M4M 2009

Optimizing Conditional Logic Reasoning
within CoLoSS

Daniel Hausmann®! Lutz Schroder®P:2

2 DFKI Bremen, SKS

b Department of Mathematics and Computer Science, Universitit Bremen, Germany

Abstract

The generic modal reasoner CoLoSS covers a wide variety of logics ranging from graded and probabilistic
modal logic to coalition logic and conditional logics, being based on a broadly applicable coalgebraic seman-
tics and an ensuing general treatment of modal sequent and tableau calculi. Here, we present research into
optimisation of the reasoning strategies employed in CoLoSS. Specifically, we discuss strategies of mem-
oisation and dynamic programming that are based on the observation that short sequents play a central
role in many of the logics under study. These optimisations seem to be particularly useful for the case of
conditional logics, for some of which dynamic programming even improves the theoretical complexity of
the algorithm. These strategies have been implemented in CoLoSS; we give a detailed comparison of the
giffercflr}t h(celuristics, observing that in the targeted domain of conditional logics, a substantial speed-up can
e achieved.

Keywords: Coalgebraic modal logic, conditional logic, automated reasoning, optimisation, heuristics,
memoizing, dynamic programming

1 Introduction

In recent decades, modal logic has seen a development towards semantic hetero-
geneity, witnessed by an emergence of numerous logics that, while still of manifestly
modal character, are not amenable to standard Kripke semantics. Examples include
probabilistic modal logic [4], coalition logic [11], and conditional logic [2], to name
just a few. The move beyond Kripke semantics, mirrored on the syntactical side
by the failure of normality, entails additional challenges for tableau and sequent
systems, as the correspondence between tableaus and models becomes looser, and
in particular demands created by modal formulas can no longer be discharged by
the creation of single successor nodes.

This problem is tackled on the theoretical side by introducing the semantic
framework of coalgebraic modal logic [8,12], which covers all logics mentioned above
and many more. It turns out that coalgebraic modal logic does allow the design

I Email: Daniel.Hausmann@dfki.de
2 Email: Lutz.Schroeder@dfki.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science
URL: www.elsevier.com/locate/entcs

mailto:Daniel.Hausmann@dfki.de
mailto:Lutz.Schroeder@dfki.de

HAUSMANN AND SCHRODER

of generic reasoning algorithms, including a generic tableau method originating
from [15]; this generic method may in fact be separated from the semantics and
developed purely syntactically, as carried out in [9,10].

Generic tableau algorithms for coalgebraic modal logics, in particular the algo-
rithm described in [15], have been implemented in the reasoning tool CoLoSS [1]3.
As indicated above, it is a necessary feature of the generic tableau systems that
they potentially generate multiple successor nodes for a given modal demand, so
that in addition to the typical depth problem, proof search faces a rather noticeable
problem of breadth. The search for optimisation strategies to increase the efficiency
of reasoning thus becomes all the more urgent. Here we present one such strategy,
which is generally applicable, but particularly efficient in reducing both depth and
branching for the class of conditional logics. We exploit a notable feature of this
class, namely that many of the relevant rules rely rather heavily on premises stat-
ing equivalence between formulas; thus, conditional logics are a good candidate for
memoising strategies, applied judiciously to short sequents. We describe the imple-
mentation of memoising and dynamic programming strategies within CoLoSS, and
discuss the outcome of various comparative experiments.

2 Generic Sequent Calculi for Coalgebraic Modal Logic

Coalgebraic modal logic, originally introduced as a specification language for coalge-
bras, seen as generic reactive systems [8], has since evolved into a generic framework
for modal logic beyond Kripke semantics [3]. The basic idea is to encapsulate the
branching type of the systems relevant for the semantics of a particular modal logic,
say probabilistic or game-theoretic branching, in the choice of a set functor, the sig-
nature functor (e.g. the distribution functor and the games functor in the mentioned
examples), and to capture the semantics of modal operators in terms of so-called
predicate liftings. For the purposes of the present work, details of the semantics
are less relevant than proof-theoretic aspects, which we shall recall presently. The
range of logics covered by the coalgebraic approach is extremely broad, including,
besides standard Kripke and neighbourhood semantics, e.g. graded modal logic [5],
probabilistic modal logic [4], coalition logic [11], various conditional logics equipped
with selection function semantics [2], and many more.

