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Abstract—We present TubeTagger, a concept-based video
retrieval system that exploits web video as an information
source. The system performs a visual learning on YouTube clips
(i.e., it trains detectors for semantic concepts like “soccer” or
“windmill”), and a semantic learning on the associated tags
(i.e., relations between concepts like “swimming” and “water”
are discovered). This way, a text-based video search free of
manual indexing is realized.

We present a quantitative study on web-based concept
detection comparing several features and statistical models on a
large-scale dataset of YouTube content. Beyond this, we report
several key findings related to concept learning from YouTube
and its generalization to different domains, and illustrate
certain characteristics of YouTube-learned concepts, like focus
of interest and redundancy. To get a hands-on impression
of web-based concept detection, we invite researchers and
practitioners to test our web demo1.

Keywords-information retrieval; image databases; pattern
recognition;

I. INTRODUCTION

Over the last years, concept-based video retrieval [1]
has evolved as an exciting research area. It realizes a text-
based search of video databases by substituting a manual
indexing with automatic visual detectors that mine video
collections for semantic concepts, like objects (“car”), loca-
tions (“desert”), or activities (“interview”). This approach
has proven highly effective and is now implemented in
several research systems [2], [3], [4].

One problem with concept detection, however, is that the
machine learning techniques underlying in require training
data for large-scale concept vocabularies and semantic re-
lations. Particularly, training samples for a visual learning
of concepts have been acquired manually so far [5], which
is a time-consuming and cost-intensive process. This poses
severe limitations: the number of concepts remains limited,
the insufficient scale of training sets gives rise to overfitting,
and adapting to changes of user’s information needs (like
new concepts of interest) remains difficult.

Another important trend over the last years has been
the enormous growth of web-based video platforms, like
YouTube, Vimeo, or blinkx. These have not only become
sources of information and entertainment to millions of

1http://www.dfki.uni-kl.de/∼ulges/tubetagger

Figure 1. TubeTagger Concept Learning from YouTube.

users, but also offer a novel kind of knowledge base for the
machine interpretation of multimedia data, coupling huge
amounts of content with user-generated annotations, ratings,
and categorizations.

In this paper, we present a system called TubeTagger that
links concept-based video retrieval and web video. Its key
idea is to employ web video platforms like YouTube as a
source of training data for two kinds of learning:

Visual Learning: TubeTagger employs web video content
to train concept detectors – for example, to learn the
visual appearance of the concept “soccer”, result clips of
a corresponding YouTube search form positive examples in
the training set.

Semantic Learning: TubeTagger learns to link concepts
from tag co-occurrence statistics. For example, the system
discovers that the terms “swimming” and “water” are
related as they appear together frequently. This allows
to map users’ text queries to the vocabulary of learned
concepts.

TubeTagger realizes a concept-based retrieval without a
tedious manual annotation of training samples and semantic
relations (learning a concept only needs to be triggered with
a textual YouTube query). This way, TubeTagger can be
used in three applications (which are all realized in our web
demo1, and are also illustrated in Figure 2):

Automatic Deep Tagging: While YouTube tags are only
made on clip level, TubeTagger can automatically detect
concepts within a video, and so directly guide users to certain
events of interest.



Figure 2. left: automatic deep tagging – TubeTagger finds the concept “bus” in a 10-minute clip. center: tag recommendation – TubeTagger suggests
the tag “clouds” for some YouTube clips. right: text-based video search – TubeTagger matches the query “diving” to learned concepts like “underwater”,
“shipwreck”, and “fish”.

Tag Recommendation: TubeTagger can suggest addi-
tional labels for YouTube clips to overcome tag sparseness.

Text-based Video Search: Finally, TubeTagger can also
use the learned semantic relations to match detected concepts
to textual user queries, and so realize a text-based search of
video databases free of manual indexing.

II. RELATED WORK

Concept-based video retrieval has evolved as a novel
research field over the last decade [6] (for an overview,
see [1]). Research in the area focuses in TRECVID [7], an
evaluation campaign for video retrieval in which a variety
of concept detection systems have been developed [2], [3],
[4]. So far, the standard approach is to employ expert-labeled
training examples for concept learning. The resulting ground
truth annotations are shared in TRECVID and other related
efforts [8].

Replacing such a tedious manual annotation with an
widely automatic learning from web content has only re-
cently gained traction as a new research direction, driven by
the rise of large-scale image and video sharing services like
Flickr and YouTube. Web-based image content has already
been studied quite intensively: for example, Fergus et al. [9]
learn visual models of object categories from Google’s
image search and filter junk material using a topic model
(for this purpose, Wnuk et al. [10] and Li et al. [11] propose
a nearest neighbor analysis in feature space). Kennedy et
al. [12] identify concepts suitable for additional web-based
training material, and try to automate this decision.

