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Abstract

Run No. Run ID Run Description infMAP (%)

training on TV09 data (type: A)

1 IUPR-VW-TV SIFT visual words with SVMs 8.5
2 IUPR-ADAPT-TV SIFT visual words with PA1SD 5.1

combined training on YouTube and TV09 data (type: C)

3 IUPR-VW+TT-TV SIFT visual words with SVMs, fused with Tu-
beTagger concept detection scores

8.3

4 IUPR-ADAPT-YT SIFT visual words with PA1SD, trained on
YouTube, adapted to TV09

5.1

training on YouTube data (type: c)

5 IUPR-VW-YT SIFT visual words with SVMs 3.2
6 IUPR-VW+TT-YT SIFT visual words with SVMs, fused with Tu-

beTagger concept detection scores
3.2

Similar to our TRECVID participation in 2008 [23], our main motivation in TRECVID’09 is to use web
video as an alternative data source for training visual concept detectors. Web video material is publicly
available at large quantities from portals like YouTube, and can form a noisy but large-scale and diverse
basis for concept learning. Unfortunately, web-based concept detectors tend to be inaccurate when applied
to different target domains (e.g., TRECVID data [24]). This “domain change” problem is the focus of this
year’s TRECVID participation.

We tackle it by introducing a highly-efficient linear discriminative approach, where a model is initially
learned on a large dataset of YouTube video and then adapted to TRECVID data in a highly efficient
on-line fashion. Results show that this cross-domain learning approach (infMAP 5.1%) (1) outperforms
SVM detectors purely trained on YouTube (infMAP 3.2%), (2) performs as good as the linear discrimi-
native approach trained directly on standard TRECVID’09 development data (infMAP 5.1%), but (3) is
outperformed by an SVM trained on standard TRECVID’09 development data (infMAP of 8.5%).



1. Introduction

Recently, the usage of socially tagged images and
video as training sources for semantic concept de-
tection (or “high-level feature extraction”) has be-
come more and more prominent [17, 23, 24]. Such
data is publicly available at large scale from on-
line portals like Flickr or YouTube and is associated
with a noisy but rich corpus of tags, comments and
ratings that are provided by their online communi-
ties.

Utilizing this information (e.g. web video) can
help to reduce or even neglect the demand for ex-
pert labeled datasets, which currently serve as a
foundation for supervised machine learning train-
ing, the underlying technology of current concept
detection systems [4, 18, 26]. Being able to auto-
matically learn new concepts from web video can
increase concept vocabularies immensely and make
content based video retrieval systems scalable and
capable to cover user’s information need [8]. Fur-
thermore, large scale acquisition of expert labeled
datasets [2, 14, 19] is a time-consuming and there-
fore cost intensive effort leading to static datasets
which cannot adapt. This results in missing new
emerging concepts of interest like “Michael Jack-
son”, “Inauguration Day” or “iPod” 1 in their cor-
pus. Additionally, the focus on only a few anno-
tated video collections like e.g the “Sound & Vi-
sion” dataset currently used in TRECVID might
limit the variability of retrieval results since the
detectors work well on this dataset (or similar one)
but generalize poorly on others as demonstrated
in [27]. Web video, on the other hand, is provid-
ing a more diverse dataset being able to train more
general detectors performing better when applied
on previously unknown datasets [20].

On the downside, the usage of web videos as
training material for concept detection systems
faces new challenges as its quality strongly depen-
dents on user generated tags. First, such weakly la-
beled video clips are often subjectively annotated,
unreliable and coarse containing a great amount of
non-relevant content (only a fraction between 20%-
50% is relevant as estimated in [21]).

Second, in a setup where concept detectors are
trained on web video and afterwards applied to
a particular domain like the “Sound & Vision”
dataset used in TRECVID, we are facing the so-
called domain change problem: a significant dis-

1top ranked searches 2009 by “Google Insights for
Search” for web search, news search and product search re-
spectively

(a) (b)

Figure 1. Frames from YouTube (a) and
TRECVID (b) videos tagged with Tele-
phone. The domain change leads leads to
a different visual appearance of the con-
cepts.

crepancy of the visual characteristics between given
domains. This is illustrated in Figure 1: imag-
ine training a detector for the concept “Telephone”
on YouTube data (which shows mostly close-ups)
and applying it on TV broadcast data (here, the
TRECVID’08 dataset [11]), which shows mostly of-
fice telephones. Obviously, the web-based detectors
will perform poorly on this particular dataset as al-
ready has been reported during TRECVID’08 [24].
So far, this challenge has been addressed using
cross-domain learning techniques in the context of
switches between different TV channels [29, 6] or
TRECVID datasets (from TV05 to TV07) [9, 28]
but not in the context of web-based learning.