Syntactically, logics are parametrised by the choice of a modal similarity type A,
i.e. a set of modal operators with associated finite arities. This choice determines
the set of formulas ¢, via the grammar

¢7¢11:p’¢/\¢\Wﬁ’@(fﬁl,---,%)

where © is an n-ary operator in A. Examples are A = {L, | p € [0,1] N Q}, the
unary operators L, of probabilistic modal logic read ‘with probability at least p’;
A = {Ok | k € N}, the operators Oy of graded modal logic read ‘in more than k
successors’; A = {[C] | C C N}, the operators [C] of coalition logic read ‘coalition
C (a subset of the set N of agents) can jointly enforce that’; and, for our main

3 available under http://www.informatik.uni-bremen.de/cofi/CoLoSS/

2

http://www.informatik.uni-bremen.de/cofi/CoLoSS/

HAUSMANN AND SCHRODER

example here, A = {=}, the binary modal operator = of conditional logic read e.g.
‘if ...then normally ...".

Coalgebraic modal logic was originally limited to so-called rank-1 logics axioma-
tised by formulas with nesting depth of modal operators uniformly equal to 1 [12].
It has since been extended to the more general non-iterative logics [14] and to some
degree to iterative logics, axiomatised by formulas with nested modalities [13]. The
examples considered here all happen to be rank-1, so we focus on this case. In the
rank-1 setting, it has been shown [12] that all logics can be axiomatised by one-step
rules ¢/, where ¢ is purely propositional and 1 is a clause over formulas of the
form O(ay,...,a,), where the a; are propositional variables. In the context of a
sequent calculus, this takes the following form [9].

Definition 2.1 If S is a set (of formulas or variables) then A(S) denotes the set
{O(s1,...,8,) | © € Ais n-ary, s1,...,8, € S} of formulas comprising exactly one
application of a modality to elements of S. An S-sequent, or just a sequent in case
that S is the set of all formulas, is a finite subset of SU{—A | A € S}. Then, a one-
step rule T'1,..., 'y /Ty over a set V of variables consists of V-sequents I',..., T,
the premises, and a A(S)-sequent Iy, the conclusion. A goal is a set of sequents,
typically arising as the set of instantiated premises of a rule application.

A given set of one-step rules then induces an instantiation of the generic sequent
calculus [9] which is given by a set of rules R, consisting of the finishing and the
branching rules R%, (i.e. rules with no premise or more than one premise), the
linear rules R, (i.e. rules with exactly one premise) and the modal rules R, i.e.
the given one-step rules. The finishing and the branching rules are presented in
Figure 1 (where T = =1 and p is an atom), the linear rules are shown in Figure 2.

So far, all these rules are purely propositional. As an example for a set of modal

one-step rules, consider the modal rules RY: of the standard modal logic K as given
by Figure 3.
A B
(=F) (AX) (N)
r,—L T'.p,—p I'AAB

Fig. 1. The finishing and the branching sequent rules R%,

Fig. 2. The linear sequent rules RY,

This calculus has been shown to be complete under suitable coherence assumptions
on the rule set and the coalgebraic semantics, provided that the set of rules absorbs
cut and contraction in a precise sense [9]. We say that a formula is provable if

3

HAUSMANN AND SCHRODER

_‘Al) LR _‘Ana AO
F? _'DAla RS _'DATw I:'140

(K

Fig. 3. The modal rule of K

it can be derived in the relevant instance of the sequent calculus; the algorithms
presented below are concerned with the provability problem, i.e. to decide whether
a given sequent is provable. This is made possible by the fact that the calculus
does not include a cut rule, and hence enables automatic proof search. For rank-1
logics, proof search can be performed in PSPACE under suitable assumptions on
the representation of the rule set [15,9]. The corresponding algorithm has been
implemented in the system CoLoSS [1] which remains under continuous develop-
ment. Particular attention is being paid to finding heuristic optimisations to enable
practically efficient proof search, as described here.

Our running example used in the presentation of our optimisation strategies
below is conditional logic as mentioned above. The most basic conditional logic is
CK [2] (we shall consider a slightly extended logic below), which is characterised by
assuming normality of the right-hand argument of the non-monotonic conditional
=, but only replacement of equivalents in the left-hand arguments. Absorption of
cut and contraction requires a unified rule set consisting of the rules depicted in
Fig. 4 with A = C abbreviating the pair of sequents = A, C and —~C, A. This illus-

AOZAl;...;An:AO ﬁBl,...,ﬁBn,BO

(CK)
F, —|(A1 = Bl), cey —|(An = Bn), (Ao = Bo)