When it comes to web video content, less contributions
can be found. Zelnik-Manor et al. [13] and Schindler et
al. [14] have presented studies on shot boundary detection
and categorization of web video content, and emphasized the
difficulty of the domain due to enormous content variance
and weakness of labels. Other contributions are targeted at
an automatic categorization of web videos based on their
visual content and associated tags [15].

Finally, the generalization capabilities of web video-based
detectors to different domains (e.g., to TV content) have
been addressed. Setz and Snoek [16] and Ulges et al. [17]

have applied web-based detectors to TRECVID datasets and
reported that annotations on the target domain lead to a better
accuracy, but that web-based detectors are effective for a
bootstrapping on novel domains.

Finally, some approaches have been suggested for a
semantic learning from web-based sources (i.e., textual
information is employed and not image and video content
as above). Haubold and Natsev [18] use web-based text
corpuses for semantic reasoning, and point out that web-
based text information is more large-scale and up-to-date.
Yang et al.’s Web 2.0 Dictionary [19] follows a similar
approach, constantly updating its tag correlations from the
web. In TubeTagger, we have adopted such a semantic
learning from web video, but also combined it with a visual
learning as discussed above.

III. SYSTEM SETUP

Concept learning in TubeTagger is illustrated in Figure
1: YouTube material is downloaded (which is described in
Section III-A) and employed to train visual concept detec-
tors, which can later be used to compute scores indicating
concept presence in previously unseen video content (Sec-
tion III-B). In parallel, concept co-occurrences are learned
from YouTube tags (Section III-C).

A. Data Acquisition
To learn a concept, the user provides a textual query to

the YouTube API, which returns a list of videos matching
this query. For training, we download a certain number N
of clips per concept (this number will be investigated later
in the experiments). These clips serve as positive examples
for training the target concept. Negative samples are drawn
from other videos not tagged with the concept.

To improve the quality of downloaded material, we refine
the text query to the YouTube API. This is done by in-
specting the first YouTube result page and iteratively adding
additional terms and category information to the query.
For example, to download training content for the concept
“rainbow”, the query “rainbow beautiful” was used, and only
videos from the YouTube category “travel&places” were
downloaded.



B. Visual Learning

TubeTagger performs concept detection on the basis of
keyframes (moderate improvements of accuracy can be
achieved by integrating other feature modalities such as
motion information [17], which are omitted here).

Keyframes are extracted using a simple change detection
and fed to a concept detection system. For each concept,
a binary classification problem is formulated: all keyframes
sampled from videos tagged with the target concept are used
as positive training samples, keyframes from other clips as
negative ones. As a feature representation, well-known bag-
of-visual-words descriptions are used [20]: Patches are regu-
larly sampled at several scales in the frame, described using
SIFT [21] or SURF [22], matched to a 2000-dimensional
codebook of patch categories, and finally aggregated in
histograms. The resulting visual descriptors are fed to a
machine learning method – we tested several statistical
classifiers (output scores of all models are mapped to prob-
abilities [23] afterwards):

1) Support Vector Machines (SVMs) [24], which are a
state-of-the-art approach in concept detection [1], [3].
A χ2 kernel was used, with parameters fitted by three-
fold cross-validation.

2) Passive-Aggressive Online Learning (PAMIR) [25],
[26], a linear model based on margin maximization.
Training is done using an efficient online algorithm1.

3) Maximum Entropy (MAXENT): we also test an ap-
proach based on the maximum entropy principle [27].
The posterior is modeled in a log-linear fashion, and
the decision boundary is estimated using an iterative
scaling algorithm.

C. Semantic Learning

Concept-based video retrieval only gains traction when
learned concepts can be matched to a wide range of textual
queries made by the user. For this purpose, TubeTagger
learns relations between concepts from tag co-occurrence
statistics. For each concept t ∈ T , a bag-of-words represen-
tation is extracted using counts of tags from the associated
video clips, obtaining a histograms ht. A user query q is
represented by a similar histogram hq . q is then mapped to
learned concepts by computing weights as inner products:
w(q, t) :=< ht, hq >. The five concepts with the highest
weights T5 are chosen as potential matches, and the score
of a keyframe x for the query q is computed by a weighted
sum fusion:

P (q|x) =
∑
t∈T5

w(q, t)∑
t∈T5

w(q, t)
P (t|x)

1an implementation of the model was kindly provided by Roberto Paredes
from the Universidad Politécnica de Valencia.

