prop. 2.25,
followed by ϕ 7→ ϕ∧

∧
∆ (where

∧
∆ is the conjunction of all elements of ∆). �

3. Model Theory

While entailment relations capture entailment, the so-called ‘rooms’ (in the ter-
minology of [27]) capture the Tarskian notion of satisfaction of a sentence in a
model:

Definition 3.1. A room R = (S,M, |=) consists of
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• a set of S of sentences,
• a class7 M of models, and
• a binary relation |= ⊆M× S, called the satisfaction relation.

A theory Γ ⊆ S is satisfiable, if it has a model M (i.e., a model M ∈M such
that M |= ϕ for ϕ ∈ Γ). Semantic entailment in a room is defined as usual: for
Γ ⊆ S and ϕ ∈ S, we write Γ |= ϕ, if all models satisfying all sentences in Γ also
satisfy ϕ.

The following result is folklore [2]:

Proposition 3.2. Semantic entailment |= is a Tarskian entailment relation.

Definition 3.3. A logic room (S,M, |=,`) consists of a room (S,M, |=) and an
entailment relation (S,`). A logic room is sound, if

Γ ` ϕ implies Γ |= ϕ,

and is complete, if the converse holds. It is weakly complete, if ∅ |= ϕ implies
∅ ` ϕ.

Tarskian semantics gains much of its importance from the fact that it allows
definitions of ERs that are often easier to grasp and closer to intuitive concepts
than definitions of ERs using proof rules. For example, we can equip the entailment
relation CPL (classical propositional logic) with a semantics by taking valuations
of the propositional variables into {T, F} as models.8 Then, the usual sentences
built by Boolean connectives (let us here assume that the only connectives are
implication and negation) can be given the standard truth-table semantics, leading
to a room, which — by abuse of notation — we also write as CPL. There is
also an alternative semantics for the ER CPL using valuations into a Boolean
algebra; we denote the resulting room by CPL-BA.9 Likewise, the ER IPL has
two different semantics that have become standard: IPL-HA uses valuations into
Heyting algebras, whereas IPL-K uses Kripke models.

Let WPL denote a variant of classical logic [4], where the sentences are the
same as in CPL, but the models are valuations of all sentences that respect the
usual truth table semantics of conjunction, disjunction, and implication, but only
one half of the condition for negations:

M(ϕ ∧ ψ) = T iff (M(ϕ) = T and M(ψ) = T )
M(ϕ ∨ ψ) = T iff (M(ϕ) = T or M(ψ) = T )
M(ϕ→ ψ) = T iff (M(ϕ) = F or M(ψ) = T )
M(¬ϕ) = F if M(ϕ) = T

Using these different semantics of the same language, we now get two different
Tarskian entailment relations, |=CPL and |=WPL. In order to relate these seman-
tically, we need to connect rooms. This is done via corridors:

7If we want to take model morphisms into account, a category of models should be used here.
However, this would make no essential difference for the developments in this paper.
8A (unique) model morphism between two models exists if the values of variables change only

from F to T , but not vice versa.
9For first-order logic, this is called “Boolean-valued models”.
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Definition 3.4. A corridor (α, β) : (S1,M1, |=1)−→(S2,M2, |=2) consists of
• a sentence translation function α : S1−→S2, and
• a model reduction function10 β : M2−→M1, such that

M2 |=2 α(ϕ1) if and only if β(M2) |=1 ϕ1

holds for each M2 ∈M2 and each ϕ1 ∈ S1 ( satisfaction condition).

Since corridors compose and there are obvious identity corridors, rooms and
corridors form a category Room.

If β(M2) = M1, M1 is called the β-reduct of M2, and M2 is called a β-
expansion of M1.

A simple theoroidal corridor (α, β,∆) is defined by analogy with a simple
theoroidal ER morphism — ∆ is a set of target sentences and β needs to be
defined only for those models that satisfy ∆. Simple theoroidal corridors are an
abbreviation rather than a new concept, since they are just special cases of ordinary
corridors.11

Proposition 3.5. The following are corridors:
1. a corridor from WPL to CPL. For sentences, it is the identity. A CPL-

model is translated to a WPL-model by extending the valuation of the propo-
sitional variables to all sentences in the classical way.

2. a corridor from CPL to WPL. Sentence are mapped inductively:
• α(p) = p, for propositional variables p,
• α(¬ϕ) = α(ϕ)→ ¬α(ϕ),
• α(ϕ → ψ) = α(ϕ) → α(ψ), α(ϕ ∧ ψ) = α(ϕ) ∧ α(ψ), and α(ϕ ∨ ψ) =
α(ϕ) ∨ α(ψ).

Models are translated by retaining the interpretation of all propositional vari-
ables and forgetting the rest.

Proof. 1. Let (id, β) be the above defined corridor WPL→ CPL. For any sentence
ϕ and any model M , by the definition of the satisfaction relation in CPL, we have
that M |=CPL ϕ if and only if β(M)(ϕ) = T . But β(M)(ϕ) = T means precisely
β(M) |=WPL ϕ. Hence we have the satisfaction condition for the corridor (id, β).

2. Let (α, β) denote the corridor CPL→WPL defined in the statement of
the proposition. We prove by induction on the structure of the sentence ϕ that for
any WPL-model M we have

M |=WPL α(ϕ) if and only if β(M) |=CPL ϕ

The base case, when ϕ is a propositional variable, follows immediately from the
definition of β(M). The induction steps for →, ∧, and ∨ follow immediately by
the induction hypothesis and because α preserves these connectives. The really
interesting induction step is for ¬.