Fig. 4. The modal rule of CK

trates two important points that play a role in the optimisation strategies described
below. First, the rule has a large branching degree both existentially and univer-
sally — we have to check that there exists a rule proving some sequent such that all
its premises are provable, and hence we have to guess one of exponentially many
subsequents to match the rule and then attempt to prove linearly many premises;
compare this to linearly many rules and a constant number of premises per rule
(namely, 1) in the case of K shown above. Secondly, many of the premises are
short sequents. This will be exploited in our memoisation strategy. We note that
labelled sequent calculi for conditional logics have been designed previously [7] and
have been implemented in the CondLean prover [6]; contrastingly, our calculus is
unlabelled, and turns out to be conceptually simpler. The comparison of the rela-
tive efficiency of labelled and unlabelled calculi remains an open issue for the time
being.

HAUSMANN AND SCHRODER

3 The Algorithm

According to the framework introduced above, we now devise a generic algorithm
to decide the provability of formulas, which is easily instantiated to a specific logic
by just implementing the relevant modal rules.

Algorithm 1 makes use of the sequent rules in the following manner: In order to
show the provability of a formula ¢, the algorithm starts with the sequent {¢} and
just keeps trying to apply all of the sequent rules in R to it, giving precedence
to the linear rules. Below, we refer to a sequent as open if it has not yet been
checked for provability. Under suitable tractability assumptions on the rule set
as in [15,9], this algorithm realises the theoretical upper bound PSPACE. It is the
starting point of the proof search algorithms employed in CoLoSS, being essentially a
sequent reformulation of the algorithm described in [1], where it is easily verified that
correctness and termination of the algorithm are preserved by this reformulation;
optimisations of this algorithm are the subject of the present work.

Algorithm 1 (Decide provability of a sequent T")

1. Try all possible applications of rules from R, to I', giving precedence to linear
rules. For every such rule application, perform the following steps, and answer
‘provable’ in case these steps succeed for one of the rule applications.

2. Let A denote the set of premises arising from the rule application.

3. Check recursively that every sequent in A is provable.

3.1 The conditional logic instance

The genericity of the introduced sequent calculus allows us to easiliy create instan-
tiations of Algorithm 1 for a large variety of modal logics:

For instance it has been shown in [10] that the complexity of CKCEM is coNP,
using a dynamic programming approach in the spirit of [16]; in fact, this was the
original motivation for exploring the optimisation strategies pursued here. Due to
this reason, we restrict ourselves to the examplary conditional logic CKCEM for
the remainder of this section; slightly adapted versions of the optimisation will work
for other conditional logics. CKCEM is characterised by the additional axioms
of conditional excluded middle (A = B)V (A = —B), which to absorb cut and
contraction is integrated in the rule for CK as shown in Figure 5.

AOZAl;...;An:AO Bo,...,Bj,—! j+17---a_‘Bn
F, (A[) = BU),...,(AJ' :>Bj),—|(Aj+1 :>Bj+1),...,—|(An = Bn)

(CKCEM)

Fig. 5. The modal rule CKCEM of conditional logic

In the following, we use the notions of conditional antecedent and conditional
consequent to refer to the parameters of the modal operator of conditional logic.

In order to decide using Algorithm 1 whether there is an instance of the modal
rule of conditional logic which can be applied to the actual current sequent, it is

5

HAUSMANN AND SCHRODER

necessary to create a preliminary premise for each possible combination of equalities
of all the premises of the modal operators in this sequent. This results in 2" — 1
new premises for a sequent with n top-level modal operators.

Example 3.1 For the sequent I' = {(Ap = By), (41 = B1), (A2 = B3)}, there are
23 = 8 possible instances of the rule to be tried, corresponding to the non-empty
subsequents of the goal; the premise to be checked for I C {1,2,3} consists of
AZ’:AJ‘ fOI‘i,jEI, and {BZ‘ZEI}

It seems to be a more intelligent approach to first partition the set of all antecedents
of the top-level modal operators in the current sequent into equivalence classes with
respect to logical equality. This partition allows for a significant reduction both of
the number of rules to be tried and of the number of premises to be actually proved
for each rule.

Example 3.2 Consider again the sequent from Example 3.1. By using the exam-
plary knowledge that Ag = A1, A1 # A and Ay # Ao, it is immediate that there
are just two reasonable instations of the modal rule, leading to the two premises
{{Bo,B1}} and {{B2}}. For the first of these two premises, note that it is not
necessary to show the equivalence of Ag and A; again.