This raises the question whether concept de-
tectors trained on the web video domain (here,
YouTube) can be successfully adapted to another
(here, Sound & Vision). Our participation in
TRECVID’s High-level Feature Task aims to an-
swer this question in introducing a light-weight lin-
ear discriminative adaptation approach using bag-
of-visual-words features and being able to (1) per-
form domain adaptation of its model learned from
YouTube to the special domain of TRECVID’s
Sound & Vision data and (2) showing that this
adaptation approach is highly efficient in terms of
dealing with potentially huge datasets. Addition-
ally, we provide several control runs with state-of-
the-art SVMs for comparison. The paper first de-
scribes the acquired YouTube dataset and its char-
acteristics. After this, the different approaches are
outlined and results of the runs are provided.



Table 1. Queries for Training Set Acquisi-
tion from YouTube.

concept YouTube query YouTube
category

Classroom classroom & school
-secret

-

Chair* chair & office &
bürostuhl -wheel
-trailer

HowTo&Style

Infant* baby & kleine babys
-driver -ride

People&Blog

Traffic
Intersection*

traffic & intersec-
tion & strassen &
kreuzung

Autos&Vehicles

Doorway* türen & öffnen &
doors & gates

People&Blog &
Entertainment

Airplane flying airplane & flying -
jefferson -indoor -
school -kids

Autos&Vehicles

Person play-
ing a musical
instrument*

instrument & learn
to play

Music

Bus bus -van -suv -vw -
ride

Autos&Vehicles

Person play-
ing soccer*

people playing soc-
cer & fussball spielen

Sport

Cityscape cityscape -slideshow
-emakina

Travel&Places

Person riding
a bicycle*

riding bicycle &
fahrrad

Sports

Telephone phone & device -
Person
eating*

food eating contest
& essuen und kochen

Entertainment

Dem. Or Prot. protesting -
Hand hand & daft -
People
dancing*

people dancing &
learn to dance

Sports

Nighttime by & night Travel&Places
Boat Ship ship & (queen | free-

dom | royal)
Autos&Vehicles

Female hu-
man face
closeup*

female videoblog &
girl makeup

People&Blog &
HowTo&Style

Singing singing & (gospel |
choir)

-

*new concept for 2009 evaluation

2. Datasets

To evaluate the potential of domain adapta-
tion for concept detectors when trained on freely
available web video and adapted to TRECVID’s
Sound & Vision data, we differentiate between to
datasets: first, a collection of video clips down-
loaded from YouTube (referred to as YOUTUBE)
where user generated tags serve as annotations for
training. The other video collection is the stan-
dard TRECVID’09 Sound & Vision development

data (referred to as TRECVID) with high-quality
expert annotations. In terms of cross-domain learn-
ing terminology, the YOUTUBE data is our source
domain, whereas TRECVID defines our target do-
main to which we want to adapt.

To download videos from YouTube, first we have
to make use of the YouTube API2 for meta-data re-
trieval of potential video clips. This is done using
a textual query like “food eating contest” embed-
ded in the API call. This step is critical because the
quality of the trained concept detectors strongly de-
pends on manually selecting proper keywords used
in the YouTube query. Given the fact, that every
minute 20 hours of new video material is uploaded
to YouTube [10], it can be understood that a qual-
ity control of retrieved video material at this scale
is impossible. However, to make sure that simple
misinterpretations does not occur like for the con-
cept “cityscape” not to download videos of various
3d software tutorials, where a “cityscape” is mod-
eled, we perform two manual refinements during
keyword selection (a complete list of final queries is
given in Table 1):

1. YouTube is organizing videos in categories like
“Sport” or “Autos&Vehicles”. For some con-
cepts, we enhanced the query with a canonical
category, which restricted the list of retrieved
videos to this category. For example, by choos-
ing the category “People&Blog” we could im-
prove the quality of video material for the con-
cept “female human face closeup” in getting
more video clips of closeup faces.

2. Queries were additionally refined by inspect-
ing of YouTube search results and accordingly
adding or excluding additional keywords. For
example, for the concept “person eating” we
added the keyword “food” or for the concept
“chair” we excluded the term “wheel”.

After defining proper queries and retrieving
meta-data of potential video clips, we downloaded
150 videos for each new concept from YouTube. To
reduce data load we only downloaded the first 3
minutes of each clip resulting in a training set of
about 120 hours of total length.

Figure 2 is displaying random sample
keyframe from both training sets YOUTUBE
and TRECVID for the representative concepts
“person playing soccer”, “traffic intersection”,
“person eating” and “female human face closeup”.
It can be seen that while YOUTUBE grasps the

2http://www.youtube.com/dev



Figure 2. An illustration of randomly selected key frames from the TRECVID (top)
and YOUTUBE (bottom) training sets. The concepts are “person playing soccer”, “traf-
fic intersection”, “person eating”, and “female human face closeup”. While the TRECVID
dataset shows high annotation quality, the material downloaded from YouTube contains some
amount of junk.

concept definition it contains some amount of
non-relevant content as already reported in [23].
Note that this non-relevant material will also be
used as positive samples in our concept detector
training. Especially, for the concept “telephone”,
where the initial example in Figure 1 is taken from
we observe a significant shift in the domain from
video clips of smart phone in YOUTUBE to office
scenarios in TRECVID data. Remember, that we
are reusing the old web material from the 2008
evaluation for the 10 concepts that are kept in the
2009 evaluation.