10If model morphisms are taken into account, then a functor.
11Indeed, a simple theoroidal corridor (α, β,∆) : (S,M, |=)→ (S,M′, |=′) is an ordinary corri-

dor (S,M, |=) → (S, (M′)∆, (|=′)∆), where (M′)∆ = {M ∈ M′ | M |=′ ∆} and (|=′)∆) is the
restriction of |=′.
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Assume that M |=WPL α(ϕ) iff β(M) |=CPL ϕ. Then because of the semantic
definition of ¬ in CPL we have that β(M) |=CPL ¬ϕ iff β(M) 6|=CPL ϕ. By the
induction hypothesis we have that β(M) 6|=CPL ϕ iff M 6|=WPL α(ϕ) which means
M(α(ϕ)) = F . Now the conclusion follows by noticing that M(α(ϕ)) = F is
equivalent to M(α(ϕ)→ ¬α(ϕ)) = T . The implication from the left to the right is
immediate. For the converse implication it is enough to notice that if M(α(ϕ)) = T
then M(α(ϕ)→ ¬α(ϕ)) = F . �

Definition 3.6. A corridor is model-expansive if its model translation is surjective.

The crucial difference between the two above corridors is that the second one
is model-expansive, while the first one is not.

Proposition 3.7. A corridor leads to an ER morphism between the induced semantic
entailment relations of the rooms. If the corridor is model-expansive, then the ER
morphism is conservative.

Proof. Consider a corridor (α, β) : (S1,M1, |=1) → (S2,M2, |=2). We have to
prove that Γ |=1 ϕ implies α(Γ) |=2 α(ϕ). For this consider a model M2 ∈ M2

such that M2 |=2 α(Γ). By the satisfaction condition for the corridor we have that
β(M2) |=1 Γ and by the hypothesis that β(M2) |=1 ϕ. By the satisfaction condition
for the corridor, this time in the other direction, we have that M2 |=2 α(ϕ), which
completes the proof of the ER morphism property.

Now let us assume that (α, β) is model expansive. We prove that the induced
ER morphism is conservative. Suppose α(Γ) |=2 α(ϕ). We have to show that
Γ |=1 ϕ. Let M1 ∈ M1 such that M1 |= Γ. By the model expansive property for
(α, β), there exists M2 ∈M2 such that M1 = β(M2). By the satisfaction condition
M2 |=2 α(Γ) and, by the hypothesis, M2 |=2 α(ϕ). By the satisfaction condition
again, but in the other direction, we obtain M1 |= ϕ. �

Corollary 3.8. By the second corridor of Prop. 3.5, we have that CPL ≤ER WPL.

The first corridor of Prop. 3.5 only gives us a non-conservative morphism at
the ER level.

3.1. Expressiveness, Sublogics and Paradoxes

The following concept is the model-theoretic analogue of Def. 2.14.

Definition 3.9. R1 ≤SAT R2 iff there is a model-expansive corridor (α, β) : R1−→
R2.

R1 ≤SAT R2 is read as “R1 is at most as expressive as R2” or “R2 is at
least as expressive as R1”. We also define ≡SAT and <SAT in the same way as
for ERs, and also the simple theoroidal variants. The following corollary expresses
the conclusion of Prop. 3.7 with the new notions.

Corollary 3.10. If R1 ≤SAT R2 then S1 ≤ER S2, where S1 and S2 are ERs induced
by corridors R1 and R2, respectively. Consequently, S1 � S2.
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The corridor discussed in the previous section shows that CPL ≤SAT WPL,
Béziau [4] considers the situation that a weaker logic is more expressive than a
stronger one to be paradoxical.12 Indeed, the situation

stronger logic
less expressive

conservative encoding
//

weaker logic
more expressive

non-conservative inclusionoo

seems to be quite natural and typical. The conservative ER morphism tells us that
the weaker logic both has more consistency strength and is more expressive.

What does the non-conservative inclusion tell us? If its sentence translation is
surjective, by Prop. 2.12, it reflects consistency. Altogether this means that both
logics have equal consistency strength. However, there is no consequence in the
context of expressiveness — expressiveness is defined in terms of conservative ER
morphisms.

To sum up, Béziau considers the situation that a sublogic can be strictly more
expressive than its superlogic to be paradoxical. Intuitively, one would expect a
sublogic to be less expressive. However, we think that the problem is rather hidden
in the concept of sublogic: in our view, a sublogic inclusion should be an injective
conservative ER morphism. If we adopt this convention, then there is no paradox:
the expressivity of any sublogic does not exceed the expressivity of its super logic.
Concerning the example, the point is that the natural inclusion of WPL into CPL
is not a sublogic morphism, because it is not conservative!

Note, however, there is a simple theoroidal model expansive corridor from
WPL to CPL.

Proposition 3.11. WPL ≤SAT-th CPL.

Proof. The simple theoroidal corridor (α, β,∆) : WPL → CPL is defined as
follows:

1. α maps injectively the sentences of WPL to propositional variables in CPL.
2. ∆ axiomatises the propositional variables from the image of α according to

the semantics of WPL, e.g.
• α(ϕ→ ψ)↔ (α(ϕ)→ α(ψ)),
• α(ϕ ∧ ψ)↔ (α(ϕ) ∧ α(ψ)),
• α(ϕ ∨ ψ)↔ (α(ϕ) ∨ α(ψ)), and
• α(ϕ)→ ¬α(¬ϕ).