In the case of conditional logic, observe the following: Since the modal antecedents
that appear in a formula are not being changed by any rule of the sequent calculus,
it is possible to extract all possibly relevant antecedents of a formula even before the
actual sequent calculus is applied. This allows us to first compute the equivalence
classes of all the relevant antecedents and then feed this knowledge into the actual
sequent calculus, as illustrated next.

4 The Optimisation

Definition 4.1 A conditional antecedent of modal nesting depth i is a conditional
antecedent which contains at least one antecedent of modal nesting depth i — 1
and which contains no antecedent of modal nesting depth greater than i — 1. A
conditional antecedent of nesting depth 0 is an antecedent that does not contain
any further modal operators. Let a; denote the set of all conditional antecedents
of modal nesting depth i. Further, let prems(n) denote the set of all conditional
antecedents of modal nesting depth at most n (i.e. prems(n) = ;_; ,, a;). Finally,
let depth(¢) denote the maximal modal nesting in the formula ¢.

Definition 4.2 A set I of sequents together with a function eval : K — {T, L} is
called a knowledge base.

We may now construct an optimized algorithm which allows us to decide provability
(and satisfiability) of formulas more efficiently in some cases. The optimized algo-
rithm is constructed from two functions (namely from the actual proving function
and from the so-called pre-proving function):

Algorithm 2 (Decide provability of ¢ using the knowledge base (I, eval))
1. If T € K, answer ‘provable’ if eval(T') = T, else ‘unprovable’. Otherwise:
6

HAUSMANN AND SCHRODER

2. Try all possible applications of rules from RO, to I', giving precedence to
linear rules, where RO, is an optimised set of rules taking into account the
knowledge base, as explained below. For every such rule application, perform
the following steps, and answer ‘provable’ in case these steps succeed for one of
the rule applications.

3. Let A denote the set of premises arising from the rule application.

4. Check recursively that every sequent in A is provable.

Algorithm 2 is very similar to Algorithm 1 but relies on the knowledge base passed
to it and moreover uses a modified set of rules RO,.. The set of rules RO, makes
appropriate use of the knowledge base. It is obtained from R4, by replacing the
modal rule from Figure 5 with the modified modal rule from Figure 6. The point is
that the premises Ag = - -- = A,, are replaced by side conditions representing lookup
in the knowledge base. This improves on standard memoising as embodied by the
lookup operation in step 1 of the above algorithm in that existential branching over
potentially applicable rules is reduced: the rule does not even match the target
sequent unless the equivalence premises are already in the knowledge base. This is
still a complete system due to the way memoising is organised, as explained below.

BO?"'aBj)_‘ j+1a"'7_'Bn
F, (AO = Bo)7 ey (A] = Bj),—'(Aj+1 = BjJrl), ey —|(An = Bn)

(CKCEM™)

(/\ i,jE{l..n}evazl(Ai = A]) — T)

Fig. 6. The modified modal rule CKCEM™ of conditional logic

The knowledge base used in Algorithm 2 is computed in Algorithm 3. The algorithm
proceeds by dynamic programming with stages corresponding to modal nesting
depth, in the spirit of [16]. Thus, in order to show the equivalence of two conditional
antecedents of nesting depth at most ¢, we assume that the equivalences K; between
modal antecedents of nesting depth less than ¢ have already been computed and
the result is stored in eval;; hence, two antecedents are equal, if their equivalence is
provable by Algorithm 2 using only the knowledge base (IC;, eval;).

Algorithm 3 Step 1: Take a formula ¢ as input. Set i = 0, Ko = 0, evaly = 0.
Step 2: Generate the set prems; of all conditional antecedents of ¢ of nesting depth
at most . If i < depth(¢) continue with Step 3, else set K = K;_1, eval = eval;—1
and continue with Step 4.

Step 3: Let eq; denote the set of all equalities A, = Ap for different formulas
Aq, Ay € prems;. Compute Algorithm 2 (¢, (IC;, eval;)) for all ¢ € eg;. Set Kip1 =
eq;, set i = i + 1. For each equality ¢ € eq;, set evalit1(¢)) = T if the result of
Algorithm 2 was ‘provable’ and eval;11(1)) = L otherwise. Continue with Step 2.
Step 4: Call Algorithm 2 (¢, (K, eval)) and return its return value as result.