Figure 3. Benchmarking how many YouTube clips are required for concept
learning. It can be seen that detector accuracy (using the PAMIR model)
stabilizes when using between 100 and 150 clips for training.

IV. CONCEPT DETECTION EXPERIMENTS

We have evaluated TubeTagger on a dataset of 1, 200 hrs.
(ca. 750, 000 keyframes) of YouTube content. 233 concepts
(ranging from “airplane” to “wrestling”) were manually
selected with respect to feasibility of detection and avail-
ability of appropriate YouTube training material. For these
concepts, queries to the YouTube API were formulated as
described in Section III-A, and 150 clips per concept were
downloaded for system training and 50 for testing.

We benchmark TubeTagger in a “video” mode, in which
the system suggests tags for YouTube clips in the test set.
Keyframe-level concept scores (see Section III-B) averaged,
obtaining clip-level concept scores. Over these, we mea-
sure the mean average precision (MAP), using the original
YouTube tags as ground truth on the test set.

Number of Training Videos: In a first experiment, we
investigate how much YouTube training content is required
for an accurate concept detection. Ten test concepts were
chosen. For each concept, a random training sets of a
certain number N of clips was randomly sampled and
keyframes were extracted as positive training samples
(negative samples were obtained by randomly sampling
three times as many keyframes from other YouTube
clips). TubeTagger was trained on this material (using the
PAMIR approach) and then applied to a held-out test set
of 200, 000 keyframes. Results – averaged over 10 runs of
random training set resampling – are illustrated in Figure
3. It can be seen that training on a single clip is only
slightly better than random guessing (MAP 10%). When
using more training clips, performance increases until
finally saturating at 100 − 150 clips per concept. These
observations were consistent over all 10 test concepts and
were correspondingly expected to generalize well to other
concepts. For efficiency reasons, we used 100 training clips
(ca. 2, 000 positive keyframes) in the following experiments.



Figure 4. Detection results for a subsample of 78 representative concepts from our 233 test concepts.

Table I
EVALUATING DIFFERENT FEATURE TYPES AND CLASSIFIERS ON

YOUTUBE CONTENT. A COMBINATION OF SIFT VISUAL WORDS WITH
SVMS PERFORMS BEST.

model
feature type SVMs PAMIR MAXENT

SURF 20.4 15.4 14.1
SIFT 22.4 18.4 15.5

Evaluating Features and Classifiers: We have also tested
TubeTagger on a subset of 81 concepts in a similar setup as
above (testing on a dataset of 50 clips per concept. Different
statistical classifiers were tested, as well as SIFT and SURF
visual word features. Results are illustrated in Table I: the
best system (SVMs+SIFT) achieves a 18-fold improvement
over random guessing (1.2%). It can be seen that SIFT
gives a consistent improvement over SURF, and that SVMs
outperform the simpler linear models. Yet, these alternatives
may be interesting in a practical setting: particularly, SURF
and PAMIR lead to significant speedups [26], which may be
of vital importance in a real-world setting.

Full Test - 233 Concepts: Finally, we test TubeTagger
on a large-scale test set of 233 concepts. Concept-wise test
sets were compiled of 50 positive and 2, 000 negative clips.
Sample results on concept level are illustrated in Figure 4.
We see that the overall results are – though far from human
accuracy – promising: a mean average precision of 32.2% is
achieved, and all concepts are significantly better detected
than by a random guessing (MAP 2.4%).

V. INSIGHTS IN WEB-BASED CONCEPT DETECTION

In the following, we discuss key observations made during
an in-depth inspection of the concept-wise results on the
full set of 233 test concepts (the user is invited to validate
and extend these findings by testing the web demo1). As
already shown in Figure 4, detector performance varies
strongly between concepts, ranging from 80.2% (“origami”)

to 6.0% (“operating-room”). An in-depth inspection of re-
sults revealed that in fact there seem to be different kinds
of concepts:

“Good” Concepts: For some concepts, web-based con-
cept detection works well in a sense that rich training content
can be obtained from YouTube (for example, “boat/ship”,
avg. prec. 54.1%). Such “good” concepts can be charac-
terized by the fact that a broad community of YouTube
users records, edits, and uploads material. Often, they are
inherently “interesting” or “spectacular”, like scenic views
(“mountain”), sights (“pyramids”), or sports (“basketball”).