3. Approach

The goal of our TRECVID participation is the
evaluation of a domain adaptation technique based
on a light-weight linear discriminative approach
where a model is trained on the rich collection of
YouTube videos and afterwards adapted to the par-
ticular domain of TRECVID’s Sound & Vision data
in a highly efficient on-line fashion. Additionally,
we perform control experiments comparing adapta-
tion results with state-of-the-art SVMs classifiers.
As input for both classifier we use SIFT visual
words. However, we also evaluate a new feature
set consisting of concept detection scores provided
by the TubeTagger detector [22].

3.1 Keyframe Extraction

Regarding shot representation we are extracting
keyframes for each video/shot. Here, we deal dif-
ferently with the given datasets:

1. For the YOUTUBE data, keyframe extraction
is performed according to a change detection
scheme [22] providing 53k keyframes for the en-
tire dataset (19k keyframes were already avail-
able from used concepts in the TRECVID’08
evaluation), which corresponds to an average
of ca. 18 keyframes per YouTube video clip.

2. For the TRECVID data, the standard shot
boundary reference was used for temporal seg-
mentation and a intra-shot diversity based
approach for keyframe extraction [3]. For
each shot, a K-Means clustering is performed
over MPEG7 Color Layout Descriptors [13] ex-
tracted from all frames the number of clusters
is fitted using the Bayesian Information Crite-
rion [16]. For each cluster the frame closest to
the cluster center is chosen as a keyframe.



3.2 Features

From all keyframes the following visual features
are extracted:

• Visual Words (SIFT): Visual words are ex-
tracted by performing a dense regular sam-
pling of SIFT features [12] at several scales,
obtaining ca. 3, 600 features per keyframe.
Features are clustered to 2, 000 visual words
using K-Means forming “bag-of-visual-words”
descriptors.

• TubeTagger Semantic Feature Space:
TubeTagger is a system which performs a vi-
sual learning on YouTube clips, allowing it
to distinguish between 233 semantic concepts
(see [22] for more details).

We exploit the semantic knowledge of the sys-
tem by applying the already existing classifiers
to the extracted keyframes, and combining the
resulting scores into one 233-dimensional fea-
ture vector for each keyframe. Each entry
hereby corresponds to the affinity towards one
semantic concept known to TubeTagger i.e rep-
resenting it in context of the TubeTagger con-
cept vocabulary. For example, the TubeTagger
detectors for “street” and “vehicle” might be a
valuable for classification of an unknown con-
cept like “car”.

3.3 Statistical Models

Two different statistical models are used:

• Support Vector Machines: Support vector
machines (SVMs) are a standard approach for
concept detection and form the core of numer-
ous concept detection systems [25, 26]. We
used the LIBSVM [5] implementation with a
χ2 kernel, which has empirically been demon-
strated to be a good choice for histogram fea-
tures [30]:

K(x, y) = e
−
d
χ2 (x,y)2

γ2 (1)

where dχ2(., .) is the χ2 distance. γ and the
SVM cost of misclassifications C were esti-
mated separately for each concept using a grid
search over the 3-fold cross-validated average
precision. A problem is that training sets
are imbalanced, i.e. the number of negative
samples outnumbers the number of positive
ones. Those setups cause problems for many

classifiers, including SVMs [1]. To overcome
this problem, the dominant class is subsam-
pled to obtain roughly balanced training sets.
For the TRECVID based runs, 5 SVMs were
trained on small-scale training sets with 400
negative samples randomly sampled from the
TRECVID set, and the results were fused us-
ing a simple averaging. For the YouTube-based
runs (where significantly more positive train-
ing samples were available), we used 3000 pos-
itive and 6000 negative training examples from
the YOUTUBE data set.

In all cases, SVM scores were mapped to prob-
ability estimates using the LIBSVM standard
implementation.

• Passive Aggressive Online Learning: Pas-
sive Aggressive Online Learning was first in-
troduced in context of image retrieval [7],
but also proved to be an valid alternative to
SVMs when dealing with large scale concept
detection of video clips [15]. This approach
describes a highly efficient linear discrimina-
tive classifier which optimizes the area under
the Receiver Operating Characteristic (ROC)
curve in projecting keyframes to a one dimen-
sional space (concept space) by means of a
weight vector wc.