7

HAUSMANN AND SCHRODER

4.1 Treatment of Requisite Equivalences Only

Since Algorithm 3 tries to show the logical equivalence of any combination of two
conditional antecedents that appear in ¢, it will have worse completion time than
Algorithm 1 on many formulas:

Example 4.3 Consider the formula

¢ = (((po = p1) = p2) = pa) vV (((ps = p6) = p7) = ps)-
Algorithm 3 will not only try to show the necessary equivalences between the pairs
(((po = p1) = p2),((p5 = ps) = p7)); ((P0 = p1);(P5 = ps)) and (po,ps), but
it will also try to show equivalences between any two conditional antecedents (e.g.
(po, (p5 = ps))), even though these equivalences will not be needed during the
execution of Algorithm 2.

Based on this observation it is possible to assign a category to each pair of
antecedents that appear in it:

Definition 4.4 The paths (in ¢) to a conditional antecedent 1) describe the orders
of modal arguments through which v is reached, when starting from the root of ¢:
The path to a top-level antecedent is just {1}. If ¢ does not appear as antecedent
on the topmost level of ¢, the path to it is {1} prepended to the set of paths to 1
in any top-level conditional antecedent of ¢ together with {0} prepended to the set
of paths to ¢ in any top-level conditional consequent of ¢.

Example 4.5 Consider the formula ¢ = (pg = p2) = ((po = p1) = p3). Then the
path to (pp = p2) is {1}, whereas the path to (py = p1) is {01}. The paths to poy
are {11,011}.

Definition 4.6 Let A and B be two conditional antecedents. A and B are called
connected (in ¢) if at least one path to A is also a path to B (and hence vice-versa).
If no path to A is a path to B, the two antecedents are said to be independent.

Since two independent conditional antecedents will never appear in the scope of
the same application of the modal rule, it is in no case necessary to show (or refute)
the logical equivalence of independent conditional antecedents. Hence it suffices to
focus our attention to the connected conditional antecedents. It is then obvious
that any possibly requisite equivalence and its truth-value are allready included in
(K, eval) when the main proving is induced. On the other hand, we have to be
aware that it may be the case, that we show equivalences of antecedents which are
in fact not needed (since antecedents may indeed be connected and still it is possible
that they never appear together in an application of the modal rule - this is the
case whenever two preceding antecedents are not logically equivalent).

As result of these considerations, we devise Algorithm 4, an improved version of
Algorithm 3. The only difference is that before proving any equivalence, Algorithm 4
checks whether the current pair of conditional antecedents is actually connected;
only then does it treat the equivalence. Hence independent pairs of antecedents
remain untreated

Algorithm 4 Step 1: Take a formula ¢ as input. Set i = 0, Ko = 0, evalg = 0.
Step 2: Generate the set prems; of all conditional antecedents of ¢ of nesting depth

8

HAUSMANN AND SCHRODER

at most 7. If i < depth(¢) continue with Step 3, else set K = K;_1, eval = eval;_;
and continue with Step 4.

Step 3: Let eq; denote the set of all equalities A, = A for different and not inde-
pendent pairs of formulas A,, A, € prems;. Compute Algorithm 2 (¢, (K;, eval;))
for all ¥ € eq;. Set K;11 = eq;, set i = i + 1. For each equality ¢ € eq;, set
evali11(vp) = T if the result of Algorithm 2 was ‘provable’ and eval;+1(¢)) = L
otherwise. Continue with Step 2.

Step 4: Call Algorithm 2 (¢, (K, eval)) and return its return value as result.

5 Implementation

The proposed optimized algorithms have been implemented (using the program-
ming language Haskell) as part of the generic coalgebraic modal logic satisfiability
solver (CoLoSS*). CoLoSS provides the general coalgebraic framework in which the
generic sequent calculus is embedded. It is easily possible to instantiate this generic
sequent calculus to specific modal logics, one particular example being conditional
logic. The matching function for conditional logic in CoL.oSS was hence adapted in
order to realize the different optimisations (closely following Algorithms 1, 3 and
4), so that CoLoSS now provides an efficient algorithm for deciding the provability
(and satisfiability) of conditional logic formulas.