3. For any CPL-model M satisfying ∆, β(M)(ϕ) is defined as M(α(ϕ)) for any
sentence ϕ.

Note that the definition of β gives precisely the satisfaction condition for this
corridor. Moreover, the corridor is obviously model expansive. �

Let us now come back to the relationship between intuitionistic and classical
logic. Epstein [16] argues that there is no semantically faithful translation from
classical to intuitionistic logic, at least for the standard semantics (and for his much

12The following considerations apply both to entailment relations and to rooms.
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more specialised notion of semantic translation). Moreover, he asks whether there
is a semantically faithful translation for other semantics. We answer this question
positively: if we equip propositional logic with Boolean algebra semantics, there is
a semantic translation:

Theorem 3.12. CPL-BA ≤SAT IPL-HA.

Proof. Assuming the same set P of propositional symbols, recall that CPL-BA,
IPL-HA, CPL and IPL, share the same sentences. We construct a model expan-
sive corridor (K,β) : CPL-BA→ IPL-HA by extending Kolmogorov’s transla-
tion K of Ex. 2.4 with the following translation β on the models.

For each valuation M : P → A of the propositional symbols into a Heyting
algebra, β(M) = rA ◦M where rA : A → R(A) is the canonical mapping to the
Boolean algebra R(A) of the regular elements of A. Recall that a ∈ A is regular
when a = ¬¬a. From the theory of Heyting algebras [44, 7] we know that R(A) is
a Boolean algebra with

• a ∩ b = a ∧ b,
• a ∪ b = ¬¬(a ∨ b),
• a→′ b = a→ b,
• ¬′a = ¬a,
• ⊥′ = ⊥ and >′ = >,

where ∩,∪,→′,¬′,⊥′,>′ and ∧,∨,→,¬,⊥,>, respectively, are the conjunctions,
disjunctions, implications, negations, bottom, and top, inR(A) andA, respectively.

Note that since β(A) = A for any Boolean algebra A, we have that β is
surjective, hence our corridor will be model expansive.

Now all we have to show is the satisfaction condition for our corridor. Let ϕ
be any sentence and let M : P → A be any valuation of the propositional symbols
into a Heyting algebra. We have to show that

M |=IPL−HA K(ϕ) if and only if rA ◦M |=CPL−BA ϕ

This is achieved by showing that

M(K(ϕ)) = (rA ◦M)[ϕ]

where by M(K(ϕ)) we denote the evaluation of K(ϕ) determined by M in the
Heyting algebra A and by (rA ◦M)[ϕ] we denote the evaluation of ϕ determined
by rA◦M in the Boolean algebra R(A) of the regular elements of A. It is important
to note here that in general (rA ◦M)[ϕ] 6= rA(M(ϕ)).

We prove that M(K(ϕ)) = (rA ◦M)[ϕ] by induction on the structure of ϕ
as follows.

– For the base case we consider any propositional symbol p. We have that
M(K(p)) = M(¬¬p) = ¬¬M(p) = rA(M(p)) = (rA ◦M)[p].

– For the inductive step corresponding to conjunction, we assume the property
holds for ϕ1 and ϕ2 and prove it for ϕ1 ∧ ϕ2. We have that
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M(K(ϕ1 ∧ ϕ2)) = M(¬¬(K(ϕ1) ∧K(ϕ2)))
= ¬¬M(K(ϕ1) ∧K(ϕ2))
= ¬¬(M(K(ϕ1)) ∧M(K(ϕ2)))
= rA(M(K(ϕ1)) ∧M(K(ϕ2))).

Because rA is homomorphism of Heyting algebras (i.e. function which pre-
serves the interpretations of the conjunctions, disjunctions, implications, nega-
tions, bottom and top) [44, 7], we have that rA(M(K(ϕ1)) ∧M(K(ϕ2))) =
rA(M(K(ϕ1))) ∩ rA(M(K(ϕ2))). By the induction hypothesis M(K(ϕi)) =
(rA ◦M)[ϕi] are regular elements, hence rA(M(K(ϕi))) = M(K(ϕi)) and
thus
rA(M(K(ϕ1))) ∩ rA(M(K(ϕ2))) = (rA ◦M)[ϕ1] ∩ (rA ◦M)[ϕ2]

= (rA ◦M)[ϕ1 ∧ ϕ2].
This means that M(K(ϕ1 ∧ ϕ2)) = (rA ◦M)[ϕ1 ∧ ϕ2].

– The induction steps corresponding to disjunction and implications get similar
proofs as for conjunction, based upon the homomorphism property of rA —
we omit the details here. We also omit the (rather trivial) induction steps
corresponding to falsum and truth.

– For the induction step corresponding to negation, we assume the property
holds for ϕ and prove it for ¬ϕ. We have then:

M(K(¬ϕ)) = M(¬K(ϕ)) = ¬M(K(ϕ))
= ¬(rA ◦M)[ϕ]
= ¬′(rA ◦M)[ϕ] = (rA ◦M)[¬ϕ].

�

Corollary 3.13. CPL ≤ER IPL.