The one dimensional concept space is opti-
mized by maximizing the following criterion
using an online iterative procedure (more de-
tails in [7, 15]):

J(wc) =
∑
∀xp∈Xp

∑
∀xn∈Xn

(wcxp − wcxn) (2)

where xp ∈ Xp is a keyframe that does show
the concept (positive keyframe) while xn ∈ Xn

is a keyframe that does not show the concept
(negative keyframe). For each concept Xp is
the set of all positive keyframe, Xn is the set
of all negative keyframes and (xp, xn) is any
possible pair of positive and negative keyfames.
Learning during training is done in optimizing
this index in a way that positive keyframes are
projected to high values in this concept space
whereas negative keyframes are projected to
low ones.



Figure 3. Quantitative results for all IUPR runs (the first two runs are using a SVM trained on
the TRECVID’08 standard data, the middle two are using a SVM trained on YouTube data and
the last two runs are using the PAMIR approach). left: per-concept results. right: the mean
inferred average precision per run.

3.4 Domain Adaptation

Domain adaptation is based on an extension of
the Passive Aggressive Online Learning approach.
The idea is to utilize the online learning proper-
ties of the algorithm for adaptation. Initially, for
each concept a model is trained on YOUTUBE data
forming a weight vector wY OUTUBEc . Each of this
weight vectors is modified in a second training se-
quence performed on TRECVID data. Finally, for
each concept an adapted model represented by the
weight vector wADAPTEDc is created, which is now
used for final classification of the TRECVID’09 test
data. Note that this is possible because the mod-
els of the proposed online learning algorithm is en-
tirely defined by its weight vectors wc. Such an
adaptation would be not suitable for SVMs, where
cross-domain learning is performed differently and
therefore is also computational more expensive.

3.5 Late Fusion

Finally, scores obtained from several keyframes
for each shot and feature scores for each keyframe
(in Runs 3 and 6) are fused:

• Having several keyframes for each shot, the
corresponding scores are simply averaged, pro-
viding a single score for each shot and feature.

• For fusing different features, we perform a
weighted sum fusion whereas concept-specific

weights are learned using a grid search max-
imizing average precision on the TRECVID
2007 test set, using the TRECVID 2007 devel-
opment set as training set. After re-training on
the TRECVID 2009 development data, these
weights are used to fuse the different features
into a final concept score.

4 Results

We submitted a total of 6 runs: 2 runs trained
on TRECVID data, 2 trained on a combination
of YOUTUBE and TRECVID and 2 runs trained
entirely on YOUTUBE data:

1. A IUPR-VW-TV In this run, we used the
SVM approach in combination with SIFT vi-
sual word features trained on TRECVID data.

2. A IUPR-ADAPT-TV This run serves as
a control for the adaptation approach (Run
4). Here, we trained with the PAMIR ap-
proach [15] over SIFT visual words features on
TRECVID data.

3. C IUPR-VW+TT-TV In contrast to Run
1, we fused detection scores with SVM results
trained on TRECVID data using the TubeTag-
ger semantic features.

4. C IUPR-ADAPT-YT Here, we perform do-
main adaptation with the Passive Aggressive



Online Adaptation approach over the SIFT vi-
sual word features i.e. training on YOUTUBE
and adaptation on TRECVID.

5. c IUPR-VW-YT Same as in Run 1 but us-
ing YOUTUBE data as a training source.

6. c IUPR-VW+TT-YT Same as in Run 3 but
using YOUTUBE data as training source.

Quantitative results are displayed in Figure 3
showing that cross-domain learning with the pro-
posed approach is in general possible. The Passive
Aggressive Online Adaptation provides a infMAP
of 5.1% which is outperforming the SVM detector
purely trained on YOUTUBE (infMAP of 3.2%,
3.2% for run 5 and 6) and showing an as good
performance as trained with the PAMIR approach
on standard TRECVID’09 data (infMAP of 5.1%).
However, the linear adaptation approach is per-
forming worse than a SVM trained on standard
TRECVID’09 data (infMAP of 8.5%, 8, 3% for run
1 and 3). Similar results are already reported
by [15] when comparing PAMIR to SVMs. How-
ever, the PAMIR approach is especially suitable in
large-scale setups like web video because of its 500-
fold speedup against SVMs.

A potential performance gain could be reached
in fine-tuning the only hyper-parameter of the
PAMIR approach: the number of iterations opti-
mizing the index in Equation 2. Experiments on
the TRECVID development data indicate that the
conservative setup used for the TRECVID bench-
mark experiments (in average 250k iterations for
initial YouTube based training and 125k iterations
for adaptation) is not optimal for all concepts. For
example, for the concept “person playing soccer”
the adaptation to TRECVID data damages concept
detector performance, whereas a way higher num-
ber if adaptation iterations is necessary for concepts
with a high amount of redundancy and duplicates
like e.g. “person eating” and “traffic intersection”.
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