5.1 Comparing the Proposed Algorithms

In order to show the relevance of the proposed optimisations, we devise several
classes of conditional formulas. Each class has a characteristic general shape, defin-
ing its complexity w.r.t. different parts of the algorithms and thus exhibiting specific
advantages or disadvantages of each algorithm:

e The formula bloat (i) is a full binary tree of depth i (containing 2° pairwise

logically inequivalent atoms and 2/ — 1 independent modal antecedents):

bloat (i) = (bloat(i — 1)) = (bloat(i— 1))

bloat(0) = prand
Formulas from this class should show the problematic performance of Algorithm 3
whenever a formula contains many modal antecedents which appear at different
depths. A comparison of the different algorithms w.r.t. formulas bloat (i) is
depicted in Figure 7. Since Algorithm 3 does not check whether pairs of modal
antecedents are independent or connected, it performs considerably worse than
Algorithm 4 which only attempts to prove the logical equivalence of formulas
which are not independent. Algorithm 1 has the best performance in this extreme
case, as it only has to consider pairs of modal antecedents which actually appear
during the course of a proof. This is the price to pay for the optimisation by
dynamic programming.

e The formula conjunct (i) is just an i-fold conjunction of a specific formula A:

4 As already mentioned above, more information about CoLoSS, a web-interface to the tool and the tested
benchmarking formulas can be found at http://www.informatik.uni-bremen.de/cofi/CoLoSS/

9

http://www.informatik.uni-bremen.de/cofi/CoLoSS/

HAUSMANN AND SCHRODER

i | Algorithm 1 | Algorithm 3 | Algorithm 4
1 0.007s 0.007s 0.007s
2 0.007s 0.007s 0.007s
3 0.007s 0.008s 0.008s
4 0.008s 0.017s 0.012s
5 0.009s 0.112s 0.048s
6 0.010s 1.154s 0.416s
7 0.012s 11.998s 4.116s

Fig. 7. Results for bloat(z)

conjunct(i) = A1 A ... A A;

A= (((p1Vpo) = p2)V((poVp1) = p2))V=(((poVp1) = p2)V((P1VPo) = p2)))
This class consists of formulas which contain logically (but not sytactically) equiv-
alent antecedents. As 7 increases, so does the amount of appearances of identical
modal antecedents in different positions of the considered formula. A comparison
of the different algorithms w.r.t. formulas conjunct (i) is depicted in Figure 8.
It is obvious that the optimized algorithms perform considerably better than the
unoptimized Algorithm 1. The reason for this is that Algorithm 1 repeatedly
proves equivalences between the same pairs of modal antecedents. The optimized
algorithms on the other hand are equipped with knowledge about the modal an-
tecedents, so that these equivalences have to be proved only once. However, even
the runtime of the optimized algorithms is exponential in 4, due to the exponen-
tially increasing complexity of the underlying propositional formula. Note that
the use of propositional tautologies (such as A < (A A A) in this case) would
help to greatly reduce the computing time for conjunct(i). Optimisation of
propositional reasoning is not the scope of this paper though, thus we devise the
following examplary class of formulas (for which propositional tautologies would
not help):

The formula explode (i) contains equivalent but not syntactically equal and in-
terchangingly nested modal antecedents of depth at most i:

explode(i) = X{ V...V X}

X1 = (A’1 =(..(A=> (plA...Aci))...))

X; = (A; mod i = (. (Al(jJr(i—l)) mod i _‘Cj) e))

A; =DPjmodi/\--- N P(j+(i—1)) mod i
This class contains complex formulas for which the unoptimized algorithm should
not be efficient any more: Only the combined knowledge about all appearing
modal antecedents A} allows the proving algorithm to reach all modal conse-
quents ¢, and only the combined sequent {(c1 A...A¢;), ¢y, ..., ¢} (containing
every appearing consequent) is provable. For formulas from this class (specifically
designed to show the advantages of optimization by dynamic programming), the
optimized algorithms vastly outperform the unoptimized algorithm (see Figure 9).

10

HAUSMANN AND SCHRODER

~.

Algorithm 1

Algorithm 3

Algorithm 4

1 0.008s 0.008s 0.008s
2 0.009s 0.009s 0.009s
3 0.011s 0.010s 0.010s
4 0.058s 0.011s 0.011s
5 1.335s 0.014s 0.015s
6 42.885s 0.038s 0.040s
7 >600.000s 0.220s 0.232s
8 | >600.000s 1.944s 2.019s
9 | >600.000s 17.826s 18.790s
Fig. 8. Results for conjunct(i)
7 | Algorithm 1 | Algorithm 3 | Algorithm 4
1 0.007s 0.007s 0.007s
2 0.007s 0.007s 0.007s
3 0.009s 0.009s 0.009s
4 0.017s 0.010s 0.010s
5 0.133s 0.012s 0.012s
6 0.305s 0.015s 0.016s
7 430.684s 0.018s 0.022s
8 | >600.000s 0.023s 0.029s
9| >600.000s 0.029s 0.044s

Fig. 9. Results for explode()

6 Generalized Optimisation

11

The tests were conducted on a Linux PC (Dual Core AMD Opteron 2220S
(2800MHZ), 16GB RAM). It is obvious that a significant increase of performance
may be obtained through the proposed optimisations. In general, the performance
of the implementation of the proposed algorithms in the generic reasoner CoLoSS
is comparable to dedicated conditional logic provers such as CondLean; a direct
comparison is presently made difficult by the fact that the benchmarking formulas
used to evaluate CondLean are not listed explicitly in [6].