Proof. It is enough to show that Kolmogorov’s translation is conservative as ER
morphism. This follows because

1. Γ `CPL ϕ if and only if Γ |=CPL−BA ϕ, and
2. Γ `IPL ϕ if and only if Γ |=IPL−HA ϕ.

The second equivalence represents the completeness theorem for intuitionistic
(propositional) logic with Heyting algebra semantics [44, 20]. The first equivalence
is justified as follows.

Since the sentences and the proof calculus of CPL and CPL-BA coincide,
the implication from the left to the right represents the soundness of the classi-
cal propositional proof calculus with respect to the CPL-BA semantics. This is
exactly the soundness of the intuitionistic proof calculus (valid for any Heyting
algebra) plus the soundness of the ¬¬-elimination rule (valid only for Boolean
algebras).

For the implication from the right to the left, assume that Γ |=CPL−BA ϕ.
Since any valuation of the propositional variables into the Boolean algebra with
two elements is also a model of CPL-BA, we obviously have that Γ |=CPL ϕ. By
the completeness theorem of classical propositional calculus [44, 46] we have that
Γ `CPL ϕ. �
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There is an obvious corridor IPL-HA→ CPL-BA, which is the identity on
sentences and construes each Boolean algebra as a Heyting algebra. However, the
corridor is not model expansive, and the induced ER morphism is not conservative.
An interesting open question is whether a model-expansive corridor IPL-HA →
CPL-BA exists.

3.2. Logical Connectives

Logical connectives can also be defined at the semantic level. A room is said to
have a semantic connective if it is possible to define an operation on sentences
with the specified properties.

connective defining property
semantic disjunction ∨ M |= ϕ ∨ ψ iff M |= ϕ or M |= ψ
semantic conjunction ∧ M |= ϕ ∧ ψ iff M |= ϕ and M |= ψ
semantic implication → M |= ϕ→ ψ iff M |= ϕ implies M |= ψ
semantic negation ¬ M |= ¬ϕ iff M 6|= ϕ
semantic truth > M |= >
semantic falsum ⊥ M 6|= ⊥

While CPL has all the semantic connectives as listed above (indeed, they co-
incide with the proof-theoretic ones), IPL-HA and IPL-K only have conjunction,
truth and falsum.

Using the semantic connectives, the notion of propositionally schematic corri-
dor can be introduced entirely parallel to the definition of propositionally schematic
ER morphism in Def. 2.7.

Definition 3.14. A logic room is Henkin-sound, if every satisfiable theory is con-
sistent, and Henkin-complete, if the converse holds.

We now have a further means for obtaining consistency:

Proposition 3.15. A sound logic room that has a falsum which is both semantic
and proof-theoretic is Henkin-sound. A Henkin-sound logic room with non-empty
model class is consistent.

Proof. Let Γ be satisfiable, thus having a model M . Since M 6|= ⊥, Γ 6|= ⊥. By
soundness, Γ 6` ⊥. Hence, Γ is consistent. The second result follows using the
empty theory. �

Lemma 3.16. In presence of proof-theoretic negation, falsum and truth,

¬⊥ à > and ¬> à ⊥.

Henkin-style completeness proofs rely on the following fact:

Proposition 3.17. If a Henkin-complete room has negation, truth and falsum which
are both proof-theoretic and semantic then it is complete.
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Proof. Let Γ |= ϕ. Then Γ ∪ {¬ϕ} is not satisfiable, hence inconsistent. From
Γ∪{¬ϕ} ` ⊥, we obtain Γ∪{¬ϕ} ` ¬¬⊥ and hence Γ∪{¬⊥} ` ϕ. By Lemma 3.16,
Γ ∪ {>} ` ϕ. By the properties of > and transitivity, we get Γ ` ϕ. �

Proposition 3.18. Consider a corridor (α, β) : (S1,M1, |=1)→ (S2,M2, |=2).
1. If the image of α is closed under semantic connectives and the corridor is

model-expansive then (α, β) reflects semantic connectives.
2. If α is surjective then (α, β) transports semantic connectives.

Proof. 1. We do this proof only for conjunction, for the other connectives the
corresponding proofs are similar. Consider ϕ,ϕ′ ∈ S1. Because the image of α is
closed under conjunction, there exists ψ ∈ S1 such that α(ψ) = α(ϕ) ∧ α(ϕ′). We
have to prove that for any model M1 ∈M1,

M1 |=1 ψ iff (M1 |=1 ϕ and M1 |=1 ϕ′)

Because the corridor is model-expansive there exists M2 ∈ M2 such that M1 =
β(M2). By the satisfaction condition we have:
• M1 |=1 ψ if and only if M2 |=2 α(ψ),
• M1 |=1 ϕ if and only if M2 |=2 α(ϕ), and
• M1 |=1 ϕ′ if and only if M2 |=2 α(ϕ′).

The conclusion follows from the above observations and from the fact that α(ψ) =
α(ϕ) ∧ α(ϕ′) which implies that M2 |=2 α(ψ) iff M2 |=2 α(ϕ) and M2 |=2 α(ϕ′).