“Redundancy” Concepts: For other concepts, we find
YouTube material to be adequate but not of a sufficient
diversity. For example, see the concept “drummer” (avg.
prec. 77.0%) in Figure 5 (center): here, TubeTagger has
only learned from three specific series of drum lessons, and
correspondingly the system overfits to this content. Note that
making use of such redundancy is useful within the domain
(for example, when dealing with new upcoming videos by
the same user) but leads to a poor generalization to other
domains (for more information on this issue and quantitative
results, please refer to a previous publication of ours [17])

“Bad” Concepts: Finally, for other concepts we obtain
neither a sufficient quantity of data nor a sufficient diversity.
These concepts tend to be associated with everyday locations
and objects, which might appear in YouTube content but are
not regularly used as a tag, like “fence” (avg. prec. 8%),
“gas station” (avg. prec. 10%), or “shopping mall” (avg.
prec. 9.9%). For these concepts, training sets (and with them
detection performance) are poor.

Focus of Interest: Another important aspect is that – to be
used as a tag – a concept must be in the focus of attention:
YouTube users will not use “house” as a tag if a house
only appears somewhere in the background, but because the
house is of particular interest to them. Correspondingly, we
observed two effects: first, concept instances in YouTube



Figure 5. TubeTagger detection results for different kinds of concept: left: a “good” concepts (“boat-ship”), showing a high diversity of good-quality
training material. center: a “redundancy” concept (“drummer”): training material is good quality, but of a low diversity. right: a “bad concept” (“fence”),
for which we obtain no appropriate training material and detection quality is poor.

Figure 6. Concepts in YouTube-based training sets are usually in the focus
of interest (illustrated here for “telephone”): clips at YouTube (left) shows
close-ups, while expert-labeled TRECVID samples (right) show phones in
the background of office scenes.

training sets have a certain tendency to be outstanding or
special: for example, material for the concept “fountain”
shows mostly spectacular watershows in Las Vegas. Second,
concepts of interest are usually shown in close-ups. This is
illustrated in Figure 6, where YouTube “telephone” training
material shows only close-ups of phones, while TRECVID
content (which is expert-annotated) shows office scenes with
phones in the background. Obviously, the YouTube-based
detector will work poorly on TRECVID data (see a previous
publication of ours [17] for a quantitative evaluation of
YouTube detectors on different domains).

VI. WEB DEMO

Results on the full 233 concepts can be browsed in our
web demo1 (note that no textual annotations on the test set –
particularly, no YouTube tags – were used). The demo shows
TubeTagger in three different applications (see Figure 2):

Automatic Deep Tagging: When searching for a concept,
TubeTagger returns a list of test keyframes ranked by their
concept score. By clicking on one of these frames, the user is
directed to the associated scene within a YouTube clip. This
way, we can perform a frame-accurate concept detection
beyond coarse tags, as illustrated in Figure 2 (left). We found
this feature particularly useful for concepts that are object-
or event-related.

Tag Recommendation: When working in “video” mode,
TubeTagger fuses keyframe scores to video level by a simple
averaging, and employs them for tag recommendation. This

is illustrated in Figure 2 (center), where TubeTagger suggests
the tag “clouds” for some concepts.

Text Search: Finally, TubeTagger can also answer text
queries by mapping them to known concepts, using the
semantic learning of tag relationships (Section III-C). For
an example, see Figure 2 (right), where the result for the
query “diving” has been aggregated from matching concepts
like “underwater”, “shipwreck”, and “fish”. Although this
simple correlation-based model does not truly learn semantic
relations (like “is-part” and “is-subcategory”), we found it
very useful in finding “good” concepts for a query.

VII. DISCUSSION

We have presented TubeTagger, a concept-based video
retrieval system that performs a widely unsupervised visual
and semantic learning from YouTube. Our results and obser-
vations indicate that web material does have the potential to
overcome the scalability problem in concept learning. Yet,
several issues remain to be addressed.

First, we have observed that not all concepts are suitable
for learning from web video content. This raises the question
whether automatic strategies for selecting “good” concepts
can be successful (as has already been proposed by Kennedy
et al. [12] for the image domain).

A second issue is the investigation of strategies to improve
the quality of downloaded YouTube training material. Here,
the textual queries made by the user have been formulated
manually so far (and by inspecting the retrieved YouTube
material). It is an interesting question whether a better
support of query formulation can be achieved.

Finally, we plan to improve the system with respect to
scalability issues: using 16 cores, our current prototype
learns 250 concepts in a week, with feature extraction
being the most important bottleneck to be addressed (here,
solutions for speed-up exist [28]).
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