As previously mentioned, the demonstrated optimisation is not restricted to the
case of conditional modal logics.

HAUSMANN AND SCHRODER

Definition 6.1 If I is a sequent, we denote the set of all arguments of top-level
modalities from I' by arg(I'). A short sequent is a sequent which consists of just
one formula which itself is a propositional formula over a fixed maximal number
of modal arguments from arg(I'). In the following, we fix the maximal number of
modal arguments in short sequents to be 2.

The general method of the optimisation then takes the following form: Let
Si,...,Sy be short sequents and assume that there is a (w.r.t the considered modal
logic) sound instance of the generic rule which is depicted in Figure 10 (where S is
a set of any sequents).

Sy ... S, S

(Opt)

Fig. 10. The general rule-scheme to which the optimisation may be applied

Then we devise a final version (Algorithm 5) of the optimized algorithm: Instead
of considering only equivalences of conditional antecedents for pre-proving, we now
extend our attention to any short sequents over any modal arguments.

Algorithm 5 Step 1: Take a formula ¢ as input. Set i = 0, Kg = 0, evalg = 0.
Step 2: Generate the set args; of all modal arguments of ¢ which have nesting depth
at most 7. If i < depth(¢) continue with Step 3, else set K = K;_1, eval = eval;_;
and continue with Step 4.

Step 3: Let seq; denote the set of all short sequents of form S; (where S; is a sequent
from the premise of rule (Opt)) over at most two formulas A,, Ay € args;. Compute
Algorithm 2 (¢, (K;, eval;)) for all ¢ € seq;. Set K;11 = seq;, set i =i+ 1. For
each short sequent ¢ € seq;, set eval;y1(¢)) = T if the result of Algorithm 2 was
‘provable’ and eval;y1(v)) = L otherwise. Continue with Step 2.

Step 4: Call Algorithm 2 (¢, (K, eval)) and return its return value as result.

This new Algorithm 5 may then be used to decide provability of formulas, where
the employed ruleset has to be extended by the generic modified rule given by
Figure 11.

S
Opt™) —
(Op)F

(Nieqi.nyeval(S;) =T)

Fig. 11. The general optimized rule

Example 6.2 The following two cases are instances of the generic optimisation:

(i) (Classical modal Logics / Neighbourhood Semantics) Let I' = {0A = OB},
n=1,5 ={A= B} and S = (). Algorithm 5 may be then applied whenever
the following congruence rule is sound in the considered logic:

12

HAUSMANN AND SCHRODER

Opt A=5
(Opteons) Ty —op
The according modified version of this rule is as follows:
Opt? R S—
(p Cang) OA = OB

with the side-condition eval(A = B) =T.

(ii) (Monotone modal logics) By setting I' = {0A — OB}, n=1, S = {A — B}
and S = (), we may instantiate the generic algorithm to the case of modal logics
which are monotone w.r.t. their modal operator. So assume the following rule
to be sound in the considered modal logic:

o A— B
N
The according modified version of this rule is as follows:

Opt™ _
(pMon) OA — OB

with the side-condition eval(A — B) = T.

In the case that (Optasor,) is the only modal rule in the considered logic (i.e.
the case of plain monotone modal logic), all the prove-work which is connected
to the modal operator is shifted to the pre-proving process. Especially match-
ing with the modal rules RO, becomes a mere lookup of the value of eval.
This means, that all calls of the sequent algorithm Algorithm 2 correspond
in complexity just to ordinary sat-solving of propositional logic. Furthermore,
Algorithm 2 will be called |¢| times. This observation may be generalized:

Remark 6.3 In the case that all modal rules of the considered logic are instances of
the generic rule (Opt) with P = () (as seen in Example 6.2), the optimisation does
not only allow for a reduction of computing time, but it also allows us to effectively
reduce the sequent calculus to a sat-solving algorithm. Furthermore, the optimized
algorithm will always be as efficient as the original one in this case (since every
occurence of short sequents over arg(I') which accord to the current instantiation
of the rule (Opt) will have to be shown or refuted even during the course of the
original algorithm).