2. Again, we do this proof only for conjunction. Consider ϕ2, ϕ
′
2 ∈ S2. Since

α is surjective there are ϕ1, ϕ
′
1 ∈ S1 such that ϕ2 = α(ϕ1) and ϕ′2 = α(ϕ′1). We

show that α(ϕ1 ∧ ϕ′1) is the semantic conjunction of ϕ2 and ϕ′2. For this we have
to show that for any model M2 ∈M2 we have

M2 |=2 α(ϕ1 ∧ ϕ′1) iff (M2 |=2 ϕ2 and M2 |=2 ϕ′2)

which by the satisfaction condition is equivalent to

β(M2) |=1 ϕ1 ∧ ϕ′1 iff (β(M2) |=1 ϕ1 and β(M2) |=1 ϕ′1)

But this holds by the definition of the semantic conjunction. �

A notion of equivalence for rooms is given in [40] — however, here we consider
its weaker version.

Definition 3.19. Two rooms R1 and R2 are weakly equivalent, if there are mor-
phisms (α1, β1) : R1 −→R2 and (α2, β2) : R2 −→R1 such that ϕ |=| α2(α1(ϕ)).
(|=| means semantic entailment in both directions.)

Proposition 3.20. Weakly equivalent rooms have the same semantic connectives.

Proof. This follows by a slightly more general version of the second part of Prop. 3.18
which assumes the surjectivity of α modulo the semantical equivalence |=|, rather
than strict surjectivity. It is easy to note that the proof of this slight generalisation
remains essentially the same as the proof of the second part of Prop. 3.18. Hence
we have that both corridors (α1, β1) and (α2, β2) transport semantic connectives,
which means that the rooms have the same semantic connectives. �
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4. Institutions and Logics

When carefully inspecting the development that we have made so far, one will
recognise that in all the examples, the set of propositional symbols remains un-
specified, but it needs to be a set that is fixed once and for all. If this set is finite, we
are rather inflexible, since the number of propositional variables is bounded. This
may also lead to severe technical difficulties, for example results such as Prop. 3.11
may fail. If it is infinite, both models and axiom sets ∆ used for simple theoroidal
morphisms typically have to be infinite as well, which is unsatisfactory. Hence, it
makes sense to let the alphabet of symbols vary. What happens then when we
change the set of propositional symbols? For example, [2, 3] mention the prop-
erty of an entailment relation to be stable under mappings of the propositional
variables. The concepts of signature (i.e. context of non-logical vocabulary) and
signature morphism allow for generalisation of this property to an abstract logic,
without commitment to any particular nature of the signatures. We hence arrive
at a category of signatures and signature morphisms, which indexes entailment re-
lations and rooms. That is, there are ER morphisms and corridors not only for the
translation between logics, but also for the translation along signature morphisms
within one logic.13

Definition 4.1. An entailment system (or Π-institution) [38, 18] is a functor E : SignE−→
ER. This amounts to:
• a category SignE of signatures and signature morphisms,
• for each signature Σ ∈ |SignE |, an entailment relation (Sen(Σ),`EΣ),
• for each signature morphism σ : Σ1 −→Σ2, a entailment relation morphism

from (SenE(Σ1),`EΣ1
) to (SenE(Σ2),`EΣ2

), that is, a sentence translation map
SenE(Σ1) → SenE(Σ2) preserving `E . By abuse of notation, we will also de-
note this map by σ.

Definition 4.2. An institution14 [28] is a functor I : Sign−→Room. This amounts
to:
• a category SignI of signatures and signature morphisms,
• for each signature Σ ∈ |SignI |, a room (SenI(Σ),ModI(Σ), |=IΣ),
• for each signature morphism σ : Σ1−→Σ2, a corridor

(SenI(Σ1),ModI(Σ1), |=IΣ1
)→ (SenI(Σ2),ModI(Σ2), |=IΣ2

).

This amounts to:
1. a sentence translation map σ : SenI(Σ1)−→SenI(Σ2), and
2. a model reduction map ModI(σ) : ModI(Σ2)−→ModI(Σ1) (sometimes

denoted �σ).

13For this section, we assume the reader is familiar with basic notions from category theory; for

instance, see [1, 35] for introductions to this subject. By way of notation, |C| denotes the class

of objects of a category C, and composition is denoted by “◦”.
14Hence, an institution consists of rooms and corridors, like in real life.
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such that the satisfaction condition holds:

M ′ |=IΣ′ SenI(σ)(ϕ) if and only if ModI(σ)(M ′) |=IΣ ϕ

for each M ′ ∈ |ModI(Σ2)| and ϕ ∈ SenI(Σ1).
When M1 = M2�σ we say that M1 is a σ-reduct of M2 or that M2 is a

σ-expansion of M1.
A logic is an institution together with an entailment system agreeing on their

signature and sentence parts. Usually, a logic is required to be sound, that is,
Γ `Σ ϕ implies Γ |=Σ ϕ. If also the converse holds, the logic is complete. Note
that this coincides with the corresponding properties of the logic rooms for all the
signatures.

We can now define entailment systems and institutions for CPL, CPL-BA,
IPL-HA, IPL-K, WPL and so on. The category of signatures is just the cate-
gory of sets and functions. For each signature Σ, the corresponding ER (respec-
tively: room) is built using propositional variables from the set Σ. This ensures
for instance that models in CPL are finite for finite signatures. For a signature
morphism σ : Σ1 −→ Σ2, sentence translation replaces propositional variables in
the sentences according to σ. A Σ2-model, which is usually a map M2 from Σ2

into some semantic domain D, is reduced to M2�σ = M2 ◦ σ.