7 Conclusion

We presented (from a practical point of view) two optimisations for reasoning in
conditional logic:

* The first optimisation makes use of the concept of dynamic programming in order
to separate the two tasks that showing validity of formulas in conditional logic
consists of: The first task of proving equivalences of antecedents and the second
task of ordinary sequent proving. The use of dynamic programming substantially
decreases the branching breadth of the resulting sequent calculus.

* The second proposed optimisation introduces a strategy to reduce the amount of
pairs of antecedents whose equivalence has to be considered. This is achieved by
distinguishing between connected and independent pairs of modal arguments.

13

HAUSMANN AND SCHRODER

When both optimisations are applied at the same time, a significant increase in per-
formance of the sequent algorithm for conditional logic can be observed. This was
shown in Section 5.1 by considering the results of benchmarking a Haskell imple-
mentation (which forms part of the generic proving tool CoLoSS) of the optimised
algorithms.

It remains as an open question whether the gain in perfomance which is obtained
by optimising the algorithm for conditional logic may be transferred to other logics
by making use of the generic optimisation strategy as described in the last section.

References
[1] G. Calin, R. Myers, D. Pattinson, and L. Schroder. Coloss: The coalgebraic logic satisfiability solver
(system description). In Methods for Modalities, M4M-5, vol. 231 of ENTCS, pp. 41-54. Elsevier, 2009.

[2] B. Chellas. Modal Logic. Cambridge University Press, 1980.

[3] C. Cirstea, A. Kurz, D. Pattinson, L. Schroder, and Y. Venema. Modal logics are coalgebraic. The
Computer Journal, 2009. In print.

[4] R. Fagin and J. Y. Halpern. Reasoning about knowledge and probability. J. ACM, 41:340-367, 1994.
[5] K. Fine. In so many possible worlds. Notre Dame J. Formal Logic, 13:516-520, 1972.

[6] N. Olivetti and G. L. Pozzato. CondLean: A theorem prover for conditional logics. In Automated
Reasoning with Analytic Tableaur and Related Methods, TABLEAUX 2003, vol. 2796 of LNCS, pp.
264—270. Springer, 2003.

[7] N. Olivetti, G. L. Pozzato, and C. Schwind. A sequent calculus and a theorem prover for standard
conditional logics. ACM Trans. Comput. Logic, 8(4:22):1-51, 2007.

[8] D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local consequence.
Theoret. Comput. Sci., 309:177-193, 2003.

[9] D. Pattinson and L. Schroder. Admissibility of cut in coalgebraic logics. In Coalgebraic Methods in
Computer Science, CMCS 08, vol. 203 of ENTCS, pp. 221-241. Elsevier, 2008.

[10] D. Pattinson and L. Schroder. Generic modal cut elimination applied to conditional logics. In
Automated Reasoning with Analytic Tableauxr and Related Methods, TABLEAUX 2009, vol. 5607 of
LNCS. Springer, 2009.

[11] M. Pauly. A modal logic for coalitional power in games. J. Logic Comput., 12:149-166, 2002.

[12] L. Schroder. Expressivity of coalgebraic modal logic: The limits and beyond. Theoret. Comput. Sci.,
390:230—-247, 2008.

[13] L. Schroder and D. Pattinson. How many toes do I have? Parthood and number restrictions in
description logics. In Principles of Knowledge Representation and Reasoning, KR 2008, pp. 307-218.
AAAT Press, 2008.

[14] L. Schroder and D. Pattinson. Shallow models for non-iterative modal logics. In Advances in Artificial
Intelligence, KI 2008, vol. 5243 of LNAI, pp. 324-331. Springer, 2008.

[15] L. Schroder and D. Pattinson. Pspace bounds for rank-1 modal logics. ACM Trans. Comput. Logic,
10(2:13):1-33, 2009.

[16] M. Vardi. On the complexity of epistemic reasoning. In Logic in Computer Science, pp. 243-251.
IEEE, 1989.

14

	Introduction
	Generic Sequent Calculi for Coalgebraic Modal Logic
	The Algorithm
	The conditional logic instance

	The Optimisation
	Treatment of Requisite Equivalences Only

	Implementation
	Comparing the Proposed Algorithms

	Generalized Optimisation
	Conclusion
	References