4.1. Comorphisms

Relationships between institutions (and entailment systems) are captured math-
ematically by ‘institution morphisms’, of which there are several variants, each
yielding a category under a canonical composition. For the purposes of this paper,
institution comorphisms [29] seem technically most convenient, since they capture
the intuition of coding of one logical system into another one. (The original no-
tion from [28] works well for ‘forgetful’ morphisms from one institution to another
having less structure.)

Definition 4.3. Given entailment systems E and F , an entailment system comor-
phism (Φ, α) : E −→F consists of
• a functor Φ: SignE−→SignF , and
• for each Σ ∈ |SignE |, an ER morphism

αΣ : (SenE(Σ),`EΣ)−→(SenF (Φ(Σ)),`FΦ(Σ))

that is natural in Σ.
Given institutions I and J , an institution comorphism (Φ, α, β) : I−→J consists
of
• a functor Φ: SignI−→SignJ , and
• for each Σ ∈ |SignI |, a corridor

(αΣ, βΣ) : (SenI(Σ),ModI(Σ), |=IΣ)→ (SenJ (Φ(Σ)),ModJ (Φ(Σ)), |=JΦ(Σ))

that is natural in Σ.
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With the natural compositions and identities, this gives categories CoCons
and CoIns, respectively. Logic comorphisms are institution comorphisms with sig-
nature and sentence translations that yield comorphisms between the entailment
systems of the logics. Simple theoroidal variants of these notions are defined in the
obvious way.

Example 4.4. The standard translation from propositional modal logic to first-
order logic is an institution comorphism. In signatures, each propositional symbol
is translated to a unary predicate, and a binary predicate (the accessibility relation)
is added to all signatures. Modalities are expressed using quantification. A first-
order model (of a translated signature) can be constructed as a Kripke structure.
This translation can be extended to first-order modal logic.

Practically all of the notions that we have introduced so far, like consistency,
conservativeness, the model-expansion property, expressiveness, sublogic, equiva-
lences of logics, proof-theoretic and model-theoretic connectives, easily lift from
the non-indexed to the indexed level, with the following provisos: A theory is a
pair (Σ,Γ) where Γ is a set of Σ-sentences. An entailment system (respectively:
institution) is consistent, if each signature has a consistent theory. A sublogic mor-
phism needs to have a signature translation Φ that is an embedding of categories,
that is, injective on objects, full and faithful. For a logic equivalence, Φ needs to
be an equivalence of categories.

4.2. Quantification

Quantification is an important concept that can be handled much better at the
indexed level. Lawvere [36, 37] defined quantification as adjoint to substitution.
Here we define quantification as adjoint to sentence translation along a class D of
signature morphisms, which typically introduce new constants to serve as quan-
tification “variables”:

Definition 4.5. An entailment system has proof-theoretic universal (respectively:
existential) D-quantification for a class D of signature morphisms, if for all sig-
nature morphisms σ : Σ−→Σ′ ∈ D, there is a function (∀σ) (respectively: (∃σ) )
from Sen(Σ′) to Sen(Σ) such that

Γ `Σ (∀σ)ϕ′ iff σ(Γ) `Σ′ ϕ
′

and respectively:
(∃σ)Γ′ `Σ ϕ iff Γ′ `Σ σ(ϕ)

Definition 4.6. An institution has semantic universal (existential) D-quantification
[47] for a class D of signature morphisms, if for all signature morphisms σ : Σ−→
Σ′ ∈ D and each Σ′-sentence ϕ, there is a Σ-sentence ∀σ.ϕ (respectively: ∃σ.ϕ)
such that M |=Σ ∀σ.ϕ iff M ′ |= ϕ for all σ-expansions M ′ of M (respectively:
M |=Σ ∃σ.ϕ iff M ′ |= ϕ for some σ-expansion M ′ of M).
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These definitions accommodate quantification over any entities which are
named in the relevant concept of signature. For conventional model theory, this
includes second-order quantification by taking D to be all extensions of signatures
by operation and relation symbols. First-order quantification is modelled by taking
D to be all extensions of signatures by finite sets of constants, or more abstractly,
by taking D to be all the representable signature morphisms [13, 14], building on
the observation that an assignment for a set of (first order) variables corresponds
to a model morphism from the free (term) model over that set of variables.

Example 4.7. Let FOL be the usual institution of single-sorted classical first-order
logic, and MSFOL its many-sorted variant [28]. Then FOL and MSFOL have
both proof-theoretic and semantic universal and existential first-order quantifica-
tion (i.e., D-quantification with D as defined above for first-order quantification).

For (single-sorted) intuitionistic first-order logic, the Heyting algebra vari-
ant is denoted by IFOL-CHA. The interpretation of universal and existential
quantifiers needs possibly infinite meets and joins, hence a complete Heyting al-
gebra is required. Kripke semantics comes in two variants: with constant domains
(IFOL-CD) and possibly increasing domains (IFOL-HQ) [20]. All these three
logics have proof-theoretic universal and existential first-order quantification —
actually, the conditions in Def. 4.5 are very close to the usual quantifier rules.
Moreover, all three lack semantic existential (first-order) quantification: consider
a constant-domain Kripke model with two worlds w1 and w2, two individuals
a1 and a2, and a unary predicate P such that in world wi, P (ai) holds, but
P (a3−i) does not hold. In this model, ∃x . P (x) holds, but the model does not
have an expansion interpreting a constant c such that P (c) holds: P (c) would
have to hold in all worlds. This provides a counterexample for both IFOL-CD
and IFOL-HQ, and it can be turned into one for IFOL-CHA by using the Heyt-
ing (even Boolean) algebra P({w1, w2}) and letting P (ai) have the truth value
{wi}. Actually, this counterexample is also a counterexample for FOL-BA, first-
order logic with Boolean-valued models.

Finally, the three institutions have semantic universal first-order quantifica-
tion. For IFOL-CHA, this follows since the meet of a set is > iff all its members
are >. For IFOL-CD, this follows since universal quantification over worlds and
over domain elements can be interchanged. This carries over to IFOL-HQ for
quantification w.r.t. all extensions of signatures with flexible constants. However,
for extensions with rigid constants, semantic universal quantification cannot be
given in general: consider a Kripke model with two worlds w and v, with w ≤ v,
one individual a with P (a) for world w and two individuals a, b with P (a) but
not P (b) for world v. In this model, ∀x . P (x) does not hold, but any expansion
interpreting a rigid constant c must interpret c by a, hence P (c) holds in it. �

One can define a notion of first-order schematic comorphism much in the same
way as the notion of propositionally schematic morphisms in Sect. 2.1, if one fixes
a canonical choice for the class D of signature morphisms (e.g. the representable
signature morphisms).
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We now study the interaction of quantification and comorphisms.

Proposition 4.8. Let (Φ, α) : (Sign1,Sen1,`1) → (Sign2,Sen2,`2) be a conserva-
tive entailment system comorphism and let D1 ⊆ Sign1 and D2 ⊆ Sign2 be classes
of signature morphisms such that Φ(D1) ⊆ D2.

1. The comorphism (Φ, α) reflects proof-theoretic D2-quantification to proof-
theoretic D1-quantification if the image of α is closed under the former.

2. The comorphism (Φ, α) transports proof-theoretic D1-quantification to proof-
theoretic D2-quantification if Φ(D1) = D2, and αΣ’s are surjective.

Proof. 1. We carry out the proof only for universal quantification, the proof for ex-
istential quantification is similar. Consider (σ : Σ→ Σ′) ∈ D1 and ϕ′ ∈ Sen1(Σ′).
Because the image of α is closed under proof-theoretic D2-quantification there
exists ψ ∈ Sen1(Σ) such that αΣ(ψ) = (∀Φ(σ))αΣ′(ϕ′). We show that ψ defines
(∀σ)ϕ′, which amounts to showing that

Γ `1
Σ ψ iff σ(Γ) `1

Σ′ ϕ
′

Because the comorphism is conservative we have:
• Γ `1

Σ ψ is equivalent to αΣ(Γ) `2
Φ(Σ) αΣ(ψ) = (∀Φ(σ))αΣ′(ϕ′).

• σ(Γ) `1
Σ′ ϕ

′ is equivalent to αΣ′(σ(Γ)) `2
Φ(Σ′) αΣ′(ϕ′). Note that by the

naturality of α we have αΣ′(σ(Γ)) = Φ(σ)(αΣ(Γ)).
The conclusion now follows by the quantification property

αΣ(Γ) `2
Φ(Σ) (∀Φ(σ))αΣ′(ϕ′) iff αΣ′(σ(Γ)) `2

Φ(Σ′) Φ(σ)(αΣ(Γ))

2. Again, we carry out the proof only for universal quantification. Consider
(σ2 : Σ2 → Σ′2) ∈ D2 and ϕ′2 ∈ Sen2(Σ′2). Because Φ(D1) = D2 there exists
(σ1 : Σ1 → Σ′1) ∈ D1 such that Φ(σ1) = σ2 (which implies Φ(Σ1) = Σ2 and
Φ(Σ′1) = Σ′2). Because αΣ′1

is surjective there exists ϕ′1 ∈ Sen1(Σ′1) such that
ϕ′2 = αΣ′1

(ϕ′1). We show that αΣ1((∀σ1)ϕ′1) defines (∀σ2)ϕ′2, which amounts to
showing that

Γ2 `2
Σ2
αΣ1((∀σ1)ϕ′1) iff σ2(Γ2) `2

Σ′2
ϕ′2

Because αΣ1 is surjective there exists Γ1 such that αΣ1(Γ1) = Γ2. By the naturality
of α we have that σ2(Γ2) = σ2(αΣ1(Γ1)) = αΣ′1

(σ1(Γ1)). Recall also that ϕ′2 =
αΣ′1

(ϕ′1). Hence, since the comorphism is conservative, we have:

• Γ2 `2
Σ2
αΣ1((∀σ1)ϕ′1) is equivalent to Γ1 `1

Σ1
(∀σ1)ϕ′1, and

• σ2(Γ2) `2
Σ′2
ϕ′2 is equivalent to σ1(Γ1) `1

Σ′1
ϕ′1.

The conclusion now follows by the quantification property

Γ1 `1
Σ1

(∀σ1)ϕ′1 iff σ1(Γ1) `1
Σ′1
ϕ′1

�

Definition 4.9. Let (Φ, α, β) : I−→J be an institution comorphism. Then (Φ, α, β)
is said to be weakly exact, if for each signature morphism σ : Σ−→Σ′ in I, and for
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any two models M ′1 ∈ ModI(Σ′) and M2 ∈ ModJ (Φ(Σ1)) with M ′1�σ = βΣ(M2),
there is a M ′2 ∈ ModJ (Φ(Σ′)) with βΣ′(M ′2) = M ′1 and M ′2�Φ(σ) = M2.

Proposition 4.10. Let (Φ, α, β) : (Sign1,Sen1,Mod1, |=1)→ (Sign2,Sen2,Mod2, |=2)
be a weakly exact institution comorphism and let D1 ⊆ Sign1 and D2 ⊆ Sign2 be
classes of signature morphisms such that Φ(D1) ⊆ D2.

1. The comorphism (Φ, α, β) reflects semantic D2-quantification to semantic D1-
quantification if it is model-expansive and the image of α is closed under the
former.

2. The comorphism (Φ, α, β) transports semantic D1-quantification to semantic
D2-quantification if Φ(D1) = D2 and αΣ’s are surjective.

Proof. Let us consider only universal quantification since the proofs for existential
quantification are similar.

1. The construction of the reflected quantification is the same as the corre-
sponding construction in the first part of the proof of Prop. 4.8, we also use here
the same notations. We thus have to show that for all Σ-models M

M |=1
Σ ψ iff (M ′ |=1

Σ′ ϕ
′ for all σ-expansions M ′ of M)

Because the comorphism is model-expansive, there exists M2 such that M =
βΣ(M2). By the satisfaction condition we have that

M |=1
Σ ψ iff M2 |=2

Φ(Σ) ∀Φ(σ).αΣ′(ϕ′)

But

M2 |=2
Φ(Σ) ∀Φ(σ).αΣ′(ϕ′) iff (M ′2 |=2

Φ(Σ′) αΣ′(ϕ′) for all Φ(σ)-expansions M ′2 of M2)

By the satisfaction condition for the comorphism the latter equivalence means

M2 |=2
Φ(Σ) ∀Φ(σ).αΣ′(ϕ′) iff (βΣ′(M ′2) |=1

Σ′ ϕ
′ for all Φ(σ)-expansions M ′2 of M2)

The conclusion follows by using the weakly exactness property since any σ-expansion
M ′ determines a Φ(σ)-expansion M ′2, and conversely, each Φ(σ)-expansion M ′2 de-
termines a σ-expansion M ′, such that βΣ′(M ′2) = M ′.

2. The construction of the transported quantification is the same as the cor-
responding construction in the second part of the proof of Prop. 4.8, we also use
here the same notations. We thus have to show that

M2 |=2
Σ2
αΣ1(∀σ1.ϕ

′
1) iff (M ′2 |=2

Σ′2
ϕ′2 for all σ2-expansions M ′2 of M2)

First let us note that by the satisfaction condition we have:
• M2 |=2

Σ2
αΣ1(∀σ1.ϕ

′
1) iff βΣ1(M2) |=1

Σ1
∀σ1.ϕ

′
1, and

• M ′2 |=2
Σ′2
ϕ′2 iff βΣ′1

(M ′2) |=1
Σ′1
ϕ′1.

Now, by these equivalences, the implication from the left to the right follows from
the fact that for all M ′2 such that M ′2�σ2 = M2, by the naturality of β we have
that βΣ′1

(M ′2)�σ1 = βΣ1(M2).
For the implication from the right to the left, let M ′1 be any σ1-expansion

of βΣ1(M2). We have to show that M ′1 |=1
Σ′1
ϕ′1. Since the institution comorphism
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considered is weakly exact, there exists a Σ′2-model M ′2 such that βΣ′1
(M ′2) =

M ′1 and M ′2�σ2 = M2. Thus M ′1 |=1
Σ′1

ϕ′1 holds because M ′2 |=2
Σ′2

ϕ′2 and by the
satisfaction condition for the comorphism. �

5. Conclusions

Using morphisms between entailment relations and systems, and between rooms
and institutions, we have shed some light on the notions of expressiveness, consis-
tency strength and sublogic. It turns out that sublogics are less expressive than
their superlogics only if a sufficiently strong notion of a sublogic is used. Consis-
tency strength is a notion that behaves contravariantly w.r.t. expressiveness, that
is, more expressive logics have less consistency strength. This is because weaker
axiomatisations are less constraining and lead to more discriminatory strength.

We also have shown that logical structure such as connectives and quanti-
fiers can be transported and reflected along such morphisms. Indeed, this kind of
“borrowing” [11] of logical structure along morphisms has been studied in many
different contexts. It is possible to borrow logical structure like proof theory, model
theory, connectives and quantifiers, and also results like Craig interpolation, Beth
definability, ultraproducts or the property of being a  Loś-institution, see [15] for
details. Many of these concepts and results can only be made formal at the level of
entailment systems and institutions, that is, when logics are considered with ex-
plicit indexing of their components (sets of sentences, classes of models, entailment,
satisfaction) by signatures.

An interesting open question is the formalisation of “structurality” of trans-
lations between logics, such that translations flattening out the structure (like
that in Prop. 2.25) are ruled out. However, the notions studied in the literature so
far [48, 9] are clearly too limited here, as they focus on propositional connectives
only. A proper notion would have to take into account also binding structures
like quantification. The resulting notion of expressiveness then would define log-
ical frameworks as used in the theorem proving community: they are logics with
maximal expressiveness.
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